pycityagent 2.0.0a47__cp311-cp311-macosx_11_0_arm64.whl → 2.0.0a49__cp311-cp311-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- pycityagent/__init__.py +3 -2
- pycityagent/agent.py +109 -4
- pycityagent/cityagent/__init__.py +20 -0
- pycityagent/cityagent/bankagent.py +54 -0
- pycityagent/cityagent/blocks/__init__.py +20 -0
- pycityagent/cityagent/blocks/cognition_block.py +304 -0
- pycityagent/cityagent/blocks/dispatcher.py +78 -0
- pycityagent/cityagent/blocks/economy_block.py +356 -0
- pycityagent/cityagent/blocks/mobility_block.py +258 -0
- pycityagent/cityagent/blocks/needs_block.py +305 -0
- pycityagent/cityagent/blocks/other_block.py +103 -0
- pycityagent/cityagent/blocks/plan_block.py +309 -0
- pycityagent/cityagent/blocks/social_block.py +345 -0
- pycityagent/cityagent/blocks/time_block.py +116 -0
- pycityagent/cityagent/blocks/utils.py +66 -0
- pycityagent/cityagent/firmagent.py +75 -0
- pycityagent/cityagent/governmentagent.py +60 -0
- pycityagent/cityagent/initial.py +98 -0
- pycityagent/cityagent/memory_config.py +202 -0
- pycityagent/cityagent/nbsagent.py +92 -0
- pycityagent/cityagent/societyagent.py +291 -0
- pycityagent/memory/memory.py +0 -18
- pycityagent/message/messager.py +6 -3
- pycityagent/simulation/agentgroup.py +123 -37
- pycityagent/simulation/simulation.py +311 -316
- pycityagent/workflow/block.py +66 -1
- pycityagent/workflow/tool.py +9 -4
- {pycityagent-2.0.0a47.dist-info → pycityagent-2.0.0a49.dist-info}/METADATA +2 -2
- {pycityagent-2.0.0a47.dist-info → pycityagent-2.0.0a49.dist-info}/RECORD +33 -14
- {pycityagent-2.0.0a47.dist-info → pycityagent-2.0.0a49.dist-info}/LICENSE +0 -0
- {pycityagent-2.0.0a47.dist-info → pycityagent-2.0.0a49.dist-info}/WHEEL +0 -0
- {pycityagent-2.0.0a47.dist-info → pycityagent-2.0.0a49.dist-info}/entry_points.txt +0 -0
- {pycityagent-2.0.0a47.dist-info → pycityagent-2.0.0a49.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,309 @@
|
|
1
|
+
import json
|
2
|
+
import random
|
3
|
+
from typing import Dict, List
|
4
|
+
from pycityagent.environment.simulator import Simulator
|
5
|
+
from pycityagent.workflow import Block
|
6
|
+
from pycityagent.llm import LLM
|
7
|
+
from pycityagent.memory import Memory
|
8
|
+
from pycityagent.workflow.prompt import FormatPrompt
|
9
|
+
import logging
|
10
|
+
|
11
|
+
logger = logging.getLogger("pycityagent")
|
12
|
+
|
13
|
+
GUIDANCE_SELECTION_PROMPT = """As an intelligent agent's decision system, please select the most suitable option from the following choices to satisfy the current need.
|
14
|
+
The Environment will influence the choice of steps.
|
15
|
+
|
16
|
+
Current need: Need to satisfy {current_need}
|
17
|
+
Available options: {options}
|
18
|
+
Current location: {current_location}
|
19
|
+
Current time: {current_time}
|
20
|
+
Current Environment: {environment}
|
21
|
+
|
22
|
+
Please evaluate and select the most appropriate option based on these three dimensions:
|
23
|
+
1. Attitude: Personal preference and evaluation of the option
|
24
|
+
2. Subjective Norm: Social environment and others' views on this behavior
|
25
|
+
3. Perceived Control: Difficulty and controllability of executing this option
|
26
|
+
|
27
|
+
Please return the evaluation results in JSON format (Do not return any other text):
|
28
|
+
{{
|
29
|
+
"selected_option": "Select the most suitable option from available choices",
|
30
|
+
"evaluation": {{
|
31
|
+
"attitude": "Attitude score for the option (0-1)",
|
32
|
+
"subjective_norm": "Subjective norm score (0-1)",
|
33
|
+
"perceived_control": "Perceived control score (0-1)",
|
34
|
+
"reasoning": "Specific reasons for selecting this option"
|
35
|
+
}}
|
36
|
+
}}
|
37
|
+
"""
|
38
|
+
|
39
|
+
DETAILED_PLAN_PROMPT = """Generate specific execution steps based on the selected guidance plan. The Environment will influence the choice of steps.
|
40
|
+
|
41
|
+
Selected plan: {selected_option}
|
42
|
+
Current location: {current_location}
|
43
|
+
Current time: {current_time}
|
44
|
+
Current Environment: {environment}
|
45
|
+
|
46
|
+
Please generate specific execution steps and return in JSON format:
|
47
|
+
{{
|
48
|
+
"plan": {{
|
49
|
+
"target": "Specific goal",
|
50
|
+
"steps": [
|
51
|
+
{{
|
52
|
+
"intention": "Specific intention",
|
53
|
+
"type": "Step type"
|
54
|
+
}}
|
55
|
+
]
|
56
|
+
}}
|
57
|
+
}}
|
58
|
+
|
59
|
+
Notes:
|
60
|
+
1. type can only be one of these four: mobility, social, economy, other
|
61
|
+
1.1 mobility: Decisions or behaviors related to large-scale spatial movement, such as location selection, going to a place, etc.
|
62
|
+
1.2 social: Decisions or behaviors related to social interaction, such as finding contacts, chatting with friends, etc.
|
63
|
+
1.3 economy: Decisions or behaviors related to shopping, work, etc.
|
64
|
+
1.4 other: Other types of decisions or behaviors, such as small-scale activities, learning, resting, entertainment, etc.
|
65
|
+
2. steps should only include steps necessary to fulfill the target (limited to {max_plan_steps} steps)
|
66
|
+
3. intention in each step should be concise and clear
|
67
|
+
|
68
|
+
Example outputs (Do not return any other text):
|
69
|
+
{{
|
70
|
+
"plan": {{
|
71
|
+
"target": "Eat at home",
|
72
|
+
"steps": [
|
73
|
+
{{
|
74
|
+
"intention": "Return home from current location",
|
75
|
+
"type": "mobility"
|
76
|
+
}},
|
77
|
+
{{
|
78
|
+
"intention": "Cook food",
|
79
|
+
"type": "other"
|
80
|
+
}},
|
81
|
+
{{
|
82
|
+
"intention": "Have meal",
|
83
|
+
"type": "other"
|
84
|
+
}}
|
85
|
+
]
|
86
|
+
}}
|
87
|
+
}}
|
88
|
+
|
89
|
+
{{
|
90
|
+
"plan": {{
|
91
|
+
"target": "Eat outside",
|
92
|
+
"steps": [
|
93
|
+
{{
|
94
|
+
"intention": "Select restaurant",
|
95
|
+
"type": "mobility"
|
96
|
+
}},
|
97
|
+
{{
|
98
|
+
"intention": "Go to restaurant",
|
99
|
+
"type": "mobility"
|
100
|
+
}},
|
101
|
+
{{
|
102
|
+
"intention": "Order food",
|
103
|
+
"type": "economy"
|
104
|
+
}},
|
105
|
+
{{
|
106
|
+
"intention": "Have meal",
|
107
|
+
"type": "other"
|
108
|
+
}}
|
109
|
+
]
|
110
|
+
}}
|
111
|
+
}}
|
112
|
+
|
113
|
+
{{
|
114
|
+
"plan": {{
|
115
|
+
"target": "Offline social",
|
116
|
+
"steps": [
|
117
|
+
{{
|
118
|
+
"intention": "Contact friends to arrange meeting place",
|
119
|
+
"type": "social"
|
120
|
+
}},
|
121
|
+
{{
|
122
|
+
"intention": "Go to meeting place",
|
123
|
+
"type": "mobility"
|
124
|
+
}},
|
125
|
+
{{
|
126
|
+
"intention": "Chat with friends",
|
127
|
+
"type": "social"
|
128
|
+
}}
|
129
|
+
]
|
130
|
+
}}
|
131
|
+
}}
|
132
|
+
|
133
|
+
{{
|
134
|
+
"plan": {{
|
135
|
+
"target": "Work",
|
136
|
+
"steps": [
|
137
|
+
{{
|
138
|
+
"intention": "Go to workplace",
|
139
|
+
"type": "mobility"
|
140
|
+
}},
|
141
|
+
{{
|
142
|
+
"intention": "Work",
|
143
|
+
"type": "other"
|
144
|
+
}}
|
145
|
+
]
|
146
|
+
}}
|
147
|
+
}}
|
148
|
+
"""
|
149
|
+
|
150
|
+
class PlanBlock(Block):
|
151
|
+
configurable_fields: List[str] = ["guidance_options", "max_plan_steps"]
|
152
|
+
default_values = {
|
153
|
+
"guidance_options": {
|
154
|
+
"hungry": ['Eat at home', 'Eat outside'],
|
155
|
+
"tired": ['Sleep', 'Take a nap'],
|
156
|
+
"safe": ['Work'],
|
157
|
+
"social": ['Online social', 'Shopping'],
|
158
|
+
"whatever": ['Learning', 'Entertainment', 'Hang out', 'Exercise']
|
159
|
+
},
|
160
|
+
"max_plan_steps": 6
|
161
|
+
}
|
162
|
+
|
163
|
+
def __init__(self, llm: LLM, memory: Memory, simulator: Simulator):
|
164
|
+
super().__init__("PlanBlock", llm, memory, simulator)
|
165
|
+
self.guidance_prompt = FormatPrompt(template=GUIDANCE_SELECTION_PROMPT)
|
166
|
+
self.detail_prompt = FormatPrompt(template=DETAILED_PLAN_PROMPT)
|
167
|
+
self.trigger_time = 0
|
168
|
+
self.token_consumption = 0
|
169
|
+
|
170
|
+
# configurable fields
|
171
|
+
self.guidance_options = {
|
172
|
+
"hungry": ['Eat at home', 'Eat outside'],
|
173
|
+
"tired": ['Sleep', 'Take a nap'],
|
174
|
+
"safe": ['Work'],
|
175
|
+
"social": ['Online social', 'Shopping'],
|
176
|
+
"whatever": ['Learning', 'Entertainment', 'Hang out', 'Exercise']
|
177
|
+
}
|
178
|
+
self.max_plan_steps = 6
|
179
|
+
|
180
|
+
async def select_guidance(self, current_need: str) -> Dict:
|
181
|
+
"""选择指导方案"""
|
182
|
+
options = self.guidance_options.get(current_need, [])
|
183
|
+
if not options:
|
184
|
+
return None # type: ignore–
|
185
|
+
|
186
|
+
position_now = await self.memory.get("position")
|
187
|
+
home_location = await self.memory.get("home")
|
188
|
+
work_location = await self.memory.get("work")
|
189
|
+
current_location = "Out"
|
190
|
+
if 'aoi_position' in position_now and position_now['aoi_position'] == home_location['aoi_position']:
|
191
|
+
current_location = "At home"
|
192
|
+
elif 'aoi_position' in position_now and position_now['aoi_position'] == work_location['aoi_position']:
|
193
|
+
current_location = "At workplace"
|
194
|
+
current_time = await self.simulator.get_time(format_time=True)
|
195
|
+
environment = await self.memory.get("environment")
|
196
|
+
self.guidance_prompt.format(
|
197
|
+
current_need=current_need,
|
198
|
+
options=options,
|
199
|
+
current_location=current_location,
|
200
|
+
current_time=current_time,
|
201
|
+
environment=environment
|
202
|
+
)
|
203
|
+
|
204
|
+
response = await self.llm.atext_request(
|
205
|
+
self.guidance_prompt.to_dialog()
|
206
|
+
) # type: ignore
|
207
|
+
|
208
|
+
try:
|
209
|
+
result = json.loads(self.clean_json_response(response)) # type: ignore
|
210
|
+
if result['selected_option'] not in options:
|
211
|
+
result['selected_option'] = random.choice(options)
|
212
|
+
logger.info(f"\n=== Plan Selection ===")
|
213
|
+
logger.info(f"Selected Plan: {result['selected_option']}")
|
214
|
+
return result
|
215
|
+
except Exception as e:
|
216
|
+
logger.warning(f"Error parsing guidance selection response: {str(e)}")
|
217
|
+
return None # type: ignore
|
218
|
+
|
219
|
+
async def generate_detailed_plan(self, current_need: str, selected_option: str) -> Dict:
|
220
|
+
"""生成具体执行计划"""
|
221
|
+
position_now = await self.memory.get("position")
|
222
|
+
home_location = await self.memory.get("home")
|
223
|
+
work_location = await self.memory.get("work")
|
224
|
+
current_location = "Out"
|
225
|
+
if 'aoi_position' in position_now and position_now['aoi_position'] == home_location['aoi_position']:
|
226
|
+
current_location = "At home"
|
227
|
+
elif 'aoi_position' in position_now and position_now['aoi_position'] == work_location['aoi_position']:
|
228
|
+
current_location = "At workplace"
|
229
|
+
current_time = await self.simulator.get_time(format_time=True)
|
230
|
+
environment = await self.memory.get("environment")
|
231
|
+
self.detail_prompt.format(
|
232
|
+
selected_option=selected_option,
|
233
|
+
current_location=current_location,
|
234
|
+
current_time=current_time,
|
235
|
+
environment=environment,
|
236
|
+
max_plan_steps=self.max_plan_steps
|
237
|
+
)
|
238
|
+
|
239
|
+
response = await self.llm.atext_request(
|
240
|
+
self.detail_prompt.to_dialog()
|
241
|
+
)
|
242
|
+
|
243
|
+
try:
|
244
|
+
result = json.loads(self.clean_json_response(response)) # type: ignore
|
245
|
+
return result
|
246
|
+
except Exception as e:
|
247
|
+
logger.warning(f"Error parsing detailed plan: {str(e)}")
|
248
|
+
return None # type: ignore
|
249
|
+
|
250
|
+
async def forward(self):
|
251
|
+
self.trigger_time += 1
|
252
|
+
consumption_start = self.llm.prompt_tokens_used + self.llm.completion_tokens_used
|
253
|
+
|
254
|
+
current_need = await self.memory.get("current_need")
|
255
|
+
if current_need == "none":
|
256
|
+
await self.memory.update("current_plan", [])
|
257
|
+
await self.memory.update("current_step", {"intention": "", "type": ""})
|
258
|
+
return
|
259
|
+
|
260
|
+
# 第一步:选择指导方案
|
261
|
+
guidance_result = await self.select_guidance(current_need)
|
262
|
+
if not guidance_result:
|
263
|
+
return
|
264
|
+
|
265
|
+
# 第二步:生成具体计划
|
266
|
+
detailed_plan = await self.generate_detailed_plan(
|
267
|
+
current_need,
|
268
|
+
guidance_result["selected_option"]
|
269
|
+
)
|
270
|
+
|
271
|
+
if not detailed_plan or "plan" not in detailed_plan:
|
272
|
+
await self.memory.update("current_plan", [])
|
273
|
+
await self.memory.update("current_step", {"intention": "", "type": ""})
|
274
|
+
return
|
275
|
+
logger.info("\n=== Plan Generation ===")
|
276
|
+
logger.info(f"Target: {detailed_plan['plan']['target']}")
|
277
|
+
logger.info("\nExecution Steps:")
|
278
|
+
for i, step in enumerate(detailed_plan['plan']['steps'], 1):
|
279
|
+
logger.info(f"{i}. {step['intention']} ({step['type']})")
|
280
|
+
logger.info("===============\n")
|
281
|
+
|
282
|
+
# 更新计划和当前步骤
|
283
|
+
steps = detailed_plan["plan"]["steps"]
|
284
|
+
for step in steps:
|
285
|
+
step["evaluation"] = {"status": "pending", "details": ""}
|
286
|
+
|
287
|
+
plan = {
|
288
|
+
"target": detailed_plan["plan"]["target"],
|
289
|
+
"steps": steps,
|
290
|
+
"completed": False,
|
291
|
+
"guidance": guidance_result # 保存方案选择的评估结果
|
292
|
+
}
|
293
|
+
formated_steps = "\n".join([f"{i}. {step['intention']}" for i, step in enumerate(plan['steps'], 1)])
|
294
|
+
formated_plan = f"""
|
295
|
+
Overall Target: {plan['target']}
|
296
|
+
Execution Steps: \n{formated_steps}
|
297
|
+
"""
|
298
|
+
plan['start_time'] = await self.simulator.get_time(format_time=True)
|
299
|
+
await self.memory.update("current_plan", plan)
|
300
|
+
await self.memory.update("current_step", steps[0] if steps else {"intention": "", "type": ""})
|
301
|
+
await self.memory.update("execution_context", {'plan': formated_plan})
|
302
|
+
|
303
|
+
consumption_end = self.llm.prompt_tokens_used + self.llm.completion_tokens_used
|
304
|
+
self.token_consumption += consumption_end - consumption_start
|
305
|
+
|
306
|
+
def clean_json_response(self, response: str) -> str:
|
307
|
+
"""清理LLM响应中的特殊字符"""
|
308
|
+
response = response.replace('```json', '').replace('```', '')
|
309
|
+
return response.strip()
|
@@ -0,0 +1,345 @@
|
|
1
|
+
# 由于目前模拟器支持的限制,现在只有Dispatcher中只有NoneBlock,MessageBlock和FindPersonBlock。
|
2
|
+
|
3
|
+
import random
|
4
|
+
import json
|
5
|
+
from typing import Dict, Any, List, Optional
|
6
|
+
from pycityagent.llm.llm import LLM
|
7
|
+
from pycityagent.workflow.block import Block
|
8
|
+
from pycityagent.memory import Memory
|
9
|
+
from pycityagent.environment.simulator import Simulator
|
10
|
+
from pycityagent.workflow.prompt import FormatPrompt
|
11
|
+
from .dispatcher import BlockDispatcher
|
12
|
+
from .utils import clean_json_response, TIME_ESTIMATE_PROMPT
|
13
|
+
import logging
|
14
|
+
|
15
|
+
logger = logging.getLogger("pycityagent")
|
16
|
+
|
17
|
+
class MessagePromptManager:
|
18
|
+
def __init__(self, template: str, to_discuss: List[str]):
|
19
|
+
self.template = template
|
20
|
+
self.format_prompt = FormatPrompt(self.template)
|
21
|
+
self.to_discuss = to_discuss
|
22
|
+
|
23
|
+
async def get_prompt(self, memory, step: Dict[str, Any], target: str) -> str:
|
24
|
+
"""在这里改给模板输入的数据"""
|
25
|
+
# 获取数据
|
26
|
+
relationships = await memory.get("relationships") or {}
|
27
|
+
chat_histories = await memory.get("chat_histories") or {}
|
28
|
+
|
29
|
+
# 构建讨论话题约束
|
30
|
+
discussion_constraint = ""
|
31
|
+
if self.to_discuss:
|
32
|
+
topics = ", ".join(f'"{topic}"' for topic in self.to_discuss)
|
33
|
+
discussion_constraint = f"Limit your discussion to the following topics: {topics}."
|
34
|
+
|
35
|
+
# 格式化提示
|
36
|
+
self.format_prompt.format(
|
37
|
+
gender=await memory.get("gender") or "",
|
38
|
+
education=await memory.get("education") or "",
|
39
|
+
personality=await memory.get("personality") or "",
|
40
|
+
occupation=await memory.get("occupation") or "",
|
41
|
+
relationship_score=relationships.get(target, 50),
|
42
|
+
intention=step.get("intention", ""),
|
43
|
+
chat_history=chat_histories.get(target, "") if isinstance(chat_histories, dict) else "",
|
44
|
+
discussion_constraint=discussion_constraint
|
45
|
+
)
|
46
|
+
|
47
|
+
return self.format_prompt.to_dialog()
|
48
|
+
|
49
|
+
class SocialNoneBlock(Block):
|
50
|
+
"""
|
51
|
+
空操作
|
52
|
+
NoneBlock
|
53
|
+
"""
|
54
|
+
def __init__(self, llm: LLM, memory: Memory):
|
55
|
+
super().__init__("NoneBlock", llm, memory)
|
56
|
+
self.description = "Handle all other cases"
|
57
|
+
self.guidance_prompt = FormatPrompt(template=TIME_ESTIMATE_PROMPT)
|
58
|
+
|
59
|
+
async def forward(self, step, context):
|
60
|
+
self.guidance_prompt.format(intention=step['intention'])
|
61
|
+
result = await self.llm.atext_request(self.guidance_prompt.to_dialog())
|
62
|
+
result = clean_json_response(result)
|
63
|
+
try:
|
64
|
+
result = json.loads(result)
|
65
|
+
return {
|
66
|
+
'success': True,
|
67
|
+
'evaluation': f'完成执行{step["intention"]}',
|
68
|
+
'consumed_time': result['time']
|
69
|
+
}
|
70
|
+
except Exception as e:
|
71
|
+
logger.warning(f"解析时间评估响应时发生错误: {str(e)}, 原始结果: {result}")
|
72
|
+
return {
|
73
|
+
'success': False,
|
74
|
+
'evaluation': f'完成执行{step["intention"]}',
|
75
|
+
'consumed_time': random.randint(1, 100)
|
76
|
+
}
|
77
|
+
|
78
|
+
class FindPersonBlock(Block):
|
79
|
+
"""寻找社交对象"""
|
80
|
+
def __init__(self, llm: LLM, memory: Memory, simulator: Simulator):
|
81
|
+
super().__init__("FindPersonBlock", llm, memory, simulator)
|
82
|
+
self.description = "Find a suitable person to socialize with"
|
83
|
+
|
84
|
+
self.prompt = """
|
85
|
+
Based on the following information, help me select the most suitable friend to interact with:
|
86
|
+
|
87
|
+
1. My Profile:
|
88
|
+
- Gender: {gender}
|
89
|
+
- Education: {education}
|
90
|
+
- Personality: {personality}
|
91
|
+
- Occupation: {occupation}
|
92
|
+
|
93
|
+
2. My Current Intention: {intention}
|
94
|
+
|
95
|
+
3. My Friends List (shown as index-to-relationship pairs):
|
96
|
+
{friend_info}
|
97
|
+
Note: For each friend, the relationship strength (0-100) indicates how close we are
|
98
|
+
|
99
|
+
Please analyze and select:
|
100
|
+
1. The most appropriate friend based on relationship strength and my current intention
|
101
|
+
2. Whether we should meet online or offline
|
102
|
+
|
103
|
+
Requirements:
|
104
|
+
- You must respond in this exact format: [mode, friend_index]
|
105
|
+
- mode must be either 'online' or 'offline'
|
106
|
+
- friend_index must be an integer representing the friend's position in the list (starting from 0)
|
107
|
+
|
108
|
+
Example valid outputs:
|
109
|
+
['online', 0] - means meet the first friend online
|
110
|
+
['offline', 2] - means meet the third friend offline
|
111
|
+
"""
|
112
|
+
|
113
|
+
async def forward(self, step: Dict[str, Any], context: Optional[Dict] = None) -> Dict[str, Any]:
|
114
|
+
try:
|
115
|
+
# 获取用户个人资料
|
116
|
+
profile = {
|
117
|
+
"gender": await self.memory.get("gender"),
|
118
|
+
"education": await self.memory.get("education"),
|
119
|
+
"personality": await self.memory.get("personality"),
|
120
|
+
"occupation": await self.memory.get("occupation")
|
121
|
+
}
|
122
|
+
|
123
|
+
# 获取朋友列表和关系强度
|
124
|
+
friends = await self.memory.get("friends") or []
|
125
|
+
relationships = await self.memory.get("relationships") or {}
|
126
|
+
|
127
|
+
if not friends:
|
128
|
+
return {
|
129
|
+
'success': False,
|
130
|
+
'evaluation': 'No friends found in social network',
|
131
|
+
'consumed_time': 5
|
132
|
+
}
|
133
|
+
|
134
|
+
# 创建包含所有信息的朋友列表
|
135
|
+
friend_info = []
|
136
|
+
index_to_uuid = {}
|
137
|
+
|
138
|
+
for i, friend_id in enumerate(friends):
|
139
|
+
relationship_strength = relationships.get(friend_id, 0)
|
140
|
+
friend_info.append({
|
141
|
+
'index': i,
|
142
|
+
'relationship_strength': relationship_strength
|
143
|
+
})
|
144
|
+
index_to_uuid[i] = friend_id
|
145
|
+
|
146
|
+
# 格式化朋友信息为更易读的格式
|
147
|
+
formatted_friend_info = {
|
148
|
+
i: {'relationship_strength': info['relationship_strength']}
|
149
|
+
for i, info in enumerate(friend_info)
|
150
|
+
}
|
151
|
+
|
152
|
+
# 格式化提示
|
153
|
+
formatted_prompt = FormatPrompt(self.prompt)
|
154
|
+
formatted_prompt.format(
|
155
|
+
gender=str(await self.memory.get("gender")),
|
156
|
+
education=str(await self.memory.get("education")),
|
157
|
+
personality=str(await self.memory.get("personality")),
|
158
|
+
occupation=str(await self.memory.get("occupation")),
|
159
|
+
intention=str(step.get("intention", "socialize")),
|
160
|
+
friend_info=str(formatted_friend_info)
|
161
|
+
)
|
162
|
+
|
163
|
+
# 获取LLM响应
|
164
|
+
response = await self.llm.atext_request(formatted_prompt.to_dialog(), timeout=300)
|
165
|
+
|
166
|
+
try:
|
167
|
+
# 解析响应
|
168
|
+
mode, friend_index = eval(response)
|
169
|
+
|
170
|
+
# 验证响应格式
|
171
|
+
if not isinstance(mode, str) or mode not in ['online', 'offline']:
|
172
|
+
raise ValueError("Invalid mode")
|
173
|
+
if not isinstance(friend_index, int) or friend_index not in index_to_uuid:
|
174
|
+
raise ValueError("Invalid friend index")
|
175
|
+
|
176
|
+
# 将索引转换为UUID
|
177
|
+
target = index_to_uuid[friend_index]
|
178
|
+
context['target']=target
|
179
|
+
except Exception as e:
|
180
|
+
# 如果解析失败,选择关系最强的朋友作为默认选项
|
181
|
+
target = max(relationships.items(), key=lambda x: x[1])[0] if relationships else friends[0]
|
182
|
+
mode = 'online'
|
183
|
+
|
184
|
+
return {
|
185
|
+
'success': True,
|
186
|
+
'evaluation': f'Selected friend {target} for {mode} interaction',
|
187
|
+
'consumed_time': 15,
|
188
|
+
'mode': mode,
|
189
|
+
'target': target
|
190
|
+
}
|
191
|
+
|
192
|
+
except Exception as e:
|
193
|
+
return {
|
194
|
+
'success': False,
|
195
|
+
'evaluation': f'Error in finding person: {str(e)}',
|
196
|
+
'consumed_time': 5
|
197
|
+
}
|
198
|
+
|
199
|
+
class MessageBlock(Block):
|
200
|
+
"""生成并发送消息"""
|
201
|
+
configurable_fields: List[str] = ["default_message_template", "to_discuss"]
|
202
|
+
default_values = {
|
203
|
+
"default_message_template": """
|
204
|
+
As a {gender} {occupation} with {education} education and {personality} personality,
|
205
|
+
generate a message for a friend (relationship strength: {relationship_score}/100)
|
206
|
+
about {intention}.
|
207
|
+
""",
|
208
|
+
"to_discuss": []
|
209
|
+
}
|
210
|
+
|
211
|
+
def __init__(self, agent, llm: LLM, memory: Memory, simulator: Simulator):
|
212
|
+
super().__init__("MessageBlock", llm, memory, simulator)
|
213
|
+
self.agent = agent
|
214
|
+
self.description = "Generate and send a message to someone"
|
215
|
+
self.find_person_block = FindPersonBlock(llm, memory, simulator)
|
216
|
+
|
217
|
+
# configurable fields
|
218
|
+
self.default_message_template = """
|
219
|
+
As a {gender} {occupation} with {education} education and {personality} personality,
|
220
|
+
generate a message for a friend (relationship strength: {relationship_score}/100)
|
221
|
+
about {intention}.
|
222
|
+
|
223
|
+
Previous chat history:
|
224
|
+
{chat_history}
|
225
|
+
|
226
|
+
Generate a natural and contextually appropriate message.
|
227
|
+
Keep it under 100 characters.
|
228
|
+
The message should reflect my personality and background.
|
229
|
+
{discussion_constraint}
|
230
|
+
"""
|
231
|
+
self.to_discuss = []
|
232
|
+
|
233
|
+
self.prompt_manager = MessagePromptManager(self.default_message_template, self.to_discuss)
|
234
|
+
|
235
|
+
def _serialize_message(self, message: str, propagation_count: int) -> str:
|
236
|
+
try:
|
237
|
+
return json.dumps({
|
238
|
+
"content": message,
|
239
|
+
"propagation_count": propagation_count
|
240
|
+
}, ensure_ascii=False)
|
241
|
+
except Exception as e:
|
242
|
+
logger.warning(f"Error serializing message: {e}")
|
243
|
+
return message
|
244
|
+
|
245
|
+
async def forward(self, step: Dict[str, Any], context: Optional[Dict] = None) -> Dict[str, Any]:
|
246
|
+
try:
|
247
|
+
# Get target from context or find one
|
248
|
+
target = context.get('target') if context else None
|
249
|
+
if not target:
|
250
|
+
result = await self.find_person_block.forward(step, context)
|
251
|
+
if not result['success']:
|
252
|
+
return {
|
253
|
+
'success': False,
|
254
|
+
'evaluation': 'Could not find target for message',
|
255
|
+
'consumed_time': 5
|
256
|
+
}
|
257
|
+
target = result['target']
|
258
|
+
|
259
|
+
# 使用prompt管理器获取格式化后的提示
|
260
|
+
formatted_prompt = await self.prompt_manager.get_prompt(
|
261
|
+
self.memory,
|
262
|
+
step,
|
263
|
+
target
|
264
|
+
)
|
265
|
+
|
266
|
+
# Generate message
|
267
|
+
message = await self.llm.atext_request(formatted_prompt, timeout=300)
|
268
|
+
if not message:
|
269
|
+
message = "Hello! How are you?"
|
270
|
+
|
271
|
+
# Update chat history with proper format
|
272
|
+
chat_histories = await self.memory.get("chat_histories") or {}
|
273
|
+
if not isinstance(chat_histories, dict):
|
274
|
+
chat_histories = {}
|
275
|
+
if target not in chat_histories:
|
276
|
+
chat_histories[target] = ""
|
277
|
+
if chat_histories[target]:
|
278
|
+
chat_histories[target] += ","
|
279
|
+
chat_histories[target] += f"me: {message}"
|
280
|
+
|
281
|
+
await self.memory.update("chat_histories", chat_histories)
|
282
|
+
|
283
|
+
# Send message
|
284
|
+
serialized_message = self._serialize_message(message, 1)
|
285
|
+
return {
|
286
|
+
'success': True,
|
287
|
+
'evaluation': f'Sent message to {target}: {message}',
|
288
|
+
'consumed_time': 10,
|
289
|
+
'message': message,
|
290
|
+
'target': target
|
291
|
+
}
|
292
|
+
|
293
|
+
except Exception as e:
|
294
|
+
return {
|
295
|
+
'success': False,
|
296
|
+
'evaluation': f'Error in sending message: {str(e)}',
|
297
|
+
'consumed_time': 5
|
298
|
+
}
|
299
|
+
|
300
|
+
class SocialBlock(Block):
|
301
|
+
"""主社交模块"""
|
302
|
+
find_person_block: FindPersonBlock
|
303
|
+
message_block: MessageBlock
|
304
|
+
noneblock: SocialNoneBlock
|
305
|
+
|
306
|
+
def __init__(self, agent, llm: LLM, memory: Memory, simulator: Simulator):
|
307
|
+
super().__init__("SocialBlock", llm, memory, simulator)
|
308
|
+
self.find_person_block = FindPersonBlock(llm, memory, simulator)
|
309
|
+
self.message_block = MessageBlock(agent, llm, memory, simulator)
|
310
|
+
self.noneblock=SocialNoneBlock(llm,memory)
|
311
|
+
self.dispatcher = BlockDispatcher(llm)
|
312
|
+
|
313
|
+
self.trigger_time = 0
|
314
|
+
self.token_consumption = 0
|
315
|
+
|
316
|
+
self.dispatcher.register_blocks([
|
317
|
+
self.find_person_block,
|
318
|
+
self.message_block,
|
319
|
+
self.noneblock
|
320
|
+
])
|
321
|
+
|
322
|
+
async def forward(self, step: Dict[str, Any], context: Optional[Dict] = None) -> Dict[str, Any]:
|
323
|
+
try:
|
324
|
+
self.trigger_time += 1
|
325
|
+
consumption_start = self.llm.prompt_tokens_used + self.llm.completion_tokens_used
|
326
|
+
|
327
|
+
# Select the appropriate sub-block using dispatcher
|
328
|
+
selected_block = await self.dispatcher.dispatch(step)
|
329
|
+
|
330
|
+
# Execute the selected sub-block and get the result
|
331
|
+
result = await selected_block.forward(step, context)
|
332
|
+
|
333
|
+
consumption_end = self.llm.prompt_tokens_used + self.llm.completion_tokens_used
|
334
|
+
self.token_consumption += consumption_end - consumption_start
|
335
|
+
|
336
|
+
return result
|
337
|
+
|
338
|
+
except:
|
339
|
+
consumption_end = self.llm.prompt_tokens_used + self.llm.completion_tokens_used
|
340
|
+
self.token_consumption += consumption_end - consumption_start
|
341
|
+
return {
|
342
|
+
'success': True,
|
343
|
+
'evaluation': 'Completed social interaction with default behavior',
|
344
|
+
'consumed_time': 15
|
345
|
+
}
|