pycityagent 1.0.0__py3-none-any.whl → 2.0.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (106) hide show
  1. pycityagent/__init__.py +7 -3
  2. pycityagent/agent.py +180 -284
  3. pycityagent/economy/__init__.py +5 -0
  4. pycityagent/economy/econ_client.py +307 -0
  5. pycityagent/environment/__init__.py +7 -0
  6. pycityagent/environment/interact/interact.py +141 -0
  7. pycityagent/environment/sence/__init__.py +0 -0
  8. pycityagent/{brain → environment/sence}/static.py +1 -1
  9. pycityagent/environment/sidecar/__init__.py +8 -0
  10. pycityagent/environment/sidecar/sidecarv2.py +109 -0
  11. pycityagent/environment/sim/__init__.py +27 -0
  12. pycityagent/environment/sim/aoi_service.py +38 -0
  13. pycityagent/environment/sim/client.py +126 -0
  14. pycityagent/environment/sim/clock_service.py +43 -0
  15. pycityagent/environment/sim/economy_services.py +191 -0
  16. pycityagent/environment/sim/lane_service.py +110 -0
  17. pycityagent/environment/sim/light_service.py +120 -0
  18. pycityagent/environment/sim/person_service.py +294 -0
  19. pycityagent/environment/sim/road_service.py +38 -0
  20. pycityagent/environment/sim/social_service.py +58 -0
  21. pycityagent/environment/simulator.py +369 -0
  22. pycityagent/environment/utils/__init__.py +8 -0
  23. pycityagent/environment/utils/geojson.py +26 -0
  24. pycityagent/environment/utils/grpc.py +57 -0
  25. pycityagent/environment/utils/map_utils.py +157 -0
  26. pycityagent/environment/utils/protobuf.py +39 -0
  27. pycityagent/llm/__init__.py +6 -0
  28. pycityagent/llm/embedding.py +136 -0
  29. pycityagent/llm/llm.py +430 -0
  30. pycityagent/llm/llmconfig.py +15 -0
  31. pycityagent/llm/utils.py +6 -0
  32. pycityagent/memory/__init__.py +11 -0
  33. pycityagent/memory/const.py +41 -0
  34. pycityagent/memory/memory.py +453 -0
  35. pycityagent/memory/memory_base.py +168 -0
  36. pycityagent/memory/profile.py +165 -0
  37. pycityagent/memory/self_define.py +165 -0
  38. pycityagent/memory/state.py +173 -0
  39. pycityagent/memory/utils.py +27 -0
  40. pycityagent/message/__init__.py +0 -0
  41. pycityagent/simulation/__init__.py +7 -0
  42. pycityagent/simulation/interview.py +36 -0
  43. pycityagent/simulation/simulation.py +286 -0
  44. pycityagent/simulation/survey/__init__.py +9 -0
  45. pycityagent/simulation/survey/manager.py +67 -0
  46. pycityagent/simulation/survey/models.py +49 -0
  47. pycityagent/simulation/ui/__init__.py +3 -0
  48. pycityagent/simulation/ui/interface.py +602 -0
  49. pycityagent/utils/__init__.py +0 -0
  50. pycityagent/utils/decorators.py +89 -0
  51. pycityagent/utils/parsers/__init__.py +12 -0
  52. pycityagent/utils/parsers/code_block_parser.py +37 -0
  53. pycityagent/utils/parsers/json_parser.py +86 -0
  54. pycityagent/utils/parsers/parser_base.py +60 -0
  55. pycityagent/workflow/__init__.py +22 -0
  56. pycityagent/workflow/block.py +137 -0
  57. pycityagent/workflow/prompt.py +72 -0
  58. pycityagent/workflow/tool.py +246 -0
  59. pycityagent/workflow/trigger.py +66 -0
  60. pycityagent-2.0.0a1.dist-info/METADATA +208 -0
  61. pycityagent-2.0.0a1.dist-info/RECORD +65 -0
  62. {pycityagent-1.0.0.dist-info → pycityagent-2.0.0a1.dist-info}/WHEEL +1 -2
  63. pycityagent/ac/__init__.py +0 -6
  64. pycityagent/ac/ac.py +0 -50
  65. pycityagent/ac/action.py +0 -14
  66. pycityagent/ac/controled.py +0 -13
  67. pycityagent/ac/converse.py +0 -31
  68. pycityagent/ac/idle.py +0 -17
  69. pycityagent/ac/shop.py +0 -80
  70. pycityagent/ac/trip.py +0 -37
  71. pycityagent/brain/__init__.py +0 -10
  72. pycityagent/brain/brain.py +0 -52
  73. pycityagent/brain/brainfc.py +0 -10
  74. pycityagent/brain/memory.py +0 -541
  75. pycityagent/brain/persistence/social.py +0 -1
  76. pycityagent/brain/persistence/spatial.py +0 -14
  77. pycityagent/brain/reason/shop.py +0 -37
  78. pycityagent/brain/reason/social.py +0 -148
  79. pycityagent/brain/reason/trip.py +0 -67
  80. pycityagent/brain/reason/user.py +0 -122
  81. pycityagent/brain/retrive/social.py +0 -6
  82. pycityagent/brain/scheduler.py +0 -408
  83. pycityagent/brain/sence.py +0 -375
  84. pycityagent/cc/__init__.py +0 -5
  85. pycityagent/cc/cc.py +0 -102
  86. pycityagent/cc/conve.py +0 -6
  87. pycityagent/cc/idle.py +0 -20
  88. pycityagent/cc/shop.py +0 -6
  89. pycityagent/cc/trip.py +0 -13
  90. pycityagent/cc/user.py +0 -13
  91. pycityagent/hubconnector/__init__.py +0 -3
  92. pycityagent/hubconnector/hubconnector.py +0 -137
  93. pycityagent/image/__init__.py +0 -3
  94. pycityagent/image/image.py +0 -158
  95. pycityagent/simulator.py +0 -161
  96. pycityagent/st/__init__.py +0 -4
  97. pycityagent/st/st.py +0 -96
  98. pycityagent/urbanllm/__init__.py +0 -3
  99. pycityagent/urbanllm/urbanllm.py +0 -132
  100. pycityagent-1.0.0.dist-info/LICENSE +0 -21
  101. pycityagent-1.0.0.dist-info/METADATA +0 -181
  102. pycityagent-1.0.0.dist-info/RECORD +0 -48
  103. pycityagent-1.0.0.dist-info/top_level.txt +0 -1
  104. /pycityagent/{brain/persistence/__init__.py → config.py} +0 -0
  105. /pycityagent/{brain/reason → environment/interact}/__init__.py +0 -0
  106. /pycityagent/{brain/retrive → environment/message}/__init__.py +0 -0
@@ -0,0 +1,136 @@
1
+ """简单的基于内存的embedding实现"""
2
+
3
+ import numpy as np
4
+ from typing import List, Dict, Optional
5
+ import hashlib
6
+ import json
7
+
8
+ class SimpleEmbedding:
9
+ """简单的基于内存的embedding实现
10
+
11
+ 使用简单的词袋模型(Bag of Words)和TF-IDF来生成文本的向量表示。
12
+ 所有向量都保存在内存中,适用于小规模应用。
13
+ """
14
+
15
+ def __init__(self, vector_dim: int = 128, cache_size: int = 1000):
16
+ """初始化
17
+
18
+ Args:
19
+ vector_dim: 向量维度
20
+ cache_size: 缓存大小,超过此大小将清除最早的缓存
21
+ """
22
+ self.vector_dim = vector_dim
23
+ self.cache_size = cache_size
24
+ self._cache: Dict[str, np.ndarray] = {}
25
+ self._vocab: Dict[str, int] = {} # 词汇表
26
+ self._idf: Dict[str, float] = {} # 逆文档频率
27
+ self._doc_count = 0 # 文档总数
28
+
29
+ def _text_to_hash(self, text: str) -> str:
30
+ """将文本转换为hash值"""
31
+ return hashlib.md5(text.encode()).hexdigest()
32
+
33
+ def _tokenize(self, text: str) -> List[str]:
34
+ """简单的分词"""
35
+ # 这里使用简单的空格分词,实际应用中可以使用更复杂的分词方法
36
+ return text.lower().split()
37
+
38
+ def _update_vocab(self, tokens: List[str]):
39
+ """更新词汇表"""
40
+ for token in set(tokens): # 使用set去重
41
+ if token not in self._vocab:
42
+ self._vocab[token] = len(self._vocab)
43
+
44
+ def _update_idf(self, tokens: List[str]):
45
+ """更新IDF值"""
46
+ self._doc_count += 1
47
+ unique_tokens = set(tokens)
48
+ for token in unique_tokens:
49
+ self._idf[token] = self._idf.get(token, 0) + 1
50
+
51
+ def _calculate_tf(self, tokens: List[str]) -> Dict[str, float]:
52
+ """计算词频(TF)"""
53
+ tf = {}
54
+ total_tokens = len(tokens)
55
+ for token in tokens:
56
+ tf[token] = tf.get(token, 0) + 1
57
+ # 归一化
58
+ for token in tf:
59
+ tf[token] /= total_tokens
60
+ return tf
61
+
62
+ def _calculate_tfidf(self, tokens: List[str]) -> np.ndarray:
63
+ """计算TF-IDF向量"""
64
+ vector = np.zeros(self.vector_dim)
65
+ tf = self._calculate_tf(tokens)
66
+
67
+ for token, tf_value in tf.items():
68
+ if token in self._idf:
69
+ idf = np.log(self._doc_count / self._idf[token])
70
+ idx = self._vocab[token] % self.vector_dim # 使用取模运算来控制向量维度
71
+ vector[idx] += tf_value * idf
72
+
73
+ # L2归一化
74
+ norm = np.linalg.norm(vector)
75
+ if norm > 0:
76
+ vector /= norm
77
+
78
+ return vector
79
+
80
+ async def embed(self, text: str) -> np.ndarray:
81
+ """生成文本的向量表示
82
+
83
+ Args:
84
+ text: 输入文本
85
+
86
+ Returns:
87
+ np.ndarray: 文本的向量表示
88
+ """
89
+ # 检查缓存
90
+ text_hash = self._text_to_hash(text)
91
+ if text_hash in self._cache:
92
+ return self._cache[text_hash]
93
+
94
+ # 分词
95
+ tokens = self._tokenize(text)
96
+ if not tokens:
97
+ return np.zeros(self.vector_dim)
98
+
99
+ # 更新词汇表和IDF
100
+ self._update_vocab(tokens)
101
+ self._update_idf(tokens)
102
+
103
+ # 计算向量
104
+ vector = self._calculate_tfidf(tokens)
105
+
106
+ # 更新缓存
107
+ if len(self._cache) >= self.cache_size:
108
+ # 删除最早的缓存
109
+ oldest_key = next(iter(self._cache))
110
+ del self._cache[oldest_key]
111
+ self._cache[text_hash] = vector
112
+
113
+ return vector
114
+
115
+ def save(self, file_path: str):
116
+ """保存模型"""
117
+ state = {
118
+ 'vector_dim': self.vector_dim,
119
+ 'cache_size': self.cache_size,
120
+ 'vocab': self._vocab,
121
+ 'idf': self._idf,
122
+ 'doc_count': self._doc_count
123
+ }
124
+ with open(file_path, 'w') as f:
125
+ json.dump(state, f)
126
+
127
+ def load(self, file_path: str):
128
+ """加载模型"""
129
+ with open(file_path, 'r') as f:
130
+ state = json.load(f)
131
+ self.vector_dim = state['vector_dim']
132
+ self.cache_size = state['cache_size']
133
+ self._vocab = state['vocab']
134
+ self._idf = state['idf']
135
+ self._doc_count = state['doc_count']
136
+ self._cache = {} # 清空缓存
pycityagent/llm/llm.py ADDED
@@ -0,0 +1,430 @@
1
+ """UrbanLLM: 智能能力类及其定义"""
2
+
3
+ import json
4
+ from openai import OpenAI, AsyncOpenAI, APIConnectionError, OpenAIError
5
+ from zhipuai import ZhipuAI
6
+ import logging
7
+ logging.getLogger("zhipuai").setLevel(logging.WARNING)
8
+
9
+ import asyncio
10
+ from http import HTTPStatus
11
+ import dashscope
12
+ import requests
13
+ from dashscope import ImageSynthesis
14
+ from PIL import Image
15
+ from io import BytesIO
16
+ from typing import Any, Optional, Union, List, Dict
17
+ import aiohttp
18
+ from .llmconfig import *
19
+ from .utils import *
20
+
21
+ import os
22
+ os.environ["GRPC_VERBOSITY"] = "ERROR"
23
+
24
+ class LLM:
25
+ """
26
+ 大语言模型对象
27
+ The LLM Object used by Agent(Soul)
28
+ """
29
+ def __init__(self, config: LLMConfig) -> None:
30
+ self.config = config
31
+ if config.text['request_type'] not in ['openai', 'deepseek', 'qwen', 'zhipuai']:
32
+ raise ValueError("Invalid request type for text request")
33
+ self.prompt_tokens_used = 0
34
+ self.completion_tokens_used = 0
35
+ self.request_number = 0
36
+ self.semaphore = None
37
+ if self.config.text['request_type'] == 'openai':
38
+ self._aclient = AsyncOpenAI(api_key=self.config.text['api_key'], timeout=300)
39
+ elif self.config.text['request_type'] == 'deepseek':
40
+ self._aclient = AsyncOpenAI(api_key=self.config.text['api_key'], base_url="https://api.deepseek.com/beta", timeout=300)
41
+ elif self.config.text['request_type'] == 'zhipuai':
42
+ self._aclient = ZhipuAI(api_key=self.config.text['api_key'], timeout=300)
43
+
44
+ def set_semaphore(self, number_of_coroutine:int):
45
+ self.semaphore = asyncio.Semaphore(number_of_coroutine)
46
+
47
+ def clear_semaphore(self):
48
+ self.semaphore = None
49
+
50
+ def clear_used(self):
51
+ """
52
+ clear the storage of used tokens to start a new log message
53
+ Only support OpenAI category API right now, including OpenAI, Deepseek
54
+ """
55
+ self.prompt_tokens_used = 0
56
+ self.completion_tokens_used = 0
57
+ self.request_number = 0
58
+
59
+ def show_consumption(self, input_price:Optional[float]=None, output_price:Optional[float]=None):
60
+ """
61
+ if you give the input and output price of using model, this function will also calculate the consumption for you
62
+ """
63
+ total_token = self.prompt_tokens_used + self.completion_tokens_used
64
+ if self.completion_tokens_used != 0:
65
+ rate = self.prompt_tokens_used/self.completion_tokens_used
66
+ else:
67
+ rate = 'nan'
68
+ if self.request_number != 0:
69
+ TcA = total_token/self.request_number
70
+ else:
71
+ TcA = 'nan'
72
+ out = f"""Request Number: {self.request_number}
73
+ Token Usage:
74
+ - Total tokens: {total_token}
75
+ - Prompt tokens: {self.prompt_tokens_used}
76
+ - Completion tokens: {self.completion_tokens_used}
77
+ - Token per request: {TcA}
78
+ - Prompt:Completion ratio: {rate}:1"""
79
+ if input_price != None and output_price != None:
80
+ consumption = self.prompt_tokens_used/1000000*input_price + self.completion_tokens_used/1000000*output_price
81
+ out += f"\n - Cost Estimation: {consumption}"
82
+ print(out)
83
+ return {"total": total_token, "prompt": self.prompt_tokens_used, "completion": self.completion_tokens_used, "ratio": rate}
84
+
85
+
86
+ def text_request(
87
+ self,
88
+ dialog: Any,
89
+ temperature: float = 1,
90
+ max_tokens: Optional[int] = None,
91
+ top_p: Optional[float] = None,
92
+ frequency_penalty: Optional[float] = None,
93
+ presence_penalty: Optional[float] = None,
94
+ tools:Optional[List[Dict[str, Any]]]=None,
95
+ tool_choice:Optional[Dict[str, Any]]=None
96
+ ) -> Optional[str]:
97
+ """
98
+ 文本相关请求
99
+ Text request
100
+
101
+ Args:
102
+ - dialog (list[dict]): 标准的LLM文本dialog. The standard text LLM dialog
103
+ - temperature (float): default 1, used in openai
104
+ - max_tokens (int): default None, used in openai
105
+ - top_p (float): default None, used in openai
106
+ - frequency_penalty (float): default None, used in openai
107
+ - presence_penalty (float): default None, used in openai
108
+
109
+ Returns:
110
+ - (str): the response content
111
+ """
112
+ if 'api_base' in self.config.text.keys():
113
+ api_base = self.config.text['api_base']
114
+ else:
115
+ api_base = None
116
+ if self.config.text['request_type'] == 'openai':
117
+ client = OpenAI(
118
+ api_key=self.config.text['api_key'],
119
+ base_url=api_base,
120
+ )
121
+ response = client.chat.completions.create(
122
+ model=self.config.text['model'],
123
+ messages=dialog,
124
+ temperature=temperature,
125
+ max_tokens=max_tokens,
126
+ top_p=top_p,
127
+ frequency_penalty=frequency_penalty,
128
+ presence_penalty=presence_penalty,
129
+ tools=tools,
130
+ tool_choice=tool_choice
131
+ )
132
+ self.prompt_tokens_used += response.usage.prompt_tokens # type: ignore
133
+ self.completion_tokens_used += response.usage.completion_tokens # type: ignore
134
+ self.request_number += 1
135
+ if tools != None:
136
+ return response.tool_calls[0].function.arguments
137
+ else:
138
+ return response.choices[0].message.content
139
+ elif self.config.text['request_type'] == 'qwen':
140
+ response = dashscope.Generation.call(
141
+ model=self.config.text['model'],
142
+ api_key=self.config.text['api_key'],
143
+ messages=dialog,
144
+ result_format='message'
145
+ )
146
+ if response.status_code == HTTPStatus.OK: # type: ignore
147
+ return response.output.choices[0]['message']['content'] # type: ignore
148
+ else:
149
+ return "Error: {}, {}".format(response.status_code, response.message) # type: ignore
150
+ elif self.config.text['request_type'] == 'deepseek':
151
+ client = OpenAI(
152
+ api_key=self.config.text['api_key'],
153
+ base_url="https://api.deepseek.com/beta",
154
+ )
155
+ response = client.chat.completions.create(
156
+ model=self.config.text['model'],
157
+ messages=dialog,
158
+ temperature=temperature,
159
+ max_tokens=max_tokens,
160
+ top_p=top_p,
161
+ frequency_penalty=frequency_penalty,
162
+ presence_penalty=presence_penalty,
163
+ stream=False,
164
+ )
165
+ self.prompt_tokens_used += response.usage.prompt_tokens # type: ignore
166
+ self.completion_tokens_used += response.usage.completion_tokens # type: ignore
167
+ self.request_number += 1
168
+ return response.choices[0].message.content
169
+ elif self.config.text['request_type'] == 'zhipuai':
170
+ client = ZhipuAI(api_key=self.config.text['api_key'])
171
+ response = client.chat.completions.create(
172
+ model=self.config.text['model'],
173
+ messages=dialog,
174
+ temperature=temperature,
175
+ top_p=top_p,
176
+ stream=False
177
+ )
178
+ self.prompt_tokens_used += response.usage.prompt_tokens # type: ignore
179
+ self.completion_tokens_used += response.usage.completion_tokens # type: ignore
180
+ self.request_number += 1
181
+ return response.choices[0].message.content # type: ignore
182
+ else:
183
+ print("ERROR: Wrong Config")
184
+ return "wrong config"
185
+
186
+ async def atext_request(
187
+ self,
188
+ dialog:Any,
189
+ temperature:float=1,
190
+ max_tokens:Optional[int]=None,
191
+ top_p:Optional[float]=None,
192
+ frequency_penalty:Optional[float]=None,
193
+ presence_penalty:Optional[float]=None,
194
+ timeout:int=300,
195
+ retries=3,
196
+ tools:Optional[List[Dict[str, Any]]]=None,
197
+ tool_choice:Optional[Dict[str, Any]]=None
198
+ ):
199
+ """
200
+ 异步版文本请求
201
+ """
202
+ if self.config.text['request_type'] == 'openai' or self.config.text['request_type'] == 'deepseek':
203
+ for attempt in range(retries):
204
+ try:
205
+ if self.semaphore != None:
206
+ async with self.semaphore:
207
+ response = await self._aclient.chat.completions.create(
208
+ model=self.config.text['model'],
209
+ messages=dialog,
210
+ temperature=temperature,
211
+ max_tokens=max_tokens,
212
+ top_p=top_p,
213
+ frequency_penalty=frequency_penalty, # type: ignore
214
+ presence_penalty=presence_penalty, # type: ignore
215
+ stream=False,
216
+ timeout=timeout,
217
+ tools=tools,
218
+ tool_choice=tool_choice
219
+ ) # type: ignore
220
+ self.prompt_tokens_used += response.usage.prompt_tokens # type: ignore
221
+ self.completion_tokens_used += response.usage.completion_tokens # type: ignore
222
+ self.request_number += 1
223
+ if tools != None:
224
+ return response.tool_calls[0].function.arguments
225
+ else:
226
+ return response.choices[0].message.content
227
+ else:
228
+ response = await self._aclient.chat.completions.create(
229
+ model=self.config.text['model'],
230
+ messages=dialog,
231
+ temperature=temperature,
232
+ max_tokens=max_tokens,
233
+ top_p=top_p,
234
+ frequency_penalty=frequency_penalty, # type: ignore
235
+ presence_penalty=presence_penalty, # type: ignore
236
+ stream=False,
237
+ timeout=timeout,
238
+ tools=tools,
239
+ tool_choice=tool_choice
240
+ ) # type: ignore
241
+ self.prompt_tokens_used += response.usage.prompt_tokens # type: ignore
242
+ self.completion_tokens_used += response.usage.completion_tokens # type: ignore
243
+ self.request_number += 1
244
+ if tools != None:
245
+ return response.tool_calls[0].function.arguments
246
+ else:
247
+ return response.choices[0].message.content
248
+ except APIConnectionError as e:
249
+ print("API connection error:", e)
250
+ if attempt < retries - 1:
251
+ await asyncio.sleep(2 ** attempt)
252
+ else:
253
+ raise e
254
+ except OpenAIError as e:
255
+ if hasattr(e, 'http_status'):
256
+ print(f"HTTP status code: {e.http_status}") # type: ignore
257
+ else:
258
+ print("An error occurred:", e)
259
+ if attempt < retries - 1:
260
+ await asyncio.sleep(2 ** attempt)
261
+ else:
262
+ raise e
263
+ elif self.config.text['request_type'] == 'zhipuai':
264
+ for attempt in range(retries):
265
+ try:
266
+ response = self._aclient.chat.asyncCompletions.create( # type: ignore
267
+ model=self.config.text['model'],
268
+ messages=dialog,
269
+ temperature=temperature,
270
+ top_p=top_p,
271
+ timeout=timeout,
272
+ tools=tools,
273
+ tool_choice=tool_choice
274
+ )
275
+ task_id = response.id
276
+ task_status = ''
277
+ get_cnt = 0
278
+ cnt_threshold = int(timeout/0.5)
279
+ while task_status != 'SUCCESS' and task_status != 'FAILED' and get_cnt <= cnt_threshold:
280
+ result_response = self._aclient.chat.asyncCompletions.retrieve_completion_result(id=task_id) # type: ignore
281
+ task_status = result_response.task_status
282
+ await asyncio.sleep(0.5)
283
+ get_cnt += 1
284
+ if task_status != 'SUCCESS':
285
+ raise Exception(f"Task failed with status: {task_status}")
286
+
287
+ self.prompt_tokens_used += result_response.usage.prompt_tokens # type: ignore
288
+ self.completion_tokens_used += result_response.usage.completion_tokens # type: ignore
289
+ self.request_number += 1
290
+ if tools and result_response.choices[0].message.tool_calls:
291
+ return json.loads(result_response.choices[0].message.tool_calls[0].function.arguments)
292
+ else:
293
+ return result_response.choices[0].message.content # type: ignore
294
+ except APIConnectionError as e:
295
+ print("API connection error:", e)
296
+ if attempt < retries - 1:
297
+ await asyncio.sleep(2 ** attempt)
298
+ else:
299
+ raise e
300
+ elif self.config.text['request_type'] == 'qwen':
301
+ async with aiohttp.ClientSession() as session:
302
+ api_url = "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation"
303
+ headers = {"Content-Type": "application/json", "Authorization": f"{self.config.text['api_key']}"}
304
+ payload = {
305
+ 'model': self.config.text['model'],
306
+ 'input': {
307
+ 'messages': dialog
308
+ }
309
+ }
310
+ async with session.post(api_url, json=payload, headers=headers) as resp:
311
+ response_json = await resp.json()
312
+ if 'code' in response_json.keys():
313
+ raise Exception(f"Error: {response_json['code']}, {response_json['message']}")
314
+ else:
315
+ return response_json['output']['text']
316
+ else:
317
+ print("ERROR: Wrong Config")
318
+ return "wrong config"
319
+
320
+
321
+ async def img_understand(self, img_path:Union[str, list[str]], prompt:Optional[str]=None) -> str:
322
+ """
323
+ 图像理解
324
+ Image understanding
325
+
326
+ Args:
327
+ - img_path (Union[str, list[str]]): 目标图像的路径, 既可以是一个路径也可以是包含多张图片路径的list. The path of selected Image
328
+ - prompt (str): 理解提示词 - 例如理解方向. The understanding prompts
329
+
330
+ Returns:
331
+ - (str): the understanding content
332
+ """
333
+ ppt = "如何理解这幅图像?"
334
+ if prompt != None:
335
+ ppt = prompt
336
+ if self.config.image_u['request_type'] == 'openai':
337
+ if 'api_base' in self.config.image_u.keys():
338
+ api_base = self.config.image_u['api_base']
339
+ else:
340
+ api_base = None
341
+ client = OpenAI(
342
+ api_key=self.config.text['api_key'],
343
+ base_url=api_base,
344
+ )
345
+ content = []
346
+ content.append({'type': 'text', 'text': ppt})
347
+ if isinstance(img_path, str):
348
+ base64_image = encode_image(img_path)
349
+ content.append({
350
+ 'type': 'image_url',
351
+ 'image_url': {
352
+ 'url': f"data:image/jpeg;base64,{base64_image}"
353
+ }
354
+ })
355
+ elif isinstance(img_path, list) and all(isinstance(item, str) for item in img_path):
356
+ for item in img_path:
357
+ base64_image = encode_image(item)
358
+ content.append({
359
+ 'type': 'image_url',
360
+ 'image_url': {
361
+ 'url': f"data:image/jpeg;base64,{base64_image}"
362
+ }
363
+ })
364
+ response = client.chat.completions.create(
365
+ model=self.config.image_u['model'],
366
+ messages=[{
367
+ 'role': 'user',
368
+ 'content': content
369
+ }]
370
+ )
371
+ return response.choices[0].message.content # type: ignore
372
+ elif self.config.image_u['request_type'] == 'qwen':
373
+ content = []
374
+ if isinstance(img_path, str):
375
+ content.append({'image': 'file://' + img_path})
376
+ content.append({'text': ppt})
377
+ elif isinstance(img_path, list) and all(isinstance(item, str) for item in img_path):
378
+ for item in img_path:
379
+ content.append({
380
+ 'image': 'file://' + item
381
+ })
382
+ content.append({'text': ppt})
383
+
384
+ dialog = [{
385
+ 'role': 'user',
386
+ 'content': content
387
+ }]
388
+ response = dashscope.MultiModalConversation.call(
389
+ model=self.config.image_u['model'],
390
+ api_key=self.config.image_u['api_key'],
391
+ messages=dialog
392
+ )
393
+ if response.status_code == HTTPStatus.OK: # type: ignore
394
+ return response.output.choices[0]['message']['content'] # type: ignore
395
+ else:
396
+ print(response.code) # type: ignore # The error code.
397
+ return "Error"
398
+ else:
399
+ print("ERROR: wrong image understanding type, only 'openai' and 'openai' is available")
400
+ return "Error"
401
+
402
+ async def img_generate(self, prompt:str, size:str='512*512', quantity:int = 1):
403
+ """
404
+ 图像生成
405
+ Image generation
406
+
407
+ Args:
408
+ - prompt (str): 图像生成提示词. The image generation prompts
409
+ - size (str): 生成图像尺寸, 默认为'512*512'. The image size, default: '512*512'
410
+ - quantity (int): 生成图像数量, 默认为1. The quantity of generated images, default: 1
411
+
412
+ Returns:
413
+ - (list[PIL.Image.Image]): 生成的图像列表. The list of generated Images.
414
+ """
415
+ rsp = ImageSynthesis.call(
416
+ model=self.config.image_g['model'],
417
+ api_key=self.config.image_g['api_key'],
418
+ prompt=prompt,
419
+ n=quantity,
420
+ size=size
421
+ )
422
+ if rsp.status_code == HTTPStatus.OK:
423
+ res = []
424
+ for result in rsp.output.results:
425
+ res.append(Image.open(BytesIO(requests.get(result.url).content)))
426
+ return res
427
+ else:
428
+ print('Failed, status_code: %s, code: %s, message: %s' %
429
+ (rsp.status_code, rsp.code, rsp.message))
430
+ return None
@@ -0,0 +1,15 @@
1
+ class LLMConfig:
2
+ """
3
+ 大语言模型相关配置
4
+ The config of LLM
5
+ """
6
+ def __init__(
7
+ self,
8
+ config: dict
9
+ ) -> None:
10
+ self.config = config
11
+ self.text = config['text_request']
12
+ if 'api_base' in self.text.keys() and self.text['api_base'] == 'None':
13
+ self.text['api_base'] = None
14
+ self.image_u = config['img_understand_request']
15
+ self.image_g = config['img_generate_request']
@@ -0,0 +1,6 @@
1
+ import base64
2
+
3
+
4
+ def encode_image(image_path):
5
+ with open(image_path, "rb") as image_file:
6
+ return base64.b64encode(image_file.read()).decode('utf-8')
@@ -0,0 +1,11 @@
1
+ """Memory."""
2
+
3
+ from .memory import Memory
4
+ from .memory_base import MemoryBase, MemoryUnit
5
+ from .profile import ProfileMemory, ProfileMemoryUnit
6
+ from .self_define import DynamicMemory
7
+ from .state import StateMemory
8
+
9
+ __all__ = [
10
+ "Memory",
11
+ ]
@@ -0,0 +1,41 @@
1
+ from pycityproto.city.person.v2.motion_pb2 import Status
2
+
3
+ PROFILE_ATTRIBUTES = {
4
+ "gender": str(),
5
+ "age": float(),
6
+ "education": str(),
7
+ "skill": str(),
8
+ "occupation": str(),
9
+ "family_consumption": str(),
10
+ "consumption": str(),
11
+ "personality": str(),
12
+ "income": str(),
13
+ "residence": str(),
14
+ "race": str(),
15
+ "religion": str(),
16
+ "marital_status": str(),
17
+ }
18
+
19
+ STATE_ATTRIBUTES = {
20
+ # base
21
+ "id": -1,
22
+ "attribute": dict(),
23
+ "home": dict(),
24
+ "work": dict(),
25
+ "schedules": [],
26
+ "vehicle_attribute": dict(),
27
+ "bus_attribute": dict(),
28
+ "pedestrian_attribute": dict(),
29
+ "bike_attribute": dict(),
30
+ # motion
31
+ "status": Status.STATUS_UNSPECIFIED,
32
+ "position": dict(),
33
+ "v": float(),
34
+ "direction": float(),
35
+ "activity": str(),
36
+ "l": float(),
37
+ }
38
+
39
+ SELF_DEFINE_PREFIX = "self_define_"
40
+
41
+ TIME_STAMP_KEY = "_timestamp"