pybhpt 0.9.10__cp313-cp313-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cybhpt_full.cpython-313-x86_64-linux-musl.so +0 -0
- pybhpt/__init__.py +0 -0
- pybhpt/flux.py +164 -0
- pybhpt/geo.py +910 -0
- pybhpt/hertz.py +402 -0
- pybhpt/metric.py +326 -0
- pybhpt/radial.py +444 -0
- pybhpt/redshift.py +19 -0
- pybhpt/swsh.py +659 -0
- pybhpt/teuk.py +492 -0
- pybhpt-0.9.10.dist-info/METADATA +151 -0
- pybhpt-0.9.10.dist-info/RECORD +18 -0
- pybhpt-0.9.10.dist-info/WHEEL +5 -0
- pybhpt-0.9.10.dist-info/licenses/LICENSE +674 -0
- pybhpt.libs/libgcc_s-0cd532bd.so.1 +0 -0
- pybhpt.libs/libgsl-6bd0117f.so.28.0.0 +0 -0
- pybhpt.libs/libgslcblas-55a77d35.so.0.0.0 +0 -0
- pybhpt.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
pybhpt/radial.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
1
|
+
from cybhpt_full import RadialTeukolsky as _RadialTeukolskyCython
|
|
2
|
+
from cybhpt_full import available_methods as _available_methods_cython
|
|
3
|
+
from cybhpt_full import renormalized_angular_momentum as _nu_cython
|
|
4
|
+
from cybhpt_full import renormalized_angular_momentum_monodromy as _nu_2_cython
|
|
5
|
+
from cybhpt_full import hypergeo_2F1 as _hypergeo_2F1_cython
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
def available_methods():
|
|
9
|
+
"""
|
|
10
|
+
Returns a list of available solution methods.
|
|
11
|
+
"""
|
|
12
|
+
return _available_methods_cython()
|
|
13
|
+
|
|
14
|
+
def renormalized_angular_momentum(s, j, m, a, omega):
|
|
15
|
+
"""
|
|
16
|
+
Computes the renormalized angular momentum for the given parameters.
|
|
17
|
+
|
|
18
|
+
Parameters
|
|
19
|
+
----------
|
|
20
|
+
s : int
|
|
21
|
+
The spin weight of the field.
|
|
22
|
+
j : int
|
|
23
|
+
The spheroidal harmonic mode number.
|
|
24
|
+
m : int
|
|
25
|
+
The azimuthal harmonic mode number.
|
|
26
|
+
a : float
|
|
27
|
+
The black hole spin parameter.
|
|
28
|
+
omega : float
|
|
29
|
+
The frequency of the mode.
|
|
30
|
+
|
|
31
|
+
Returns
|
|
32
|
+
-------
|
|
33
|
+
complex
|
|
34
|
+
The renormalized angular momentum.
|
|
35
|
+
"""
|
|
36
|
+
return _nu_cython(s, j, m, a, omega)
|
|
37
|
+
|
|
38
|
+
def renormalized_angular_momentum_monodromy(s, j, m, a, omega, la):
|
|
39
|
+
"""
|
|
40
|
+
Computes the renormalized angular momentum using the monodromy method for the given parameters.
|
|
41
|
+
|
|
42
|
+
Parameters
|
|
43
|
+
----------
|
|
44
|
+
s : int
|
|
45
|
+
The spin weight of the field.
|
|
46
|
+
j : int
|
|
47
|
+
The spheroidal harmonic mode number.
|
|
48
|
+
m : int
|
|
49
|
+
The azimuthal harmonic mode number.
|
|
50
|
+
a : float
|
|
51
|
+
The black hole spin parameter.
|
|
52
|
+
omega : complex
|
|
53
|
+
The frequency of the mode.
|
|
54
|
+
la : complex
|
|
55
|
+
The spheroidal eigenvalue.
|
|
56
|
+
|
|
57
|
+
Returns
|
|
58
|
+
-------
|
|
59
|
+
complex
|
|
60
|
+
The renormalized angular momentum.
|
|
61
|
+
"""
|
|
62
|
+
return _nu_2_cython(s, j, m, a, omega, la)
|
|
63
|
+
|
|
64
|
+
class RadialTeukolsky:
|
|
65
|
+
"""A class for solving the homogeneous radial Teukolsky equation.
|
|
66
|
+
|
|
67
|
+
Parameters
|
|
68
|
+
----------
|
|
69
|
+
s : int
|
|
70
|
+
The spin weight of the field
|
|
71
|
+
j : int
|
|
72
|
+
The spheroidal harmonic mode number
|
|
73
|
+
m : int
|
|
74
|
+
The azimuthal harmonic mode number
|
|
75
|
+
a : float
|
|
76
|
+
The black hole spin parameter
|
|
77
|
+
omega : float
|
|
78
|
+
The frequency of the mode
|
|
79
|
+
r : numpy.ndarray
|
|
80
|
+
A numpy array of radial points at which to evaluate the solution
|
|
81
|
+
|
|
82
|
+
Attributes
|
|
83
|
+
----------
|
|
84
|
+
radialpoints : numpy.ndarray
|
|
85
|
+
A numpy array of radial points at which the solution is evaluated.
|
|
86
|
+
base : RadialTeukolskyCython
|
|
87
|
+
The underlying Cython object that performs the computations.
|
|
88
|
+
nsamples : int
|
|
89
|
+
The number of radial points in the radialpoints array.
|
|
90
|
+
|
|
91
|
+
Properties
|
|
92
|
+
----------
|
|
93
|
+
blackholespin : float
|
|
94
|
+
The black hole spin parameter.
|
|
95
|
+
spinweight : int
|
|
96
|
+
The spin weight of the field.
|
|
97
|
+
s : int
|
|
98
|
+
Alias for spinweight.
|
|
99
|
+
spheroidalmode : int
|
|
100
|
+
The spheroidal harmonic mode number.
|
|
101
|
+
j : int
|
|
102
|
+
Alias for spheroidalmode.
|
|
103
|
+
azimuthalmode : int
|
|
104
|
+
The azimuthal harmonic mode number.
|
|
105
|
+
m : int
|
|
106
|
+
Alias for azimuthalmode.
|
|
107
|
+
frequency : float
|
|
108
|
+
The frequency of the mode.
|
|
109
|
+
mode_frequency : float
|
|
110
|
+
Alias for frequency.
|
|
111
|
+
omega : float
|
|
112
|
+
Alias for frequency.
|
|
113
|
+
eigenvalue : float
|
|
114
|
+
The spheroidal eigenvalue of the radial Teukolsky equation.
|
|
115
|
+
|
|
116
|
+
Methods
|
|
117
|
+
-------
|
|
118
|
+
solveboundarycondition(method)
|
|
119
|
+
Solves the boundary condition for the radial Teukolsky equation.
|
|
120
|
+
setboundarycondition(bc, R, Rp, r)
|
|
121
|
+
Sets the boundary condition for the radial Teukolsky equation.
|
|
122
|
+
solve(method="AUTO", bc=None)
|
|
123
|
+
Solves the radial Teukolsky equation.
|
|
124
|
+
flipspinweight()
|
|
125
|
+
Flips the spin weight of the field.
|
|
126
|
+
radialpoint(pos)
|
|
127
|
+
Returns the radial point at the given position.
|
|
128
|
+
boundarypoint(bc)
|
|
129
|
+
Returns the boundary point for the given boundary condition.
|
|
130
|
+
boundarysolution(bc)
|
|
131
|
+
Returns the solution at the boundary for the given boundary condition.
|
|
132
|
+
boundaryderivative(bc)
|
|
133
|
+
Returns the derivative at the boundary for the given boundary condition.
|
|
134
|
+
radialsolution(bc, pos)
|
|
135
|
+
Returns the solution at the radial point for the given boundary condition and position.
|
|
136
|
+
radialderivative(bc, pos)
|
|
137
|
+
Returns the derivative at the radial point for the given boundary condition and position.
|
|
138
|
+
radialderivative2(bc, pos)
|
|
139
|
+
Returns the second derivative at the radial point for the given boundary condition and position.
|
|
140
|
+
radialsolutions(bc)
|
|
141
|
+
Returns the solutions at all radial points for the given boundary condition.
|
|
142
|
+
radialderivatives(bc)
|
|
143
|
+
Returns the derivatives at all radial points for the given boundary condition.
|
|
144
|
+
radialderivatives2(bc)
|
|
145
|
+
Returns the second derivatives at all radial points for the given boundary condition.
|
|
146
|
+
__call__(bc, deriv=0)
|
|
147
|
+
Returns the solutions, first derivatives, or second derivatives at all radial points for the given boundary condition.
|
|
148
|
+
The `deriv` parameter specifies which derivative to return: 0 for solutions,
|
|
149
|
+
1 for first derivatives, and 2 for second derivatives. If `deriv` is not 0, 1, or 2, a ValueError is raised.
|
|
150
|
+
"""
|
|
151
|
+
def __init__(self, s, j, m, a, omega, r):
|
|
152
|
+
if a < 0 or a > 1:
|
|
153
|
+
raise ValueError(f"Black hole spin parameter {a} must be in the range [0, 1].")
|
|
154
|
+
if j < np.abs(m):
|
|
155
|
+
raise ValueError(f"Spheroidal harmonic mode number {j} must be greater than or equal to the absolute value of azimuthal harmonic mode number {m}.")
|
|
156
|
+
if np.any(r <= 1 + np.sqrt(1 - a**2)):
|
|
157
|
+
raise ValueError(f"Radial point {r} must be greater than horizon radius r_+ = {1 + np.sqrt(1 - a**2)}.")
|
|
158
|
+
if isinstance(r, list) or (isinstance(r, np.ndarray) and r.ndim > 0):
|
|
159
|
+
self.radialpoints = np.asarray(r)
|
|
160
|
+
self.nsamples = self.radialpoints.shape[0]
|
|
161
|
+
else:
|
|
162
|
+
raise AttributeError("Radial points must be a list or a numpy array.")
|
|
163
|
+
|
|
164
|
+
if self.nsamples == 0:
|
|
165
|
+
raise ValueError("Radial points array is empty.")
|
|
166
|
+
self.base = _RadialTeukolskyCython(a, s, j, m, omega, self.radialpoints)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
@property
|
|
170
|
+
def blackholespin(self):
|
|
171
|
+
return self.base.blackholespin
|
|
172
|
+
|
|
173
|
+
@property
|
|
174
|
+
def spinweight(self):
|
|
175
|
+
return self.base.spinweight
|
|
176
|
+
|
|
177
|
+
@property
|
|
178
|
+
def s(self):
|
|
179
|
+
return self.spinweight
|
|
180
|
+
|
|
181
|
+
@property
|
|
182
|
+
def spheroidalmode(self):
|
|
183
|
+
return self.base.spheroidalmode
|
|
184
|
+
|
|
185
|
+
@property
|
|
186
|
+
def j(self):
|
|
187
|
+
return self.spheroidalmode
|
|
188
|
+
|
|
189
|
+
@property
|
|
190
|
+
def azimuthalmode(self):
|
|
191
|
+
return self.base.azimuthalmode
|
|
192
|
+
|
|
193
|
+
@property
|
|
194
|
+
def m(self):
|
|
195
|
+
return self.azimuthalmode
|
|
196
|
+
|
|
197
|
+
@property
|
|
198
|
+
def frequency(self):
|
|
199
|
+
return self.base.frequency
|
|
200
|
+
|
|
201
|
+
@property
|
|
202
|
+
def mode_frequency(self):
|
|
203
|
+
return self.frequency
|
|
204
|
+
|
|
205
|
+
@property
|
|
206
|
+
def omega(self):
|
|
207
|
+
return self.frequency
|
|
208
|
+
|
|
209
|
+
@property
|
|
210
|
+
def eigenvalue(self):
|
|
211
|
+
return self.base.eigenvalue
|
|
212
|
+
|
|
213
|
+
def solveboundarycondition(self, method):
|
|
214
|
+
"""Solves the boundary condition for the radial Teukolsky equation.
|
|
215
|
+
|
|
216
|
+
Parameters
|
|
217
|
+
----------
|
|
218
|
+
method : str
|
|
219
|
+
The method to use for solving the boundary condition. Default is "AUTO".
|
|
220
|
+
"""
|
|
221
|
+
self.base.solve_bc(method)
|
|
222
|
+
|
|
223
|
+
def setboundarycondition(self, bc, R, Rp, r):
|
|
224
|
+
"""Sets the boundary condition for the radial Teukolsky equation.
|
|
225
|
+
|
|
226
|
+
Parameters
|
|
227
|
+
----------
|
|
228
|
+
bc : str
|
|
229
|
+
The boundary condition to set. Can be "In" for horizon or "Up" for infinity.
|
|
230
|
+
R : float
|
|
231
|
+
The boundary condition function value at the radial point.
|
|
232
|
+
Rp : float
|
|
233
|
+
The derivative of the boundary condition function at the radial point.
|
|
234
|
+
r : float
|
|
235
|
+
The radial point at which the boundary condition is defined.
|
|
236
|
+
"""
|
|
237
|
+
self.base.set_bc(bc, R, Rp, r)
|
|
238
|
+
|
|
239
|
+
def solve(self, method = "AUTO", bc = None):
|
|
240
|
+
"""Solves the radial Teukolsky equation.
|
|
241
|
+
|
|
242
|
+
Parameters
|
|
243
|
+
----------
|
|
244
|
+
method : str, optional
|
|
245
|
+
The method to use for solving the equation. Default is "AUTO".
|
|
246
|
+
bc : str, optional
|
|
247
|
+
Specifies which homogeneous solutions to compute. If None, both "In" (horizon) and "Up" (infinity) solutions are computed.
|
|
248
|
+
If "In", only the horizon solution is computed. If "Up", only the infinity solution is computed.
|
|
249
|
+
"""
|
|
250
|
+
if bc is None:
|
|
251
|
+
self.base.solve(method, "None")
|
|
252
|
+
else:
|
|
253
|
+
self.base.solve(method, bc)
|
|
254
|
+
|
|
255
|
+
def flipspinweight(self):
|
|
256
|
+
"""Flips the sign of the spin weight of the field."""
|
|
257
|
+
self.base.flip_spinweight()
|
|
258
|
+
|
|
259
|
+
def radialpoint(self, pos):
|
|
260
|
+
"""Returns the radial point at the given position.
|
|
261
|
+
Parameters
|
|
262
|
+
----------
|
|
263
|
+
pos : float
|
|
264
|
+
The position at which to evaluate the radial point.
|
|
265
|
+
Returns
|
|
266
|
+
-------
|
|
267
|
+
float
|
|
268
|
+
The radial point at the given position.
|
|
269
|
+
"""
|
|
270
|
+
return self.base.radialpoint(pos)
|
|
271
|
+
|
|
272
|
+
def boundarypoint(self, bc):
|
|
273
|
+
"""
|
|
274
|
+
Returns the boundary point for the given boundary condition.
|
|
275
|
+
Parameters
|
|
276
|
+
----------
|
|
277
|
+
bc : str
|
|
278
|
+
The boundary condition to evaluate. Can be "In" for horizon or "Up" for infinity.
|
|
279
|
+
Returns
|
|
280
|
+
-------
|
|
281
|
+
float
|
|
282
|
+
The boundary point corresponding to the specified boundary condition.
|
|
283
|
+
"""
|
|
284
|
+
return self.base.boundarypoint(bc)
|
|
285
|
+
|
|
286
|
+
def boundarysolution(self, bc):
|
|
287
|
+
"""Returns the solution at the boundary for the given boundary condition.
|
|
288
|
+
Parameters
|
|
289
|
+
----------
|
|
290
|
+
bc : str
|
|
291
|
+
The boundary condition to evaluate. Can be "In" for horizon or "Up" for infinity.
|
|
292
|
+
Returns
|
|
293
|
+
-------
|
|
294
|
+
float
|
|
295
|
+
The solution at the boundary corresponding to the specified boundary condition.
|
|
296
|
+
"""
|
|
297
|
+
return self.base.boundarysolution(bc)
|
|
298
|
+
|
|
299
|
+
def boundaryderivative(self, bc):
|
|
300
|
+
"""Returns the derivative at the boundary for the given boundary condition.
|
|
301
|
+
Parameters
|
|
302
|
+
----------
|
|
303
|
+
bc : str
|
|
304
|
+
The boundary condition to evaluate. Can be "In" for horizon or "Up" for infinity.
|
|
305
|
+
Returns
|
|
306
|
+
-------
|
|
307
|
+
float
|
|
308
|
+
The derivative at the boundary corresponding to the specified boundary condition.
|
|
309
|
+
"""
|
|
310
|
+
return self.base.boundaryderivative(bc)
|
|
311
|
+
|
|
312
|
+
def radialsolution(self, bc, pos):
|
|
313
|
+
"""Returns the solution at the radial point for the given homogeneous solution and position.
|
|
314
|
+
Parameters
|
|
315
|
+
----------
|
|
316
|
+
bc : str
|
|
317
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
318
|
+
pos : float
|
|
319
|
+
The position at which to evaluate the solution.
|
|
320
|
+
Returns
|
|
321
|
+
-------
|
|
322
|
+
float
|
|
323
|
+
The solution at the radial point corresponding to the specified boundary condition and position.
|
|
324
|
+
"""
|
|
325
|
+
return self.base.solution(bc, pos)
|
|
326
|
+
|
|
327
|
+
def radialderivative(self, bc, pos):
|
|
328
|
+
"""Returns the derivative at the radial point for the given homogeneous solution and position.
|
|
329
|
+
Parameters
|
|
330
|
+
----------
|
|
331
|
+
bc : str
|
|
332
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
333
|
+
pos : float
|
|
334
|
+
The position at which to evaluate the solution.
|
|
335
|
+
Returns
|
|
336
|
+
-------
|
|
337
|
+
float
|
|
338
|
+
The solution at the radial point corresponding to the specified boundary condition and position.
|
|
339
|
+
"""
|
|
340
|
+
return self.base.derivative(bc, pos)
|
|
341
|
+
|
|
342
|
+
def radialderivative2(self, bc, pos):
|
|
343
|
+
"""Returns the second derivative at the radial point for the given homogeneous solution and position.
|
|
344
|
+
Parameters
|
|
345
|
+
----------
|
|
346
|
+
bc : str
|
|
347
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
348
|
+
pos : float
|
|
349
|
+
The position at which to evaluate the solution.
|
|
350
|
+
Returns
|
|
351
|
+
-------
|
|
352
|
+
float
|
|
353
|
+
The solution at the radial point corresponding to the specified boundary condition and position.
|
|
354
|
+
"""
|
|
355
|
+
return self.base.derivative2(bc, pos)
|
|
356
|
+
|
|
357
|
+
def radialsolutions(self, bc):
|
|
358
|
+
"""Returns a homogeneous solution at all radial points.
|
|
359
|
+
Parameters
|
|
360
|
+
----------
|
|
361
|
+
bc : str
|
|
362
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
363
|
+
Returns
|
|
364
|
+
-------
|
|
365
|
+
numpy.ndarray
|
|
366
|
+
A numpy array of solutions at all radial points corresponding to the specified boundary condition.
|
|
367
|
+
"""
|
|
368
|
+
return np.array([self.base.solution(bc, i) for i in range(self.nsamples)])
|
|
369
|
+
|
|
370
|
+
def radialderivatives(self, bc):
|
|
371
|
+
"""Returns the radial derivative at all radial points.
|
|
372
|
+
Parameters
|
|
373
|
+
----------
|
|
374
|
+
bc : str
|
|
375
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
376
|
+
Returns
|
|
377
|
+
-------
|
|
378
|
+
numpy.ndarray
|
|
379
|
+
A numpy array of solutions at all radial points corresponding to the specified boundary condition.
|
|
380
|
+
"""
|
|
381
|
+
return np.array([self.base.derivative(bc, i) for i in range(self.nsamples)])
|
|
382
|
+
|
|
383
|
+
def radialderivatives2(self, bc):
|
|
384
|
+
"""Returns the second radial derivative at all radial points.
|
|
385
|
+
Parameters
|
|
386
|
+
----------
|
|
387
|
+
bc : str
|
|
388
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
389
|
+
Returns
|
|
390
|
+
-------
|
|
391
|
+
numpy.ndarray
|
|
392
|
+
A numpy array of solutions at all radial points corresponding to the specified boundary condition.
|
|
393
|
+
"""
|
|
394
|
+
return np.array([self.base.derivative2(bc, i) for i in range(self.nsamples)])
|
|
395
|
+
|
|
396
|
+
def __call__(self, bc, deriv = 0):
|
|
397
|
+
"""Returns the solutions, first derivatives, or second derivatives at all radial points for the given boundary condition.
|
|
398
|
+
|
|
399
|
+
Parameters
|
|
400
|
+
----------
|
|
401
|
+
bc : str
|
|
402
|
+
The homogeneous solution to evaluate. Can be "In" for horizon solution or "Up" for infinity solution.
|
|
403
|
+
deriv : int, optional
|
|
404
|
+
Specifies which derivative to return: 0 for solutions, 1 for first derivatives, and 2 for second derivatives.
|
|
405
|
+
Default is 0 (solutions).
|
|
406
|
+
Returns
|
|
407
|
+
-------
|
|
408
|
+
numpy.ndarray
|
|
409
|
+
A numpy array of solutions, first derivatives, or second derivatives at all radial points corresponding to the specified boundary condition.
|
|
410
|
+
Raises
|
|
411
|
+
------
|
|
412
|
+
ValueError
|
|
413
|
+
If `deriv` is not 0, 1, or 2.
|
|
414
|
+
"""
|
|
415
|
+
if deriv == 0:
|
|
416
|
+
return self.radialsolutions(bc)
|
|
417
|
+
elif deriv == 1:
|
|
418
|
+
return self.radialderivatives(bc)
|
|
419
|
+
elif deriv == 2:
|
|
420
|
+
return self.radialderivatives2(bc)
|
|
421
|
+
else:
|
|
422
|
+
raise ValueError("RadialTeukolsky only solves up to the second derivative")
|
|
423
|
+
|
|
424
|
+
def hypergeo_2F1(a, b, c, x):
|
|
425
|
+
"""
|
|
426
|
+
Gauss hypergeometric function 2F1(a, b; c; x). Note that this function is not very stable across the complex domain.
|
|
427
|
+
|
|
428
|
+
Parameters
|
|
429
|
+
----------
|
|
430
|
+
a : complex
|
|
431
|
+
The first parameter of the hypergeometric function.
|
|
432
|
+
b : complex
|
|
433
|
+
The second parameter of the hypergeometric function.
|
|
434
|
+
c : complex
|
|
435
|
+
The third parameter of the hypergeometric function.
|
|
436
|
+
x : complex
|
|
437
|
+
The argument of the hypergeometric function.
|
|
438
|
+
|
|
439
|
+
Returns
|
|
440
|
+
-------
|
|
441
|
+
complex
|
|
442
|
+
The value of the hypergeometric function 2F1(a, b; c; x).
|
|
443
|
+
"""
|
|
444
|
+
return _hypergeo_2F1_cython(a, b, c, x)
|
pybhpt/redshift.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
from cybhpt_full import RedshiftCoefficients as _RedshiftCoefficientsCython
|
|
2
|
+
from cybhpt_full import SphericalHarmonicCoupling as _SphericalHarmonicCouplingCython
|
|
3
|
+
|
|
4
|
+
class RedshiftCoefficients:
|
|
5
|
+
def __init__(self, gauge, geo):
|
|
6
|
+
self.base = _RedshiftCoefficientsCython(gauge, geo.base)
|
|
7
|
+
def __call__(self, Ni, ai, bi, ci, di, jr = 0, jz = 0):
|
|
8
|
+
return self.base(Ni, ai, bi, ci, di, jr, jz)
|
|
9
|
+
|
|
10
|
+
class SphericalHarmonicCoupling:
|
|
11
|
+
def __init__(self, lmax, m):
|
|
12
|
+
self.base = _SphericalHarmonicCouplingCython(lmax, m)
|
|
13
|
+
self.azimuthalmode = self.base.azimuthalmode
|
|
14
|
+
|
|
15
|
+
def zcouplingcoefficient(self, n, i, l):
|
|
16
|
+
return self.base.zcouplingcoefficient(n, i, l)
|
|
17
|
+
|
|
18
|
+
def dzcouplingcoefficient(self, n, i, l):
|
|
19
|
+
return self.base.dzcouplingcoefficient(n, i, l)
|