pycityagent 2.0.0a21__py3-none-any.whl → 2.0.0a24__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pycityagent/__init__.py +2 -1
- pycityagent/agent.py +18 -4
- pycityagent/environment/sim/aoi_service.py +2 -1
- pycityagent/environment/sim/clock_service.py +2 -1
- pycityagent/environment/sim/economy_services.py +9 -8
- pycityagent/environment/sim/lane_service.py +6 -5
- pycityagent/environment/sim/light_service.py +10 -8
- pycityagent/environment/sim/person_service.py +12 -11
- pycityagent/environment/sim/road_service.py +3 -2
- pycityagent/environment/sim/social_service.py +4 -3
- pycityagent/environment/utils/protobuf.py +6 -4
- pycityagent/llm/__init__.py +7 -2
- pycityagent/llm/embeddings.py +231 -0
- pycityagent/memory/__init__.py +2 -0
- pycityagent/memory/faiss_query.py +302 -0
- pycityagent/memory/memory.py +131 -137
- pycityagent/memory/memory_base.py +7 -6
- pycityagent/memory/profile.py +7 -6
- pycityagent/memory/self_define.py +8 -7
- pycityagent/memory/state.py +7 -6
- pycityagent/memory/utils.py +2 -1
- pycityagent/simulation/agentgroup.py +42 -25
- pycityagent/simulation/simulation.py +9 -1
- pycityagent/utils/parsers/json_parser.py +3 -3
- pycityagent/workflow/block.py +2 -1
- {pycityagent-2.0.0a21.dist-info → pycityagent-2.0.0a24.dist-info}/METADATA +5 -1
- {pycityagent-2.0.0a21.dist-info → pycityagent-2.0.0a24.dist-info}/RECORD +28 -27
- pycityagent/llm/embedding.py +0 -136
- {pycityagent-2.0.0a21.dist-info → pycityagent-2.0.0a24.dist-info}/WHEEL +0 -0
pycityagent/memory/__init__.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
"""Memory."""
|
2
2
|
|
3
|
+
from .faiss_query import FaissQuery
|
3
4
|
from .memory import Memory
|
4
5
|
from .memory_base import MemoryBase, MemoryUnit
|
5
6
|
from .profile import ProfileMemory, ProfileMemoryUnit
|
@@ -8,4 +9,5 @@ from .state import StateMemory
|
|
8
9
|
|
9
10
|
__all__ = [
|
10
11
|
"Memory",
|
12
|
+
"FaissQuery",
|
11
13
|
]
|
@@ -0,0 +1,302 @@
|
|
1
|
+
import asyncio
|
2
|
+
from collections.abc import Sequence
|
3
|
+
from typing import Any, Literal, Optional, Union
|
4
|
+
|
5
|
+
import faiss
|
6
|
+
import numpy as np
|
7
|
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
8
|
+
from langchain_community.vectorstores import FAISS
|
9
|
+
from langchain_core.documents import Document
|
10
|
+
from langchain_core.embeddings import Embeddings
|
11
|
+
|
12
|
+
from ..utils.decorators import lock_decorator
|
13
|
+
|
14
|
+
|
15
|
+
class FaissQuery:
|
16
|
+
def __init__(
|
17
|
+
self,
|
18
|
+
embeddings: Optional[Embeddings] = None,
|
19
|
+
index_type: Any = faiss.IndexFlatL2,
|
20
|
+
dimension: Optional[int] = None,
|
21
|
+
) -> None:
|
22
|
+
self._embeddings = embeddings
|
23
|
+
self._lock = asyncio.Lock()
|
24
|
+
if embeddings is None:
|
25
|
+
self._index = None
|
26
|
+
self._vectors_store = None
|
27
|
+
else:
|
28
|
+
if dimension is None:
|
29
|
+
dimension = len(embeddings.embed_query("hello world"))
|
30
|
+
self._index = index_type(dimension)
|
31
|
+
self._vectors_store = FAISS(
|
32
|
+
embedding_function=embeddings,
|
33
|
+
index=self._index,
|
34
|
+
docstore=InMemoryDocstore(),
|
35
|
+
index_to_docstore_id={},
|
36
|
+
)
|
37
|
+
|
38
|
+
@property
|
39
|
+
def embeddings(
|
40
|
+
self,
|
41
|
+
) -> Embeddings:
|
42
|
+
if self._embeddings is None:
|
43
|
+
raise RuntimeError(f"No embedding set, please `set_embeddings` first!")
|
44
|
+
return self._embeddings
|
45
|
+
|
46
|
+
@property
|
47
|
+
def vectors_store(
|
48
|
+
self,
|
49
|
+
) -> FAISS:
|
50
|
+
if self._vectors_store is None:
|
51
|
+
raise RuntimeError(f"No embedding set, thus no vector stores initialized!")
|
52
|
+
return self._vectors_store
|
53
|
+
|
54
|
+
@lock_decorator
|
55
|
+
async def add_documents(
|
56
|
+
self,
|
57
|
+
agent_id: int,
|
58
|
+
documents: Union[str, Sequence[str]],
|
59
|
+
extra_tags: Optional[dict] = None,
|
60
|
+
) -> list[str]:
|
61
|
+
if isinstance(documents, str):
|
62
|
+
documents = [documents]
|
63
|
+
_metadata = {"_id": agent_id}
|
64
|
+
if extra_tags is not None:
|
65
|
+
_metadata.update(extra_tags)
|
66
|
+
to_add_documents = [
|
67
|
+
Document(page_content=doc, metadata=_metadata) for doc in documents
|
68
|
+
]
|
69
|
+
return await self.vectors_store.aadd_documents(
|
70
|
+
documents=to_add_documents,
|
71
|
+
)
|
72
|
+
|
73
|
+
@lock_decorator
|
74
|
+
async def delete_documents(
|
75
|
+
self,
|
76
|
+
to_delete_ids: list[str],
|
77
|
+
):
|
78
|
+
await self.vectors_store.adelete(
|
79
|
+
ids=to_delete_ids,
|
80
|
+
)
|
81
|
+
|
82
|
+
@lock_decorator
|
83
|
+
async def similarity_search(
|
84
|
+
self,
|
85
|
+
query: str,
|
86
|
+
agent_id: int,
|
87
|
+
k: int = 4,
|
88
|
+
fetch_k: int = 20,
|
89
|
+
return_score_type: Union[
|
90
|
+
Literal["none"], Literal["similarity_score"], Literal["L2-distance"]
|
91
|
+
] = "none",
|
92
|
+
filter: Optional[dict] = None,
|
93
|
+
) -> Union[list[tuple[str, dict]], list[tuple[str, float, dict]]]:
|
94
|
+
"""
|
95
|
+
Return content most similar to the given query.
|
96
|
+
|
97
|
+
Args:
|
98
|
+
query (str): The text to look up documents similar to.
|
99
|
+
agent_id (int): The identifier of the agent to filter specific documents. Only documents associated with this agent will be considered.
|
100
|
+
k (int, optional): The number of top similar contents to return. Defaults to 4.
|
101
|
+
fetch_k (int, optional): The number of documents to fetch before applying any filters. Defaults to 20.
|
102
|
+
return_score_type (Union[Literal["none"], Literal["similarity_score"], Literal["L2-distance"]], optional):
|
103
|
+
Specifies whether and how to return similarity scores with the results:
|
104
|
+
- "none": Do not return scores; only return the contents (default).
|
105
|
+
- "similarity_score": Return a tuple of content and its similarity score.
|
106
|
+
- "L2-distance": Return a tuple of content and its L2 distance from the query.
|
107
|
+
filter (dict, optional): The filter dict for metadata.
|
108
|
+
|
109
|
+
Returns:
|
110
|
+
Union[list[tuple[str,dict]], list[tuple[str, float,dict]]]:
|
111
|
+
Depending on the `return_score_type` parameter, returns either a list of strings representing the top-k similar contents,
|
112
|
+
or a list of tuples where each tuple contains a string and a floating-point score.
|
113
|
+
"""
|
114
|
+
_filter = {
|
115
|
+
"_id": agent_id,
|
116
|
+
}
|
117
|
+
if filter is not None:
|
118
|
+
_filter.update(filter)
|
119
|
+
if return_score_type == "L2-distance":
|
120
|
+
_result = await self.vectors_store.asimilarity_search_with_score(
|
121
|
+
query=query,
|
122
|
+
k=k,
|
123
|
+
filter=_filter,
|
124
|
+
fetch_k=fetch_k,
|
125
|
+
)
|
126
|
+
return [(r.page_content, s, r.metadata) for r, s in _result]
|
127
|
+
elif return_score_type == "none":
|
128
|
+
_result = await self.vectors_store.asimilarity_search(
|
129
|
+
query=query,
|
130
|
+
k=k,
|
131
|
+
filter=_filter,
|
132
|
+
fetch_k=fetch_k,
|
133
|
+
)
|
134
|
+
return [(r.page_content, r.metadata) for r in _result]
|
135
|
+
elif return_score_type == "similarity_score":
|
136
|
+
_result = await self.vectors_store.asimilarity_search_with_relevance_scores(
|
137
|
+
query=query,
|
138
|
+
k=k,
|
139
|
+
filter=_filter,
|
140
|
+
fetch_k=fetch_k,
|
141
|
+
)
|
142
|
+
return [(r.page_content, s, r.metadata) for r, s in _result]
|
143
|
+
else:
|
144
|
+
raise ValueError(f"Invalid `return_score_type` {return_score_type}!")
|
145
|
+
|
146
|
+
@lock_decorator
|
147
|
+
async def similarity_search_by_embedding(
|
148
|
+
self,
|
149
|
+
embedding: list[float],
|
150
|
+
agent_id: int,
|
151
|
+
k: int = 4,
|
152
|
+
fetch_k: int = 20,
|
153
|
+
return_score_type: Union[Literal["none"], Literal["L2-distance"]] = "none",
|
154
|
+
filter: Optional[dict] = None,
|
155
|
+
) -> Union[list[tuple[str, dict]], list[tuple[str, float, dict]]]:
|
156
|
+
"""
|
157
|
+
Return content most similar to the given query.
|
158
|
+
|
159
|
+
Args:
|
160
|
+
embedding (list[float]): The vector to look up documents similar to.
|
161
|
+
agent_id (int): The identifier of the agent to filter specific documents. Only documents associated with this agent will be considered.
|
162
|
+
k (int, optional): The number of top similar contents to return. Defaults to 4.
|
163
|
+
fetch_k (int, optional): The number of documents to fetch before applying any filters. Defaults to 20.
|
164
|
+
return_score_type (Union[Literal["none"], Literal["similarity_score"], Literal["L2-distance"]], optional):
|
165
|
+
Specifies whether and how to return similarity scores with the results:
|
166
|
+
- "none": Do not return scores; only return the contents (default).
|
167
|
+
- "L2-distance": Return a tuple of content and its L2 distance from the query.
|
168
|
+
filter (dict, optional): The filter dict for metadata.
|
169
|
+
|
170
|
+
Returns:
|
171
|
+
Union[list[tuple[str,dict]], list[tuple[str, float,dict]]]:
|
172
|
+
Depending on the `return_score_type` parameter, returns either a list of strings representing the top-k similar contents,
|
173
|
+
or a list of tuples where each tuple contains a string and a floating-point score.
|
174
|
+
"""
|
175
|
+
_filter = {
|
176
|
+
"_id": agent_id,
|
177
|
+
}
|
178
|
+
if filter is not None:
|
179
|
+
_filter.update(filter)
|
180
|
+
if return_score_type == "L2-distance":
|
181
|
+
_result = await self.vectors_store.asimilarity_search_with_score_by_vector(
|
182
|
+
embedding=embedding,
|
183
|
+
k=k,
|
184
|
+
filter=_filter,
|
185
|
+
fetch_k=fetch_k,
|
186
|
+
)
|
187
|
+
return [(r.page_content, s, r.metadata) for r, s in _result]
|
188
|
+
elif return_score_type == "none":
|
189
|
+
_result = await self.vectors_store.asimilarity_search_by_vector(
|
190
|
+
embedding=embedding,
|
191
|
+
k=k,
|
192
|
+
filter=_filter,
|
193
|
+
fetch_k=fetch_k,
|
194
|
+
)
|
195
|
+
return [(r.page_content, r.metadata) for r in _result]
|
196
|
+
else:
|
197
|
+
raise ValueError(f"Invalid `return_score_type` {return_score_type}!")
|
198
|
+
|
199
|
+
@lock_decorator
|
200
|
+
async def marginal_relevance_search(
|
201
|
+
self,
|
202
|
+
query: str,
|
203
|
+
agent_id: int,
|
204
|
+
k: int = 4,
|
205
|
+
fetch_k: int = 20,
|
206
|
+
lambda_mult: float = 0.5,
|
207
|
+
return_score_type: Literal["none"] = "none",
|
208
|
+
filter: Optional[dict] = None,
|
209
|
+
) -> list[tuple[str, dict]]:
|
210
|
+
"""
|
211
|
+
Return contents selected using the maximal marginal relevance asynchronously.
|
212
|
+
|
213
|
+
Args:
|
214
|
+
query (str): The text to look up documents similar to.
|
215
|
+
agent_id (int): The identifier of the agent to filter specific documents. Only documents associated with this agent will be considered.
|
216
|
+
k (int, optional): The number of top similar contents to return. Defaults to 4.
|
217
|
+
fetch_k (int, optional): The number of documents to fetch before applying any filters. Defaults to 20.
|
218
|
+
lambda_mult (float): Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
|
219
|
+
return_score_type (Literal["none"].,optional):
|
220
|
+
Specifies whether and how to return similarity scores with the results:
|
221
|
+
- "none": Do not return scores; only return the contents (default).
|
222
|
+
filter (dict, optional): The filter dict for metadata.
|
223
|
+
|
224
|
+
Returns:
|
225
|
+
list[tuple[str,dict]]: the result contents.
|
226
|
+
"""
|
227
|
+
_filter = {
|
228
|
+
"_id": agent_id,
|
229
|
+
}
|
230
|
+
if filter is not None:
|
231
|
+
_filter.update(filter)
|
232
|
+
|
233
|
+
if return_score_type == "none":
|
234
|
+
_result = await self.vectors_store.amax_marginal_relevance_search(
|
235
|
+
query=query,
|
236
|
+
k=k,
|
237
|
+
filter=_filter,
|
238
|
+
fetch_k=fetch_k,
|
239
|
+
lambda_mult=lambda_mult,
|
240
|
+
)
|
241
|
+
return [(r.page_content, r.metadata) for r in _result]
|
242
|
+
else:
|
243
|
+
raise ValueError(f"Invalid `return_score_type` {return_score_type}!")
|
244
|
+
|
245
|
+
@lock_decorator
|
246
|
+
async def marginal_relevance_search_by_embedding(
|
247
|
+
self,
|
248
|
+
embedding: list[float],
|
249
|
+
agent_id: int,
|
250
|
+
k: int = 4,
|
251
|
+
fetch_k: int = 20,
|
252
|
+
lambda_mult: float = 0.5,
|
253
|
+
return_score_type: Union[Literal["none"], Literal["similarity_score"]] = "none",
|
254
|
+
filter: Optional[dict] = None,
|
255
|
+
) -> Union[list[tuple[str, dict]], list[tuple[str, float, dict]]]:
|
256
|
+
"""
|
257
|
+
Return contents selected using the maximal marginal relevance asynchronously.
|
258
|
+
|
259
|
+
Args:
|
260
|
+
embedding (list[float]): The vector to look up documents similar to.
|
261
|
+
agent_id (int): The identifier of the agent to filter specific documents. Only documents associated with this agent will be considered.
|
262
|
+
k (int, optional): The number of top similar contents to return. Defaults to 4.
|
263
|
+
fetch_k (int, optional): The number of documents to fetch before applying any filters. Defaults to 20.
|
264
|
+
lambda_mult (float): Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
|
265
|
+
return_score_type (Union[Literal["none"], Literal["similarity_score"]], optional):
|
266
|
+
Specifies whether and how to return similarity scores with the results:
|
267
|
+
- "none": Do not return scores; only return the contents (default).
|
268
|
+
- "similarity_score": Return a tuple of content and its similarity score.
|
269
|
+
filter (dict, optional): The filter dict for metadata.
|
270
|
+
|
271
|
+
Returns:
|
272
|
+
Union[list[tuple[str,dict]], list[tuple[str, float,dict]]]:
|
273
|
+
Depending on the `return_score_type` parameter, returns either a list of strings representing the top-k similar contents,
|
274
|
+
or a list of tuples where each tuple contains a string and a floating-point score.
|
275
|
+
"""
|
276
|
+
|
277
|
+
_filter = {
|
278
|
+
"_id": agent_id,
|
279
|
+
}
|
280
|
+
if filter is not None:
|
281
|
+
_filter.update(filter)
|
282
|
+
if return_score_type == "none":
|
283
|
+
_result = await self.vectors_store.amax_marginal_relevance_search_by_vector(
|
284
|
+
embedding=embedding,
|
285
|
+
k=k,
|
286
|
+
filter=_filter,
|
287
|
+
fetch_k=fetch_k,
|
288
|
+
lambda_mult=lambda_mult,
|
289
|
+
)
|
290
|
+
return [(r.page_content, r.metadata) for r in _result]
|
291
|
+
elif return_score_type == "similarity_score":
|
292
|
+
_result = await self.vectors_store.amax_marginal_relevance_search_with_score_by_vector(
|
293
|
+
embedding=embedding,
|
294
|
+
k=k,
|
295
|
+
filter=_filter,
|
296
|
+
fetch_k=fetch_k,
|
297
|
+
lambda_mult=lambda_mult,
|
298
|
+
)
|
299
|
+
return [(r.page_content, s, r.metadata) for r, s in _result]
|
300
|
+
|
301
|
+
else:
|
302
|
+
raise ValueError(f"Invalid `return_score_type` {return_score_type}!")
|
pycityagent/memory/memory.py
CHANGED
@@ -1,21 +1,25 @@
|
|
1
1
|
import asyncio
|
2
2
|
import logging
|
3
|
+
from collections import defaultdict
|
4
|
+
from collections.abc import Callable, Sequence
|
3
5
|
from copy import deepcopy
|
4
6
|
from datetime import datetime
|
5
|
-
from typing import Any, Literal, Optional,
|
6
|
-
from collections.abc import Sequence,Callable
|
7
|
+
from typing import Any, Literal, Optional, Union
|
7
8
|
|
8
9
|
import numpy as np
|
10
|
+
from langchain_core.embeddings import Embeddings
|
9
11
|
from pyparsing import deque
|
10
12
|
|
11
13
|
from ..utils.decorators import lock_decorator
|
12
14
|
from .const import *
|
15
|
+
from .faiss_query import FaissQuery
|
13
16
|
from .profile import ProfileMemory
|
14
17
|
from .self_define import DynamicMemory
|
15
18
|
from .state import StateMemory
|
16
19
|
|
17
20
|
logger = logging.getLogger("pycityagent")
|
18
21
|
|
22
|
+
|
19
23
|
class Memory:
|
20
24
|
"""
|
21
25
|
A class to manage different types of memory (state, profile, dynamic).
|
@@ -33,7 +37,8 @@ class Memory:
|
|
33
37
|
base: Optional[dict[Any, Any]] = None,
|
34
38
|
motion: Optional[dict[Any, Any]] = None,
|
35
39
|
activate_timestamp: bool = False,
|
36
|
-
embedding_model:
|
40
|
+
embedding_model: Optional[Embeddings] = None,
|
41
|
+
faiss_query: Optional[FaissQuery] = None,
|
37
42
|
) -> None:
|
38
43
|
"""
|
39
44
|
Initializes the Memory with optional configuration.
|
@@ -51,20 +56,21 @@ class Memory:
|
|
51
56
|
base (Optional[dict[Any, Any]], optional): base attribute dict from City Simulator.
|
52
57
|
motion (Optional[dict[Any, Any]], optional): motion attribute dict from City Simulator.
|
53
58
|
activate_timestamp (bool): Whether activate timestamp storage in MemoryUnit
|
54
|
-
embedding_model (
|
59
|
+
embedding_model (Embeddings): The embedding model for memory search.
|
60
|
+
faiss_query (FaissQuery): The faiss_query of the agent. Defaults to None.
|
55
61
|
"""
|
56
62
|
self.watchers: dict[str, list[Callable]] = {}
|
57
63
|
self._lock = asyncio.Lock()
|
58
|
-
self.
|
59
|
-
|
60
|
-
# 初始化embedding存储
|
61
|
-
self._embeddings = {"state": {}, "profile": {}, "dynamic": {}}
|
64
|
+
self._agent_id: int = -1
|
65
|
+
self._embedding_model = embedding_model
|
62
66
|
|
63
67
|
_dynamic_config: dict[Any, Any] = {}
|
64
68
|
_state_config: dict[Any, Any] = {}
|
65
69
|
_profile_config: dict[Any, Any] = {}
|
66
70
|
# 记录哪些字段需要embedding
|
67
71
|
self._embedding_fields: dict[str, bool] = {}
|
72
|
+
self._embedding_field_to_doc_id: dict[Any, str] = defaultdict(str)
|
73
|
+
self._faiss_query = faiss_query
|
68
74
|
|
69
75
|
if config is not None:
|
70
76
|
for k, v in config.items():
|
@@ -135,8 +141,55 @@ class Memory:
|
|
135
141
|
self._profile = ProfileMemory(
|
136
142
|
msg=_profile_config, activate_timestamp=activate_timestamp
|
137
143
|
)
|
138
|
-
self.memories = [] # 存储记忆内容
|
139
|
-
self.embeddings = [] # 存储记忆的向量表示
|
144
|
+
# self.memories = [] # 存储记忆内容
|
145
|
+
# self.embeddings = [] # 存储记忆的向量表示
|
146
|
+
|
147
|
+
def set_embedding_model(
|
148
|
+
self,
|
149
|
+
embedding_model: Embeddings,
|
150
|
+
):
|
151
|
+
self._embedding_model = embedding_model
|
152
|
+
|
153
|
+
@property
|
154
|
+
def embedding_model(
|
155
|
+
self,
|
156
|
+
):
|
157
|
+
if self._embedding_model is None:
|
158
|
+
raise RuntimeError(
|
159
|
+
f"embedding_model before assignment, please `set_embedding_model` first!"
|
160
|
+
)
|
161
|
+
return self._embedding_model
|
162
|
+
|
163
|
+
def set_faiss_query(self, faiss_query: FaissQuery):
|
164
|
+
"""
|
165
|
+
Set the FaissQuery of the agent.
|
166
|
+
"""
|
167
|
+
self._faiss_query = faiss_query
|
168
|
+
|
169
|
+
@property
|
170
|
+
def agent_id(
|
171
|
+
self,
|
172
|
+
):
|
173
|
+
if self._agent_id < 0:
|
174
|
+
raise RuntimeError(
|
175
|
+
f"agent_id before assignment, please `set_agent_id` first!"
|
176
|
+
)
|
177
|
+
return self._agent_id
|
178
|
+
|
179
|
+
def set_agent_id(self, agent_id: int):
|
180
|
+
"""
|
181
|
+
Set the FaissQuery of the agent.
|
182
|
+
"""
|
183
|
+
self._agent_id = agent_id
|
184
|
+
|
185
|
+
@property
|
186
|
+
def faiss_query(self) -> FaissQuery:
|
187
|
+
"""FaissQuery"""
|
188
|
+
if self._faiss_query is None:
|
189
|
+
raise RuntimeError(
|
190
|
+
f"FaissQuery access before assignment, please `set_faiss_query` first!"
|
191
|
+
)
|
192
|
+
return self._faiss_query
|
140
193
|
|
141
194
|
@lock_decorator
|
142
195
|
async def get(
|
@@ -192,11 +245,23 @@ class Memory:
|
|
192
245
|
if mode == "replace":
|
193
246
|
await _mem.update(key, value, store_snapshot)
|
194
247
|
# 如果字段需要embedding,则更新embedding
|
195
|
-
if self.
|
248
|
+
if self._embedding_fields.get(key, False) and self.embedding_model:
|
196
249
|
memory_type = self._get_memory_type(_mem)
|
197
|
-
|
198
|
-
|
250
|
+
# 覆盖更新删除原vector
|
251
|
+
orig_doc_id = self._embedding_field_to_doc_id[key]
|
252
|
+
if orig_doc_id:
|
253
|
+
await self.faiss_query.delete_documents(
|
254
|
+
to_delete_ids=[orig_doc_id],
|
255
|
+
)
|
256
|
+
doc_ids: list[str] = await self.faiss_query.add_documents(
|
257
|
+
agent_id=self.agent_id,
|
258
|
+
documents=f"{key}: {str(value)}",
|
259
|
+
extra_tags={
|
260
|
+
"type": memory_type,
|
261
|
+
"key": key,
|
262
|
+
},
|
199
263
|
)
|
264
|
+
self._embedding_field_to_doc_id[key] = doc_ids[0]
|
200
265
|
if key in self.watchers:
|
201
266
|
for callback in self.watchers[key]:
|
202
267
|
asyncio.create_task(callback())
|
@@ -214,13 +279,17 @@ class Memory:
|
|
214
279
|
f"Type of {type(original_value)} does not support mode `merge`, using `replace` instead!"
|
215
280
|
)
|
216
281
|
await _mem.update(key, value, store_snapshot)
|
217
|
-
if self.
|
282
|
+
if self._embedding_fields.get(key, False) and self.embedding_model:
|
218
283
|
memory_type = self._get_memory_type(_mem)
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
284
|
+
doc_ids = await self.faiss_query.add_documents(
|
285
|
+
agent_id=self.agent_id,
|
286
|
+
documents=f"{key}: {str(original_value)}",
|
287
|
+
extra_tags={
|
288
|
+
"type": memory_type,
|
289
|
+
"key": key,
|
290
|
+
},
|
223
291
|
)
|
292
|
+
self._embedding_field_to_doc_id[key] = doc_ids[0]
|
224
293
|
if key in self.watchers:
|
225
294
|
for callback in self.watchers[key]:
|
226
295
|
asyncio.create_task(callback())
|
@@ -240,68 +309,6 @@ class Memory:
|
|
240
309
|
else:
|
241
310
|
return "dynamic"
|
242
311
|
|
243
|
-
async def _generate_embedding(self, text: str) -> np.ndarray:
|
244
|
-
"""生成文本的向量表示
|
245
|
-
|
246
|
-
Args:
|
247
|
-
text: 输入文本
|
248
|
-
|
249
|
-
Returns:
|
250
|
-
np.ndarray: 文本的向量表示
|
251
|
-
|
252
|
-
Raises:
|
253
|
-
ValueError: 如果embedding_model未初始化
|
254
|
-
"""
|
255
|
-
if not self.embedding_model:
|
256
|
-
raise RuntimeError("Embedding model not initialized")
|
257
|
-
|
258
|
-
return await self.embedding_model.embed(text)
|
259
|
-
|
260
|
-
async def search(self, query: str, top_k: int = 3) -> str:
|
261
|
-
"""搜索相关记忆
|
262
|
-
|
263
|
-
Args:
|
264
|
-
query: 查询文本
|
265
|
-
top_k: 返回最相关的记忆数量
|
266
|
-
|
267
|
-
Returns:
|
268
|
-
str: 格式化的相关记忆文本
|
269
|
-
"""
|
270
|
-
if not self.embedding_model:
|
271
|
-
return "Embedding model not initialized"
|
272
|
-
|
273
|
-
query_embedding = await self._generate_embedding(query)
|
274
|
-
all_results = []
|
275
|
-
|
276
|
-
# 搜索所有记忆类型中启用了embedding的字段
|
277
|
-
for memory_type, embeddings in self._embeddings.items():
|
278
|
-
for key, embedding in embeddings.items():
|
279
|
-
similarity = self._cosine_similarity(query_embedding, embedding)
|
280
|
-
value = await self.get(key)
|
281
|
-
|
282
|
-
all_results.append(
|
283
|
-
{
|
284
|
-
"type": memory_type,
|
285
|
-
"key": key,
|
286
|
-
"content": f"{key}: {str(value)}",
|
287
|
-
"similarity": similarity,
|
288
|
-
}
|
289
|
-
)
|
290
|
-
|
291
|
-
# 按相似度排序
|
292
|
-
all_results.sort(key=lambda x: x["similarity"], reverse=True)
|
293
|
-
top_results = all_results[:top_k]
|
294
|
-
|
295
|
-
# 格式化输出
|
296
|
-
formatted_results = []
|
297
|
-
for result in top_results:
|
298
|
-
formatted_results.append(
|
299
|
-
f"- [{result['type']}] {result['content']} "
|
300
|
-
f"(相关度: {result['similarity']:.2f})"
|
301
|
-
)
|
302
|
-
|
303
|
-
return "\n".join(formatted_results)
|
304
|
-
|
305
312
|
async def update_batch(
|
306
313
|
self,
|
307
314
|
content: Union[dict, Sequence[tuple[Any, Any]]],
|
@@ -388,67 +395,54 @@ class Memory:
|
|
388
395
|
if _snapshot:
|
389
396
|
await _mem.load(snapshots=_snapshot, reset_memory=reset_memory)
|
390
397
|
|
398
|
+
# async def add(self, content: str, metadata: Optional[dict] = None) -> None:
|
399
|
+
# """添加新的记忆
|
400
|
+
|
401
|
+
# Args:
|
402
|
+
# content: 记忆内容
|
403
|
+
# metadata: 相关元数据,如时间、地点等
|
404
|
+
# """
|
405
|
+
# embedding = await self.embedding_model.aembed_query(content)
|
406
|
+
# self.memories.append(
|
407
|
+
# {
|
408
|
+
# "content": content,
|
409
|
+
# "metadata": metadata or {},
|
410
|
+
# "timestamp": datetime.now(),
|
411
|
+
# "embedding": embedding,
|
412
|
+
# }
|
413
|
+
# )
|
414
|
+
# self.embeddings.append(embedding)
|
415
|
+
|
391
416
|
@lock_decorator
|
392
|
-
async def
|
393
|
-
self,
|
394
|
-
|
395
|
-
|
396
|
-
top_k: Optional[int] = None,
|
397
|
-
mode: Union[Literal["read only"], Literal["read and write"]] = "read only",
|
398
|
-
preserve_order: bool = True,
|
399
|
-
) -> Any:
|
400
|
-
"""
|
401
|
-
Retrieves the top-k items from the memory based on the given key and metric.
|
417
|
+
async def search(
|
418
|
+
self, query: str, top_k: int = 3, filter: Optional[dict] = None
|
419
|
+
) -> str:
|
420
|
+
"""搜索相关记忆
|
402
421
|
|
403
422
|
Args:
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
mode (Union[Literal["read only"], Literal["read and write"]], optional): Access mode for the item. Defaults to "read only".
|
408
|
-
preserve_order (bool): Whether preserve original order in output values.
|
423
|
+
query: 查询文本
|
424
|
+
top_k: 返回最相关的记忆数量
|
425
|
+
filter (dict, optional): 记忆的筛选条件,如 {"type":"dynamic", "key":"self_define_1",},默认为空
|
409
426
|
|
410
427
|
Returns:
|
411
|
-
|
412
|
-
|
413
|
-
Raises:
|
414
|
-
ValueError: If an invalid mode is provided.
|
415
|
-
KeyError: If the key is not found in any of the memory sections.
|
416
|
-
"""
|
417
|
-
if mode == "read only":
|
418
|
-
process_func = deepcopy
|
419
|
-
elif mode == "read and write":
|
420
|
-
process_func = lambda x: x
|
421
|
-
else:
|
422
|
-
raise ValueError(f"Invalid get mode `{mode}`!")
|
423
|
-
for _mem in [self._state, self._profile, self._dynamic]:
|
424
|
-
try:
|
425
|
-
value = await _mem.get_top_k(key, metric, top_k, preserve_order)
|
426
|
-
return process_func(value)
|
427
|
-
except KeyError as e:
|
428
|
-
continue
|
429
|
-
raise KeyError(f"No attribute `{key}` in memories!")
|
430
|
-
|
431
|
-
async def add(self, content: str, metadata: Optional[dict] = None) -> None:
|
432
|
-
"""添加新的记忆
|
433
|
-
|
434
|
-
Args:
|
435
|
-
content: 记忆内容
|
436
|
-
metadata: 相关元数据,如时间、地点等
|
428
|
+
str: 格式化的相关记忆文本
|
437
429
|
"""
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
430
|
+
if not self._embedding_model:
|
431
|
+
return "Embedding model not initialized"
|
432
|
+
top_results: list[tuple[str, float, dict]] = (
|
433
|
+
await self.faiss_query.similarity_search( # type:ignore
|
434
|
+
query=query,
|
435
|
+
agent_id=self.agent_id,
|
436
|
+
k=top_k,
|
437
|
+
return_score_type="similarity_score",
|
438
|
+
filter=filter,
|
439
|
+
)
|
446
440
|
)
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
return
|
441
|
+
# 格式化输出
|
442
|
+
formatted_results = []
|
443
|
+
for content, score, metadata in top_results:
|
444
|
+
formatted_results.append(
|
445
|
+
f"- [{metadata['type']}] {content} " f"(相关度: {score:.2f})"
|
446
|
+
)
|
447
|
+
|
448
|
+
return "\n".join(formatted_results)
|