pyafv 0.4.0__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyafv/__init__.py +20 -0
- pyafv/_version.py +2 -0
- pyafv/backend.py +20 -0
- pyafv/calibrate/__init__.py +15 -0
- pyafv/calibrate/core.py +90 -0
- pyafv/calibrate/deformable_polygon.py +372 -0
- pyafv/cell_geom.cpython-310-darwin.so +0 -0
- pyafv/cell_geom_fallback.py +249 -0
- pyafv/finite_voronoi.py +997 -0
- pyafv/physical_params.py +219 -0
- pyafv-0.4.0.dist-info/METADATA +172 -0
- pyafv-0.4.0.dist-info/RECORD +14 -0
- pyafv-0.4.0.dist-info/WHEEL +6 -0
- pyafv-0.4.0.dist-info/licenses/LICENSE +21 -0
pyafv/physical_params.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
import numpy as np
|
|
3
|
+
from dataclasses import dataclass, replace
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def _require_float_scalar(x: object, name: str) -> float: # pragma: no cover
|
|
7
|
+
"""
|
|
8
|
+
Accept Python real scalars (int/float) and NumPy real scalars.
|
|
9
|
+
Reject other types (including bool).
|
|
10
|
+
Return a normalized Python float.
|
|
11
|
+
"""
|
|
12
|
+
# Reject bool explicitly (since bool is a subclass of int)
|
|
13
|
+
if isinstance(x, bool):
|
|
14
|
+
raise TypeError(f"{name} must be a real scalar (float-like), got bool")
|
|
15
|
+
elif isinstance(x, (int, float, np.integer, np.floating)):
|
|
16
|
+
xf = float(x)
|
|
17
|
+
if not np.isfinite(xf):
|
|
18
|
+
raise ValueError(f"{name} must be finite, got {x}")
|
|
19
|
+
return xf
|
|
20
|
+
|
|
21
|
+
# Reject everything else
|
|
22
|
+
raise TypeError(f"{name} must be a real scalar (float-like), got {type(x).__name__}")
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def sigmoid(x):
|
|
26
|
+
# stable sigmoid that handles large |x|
|
|
27
|
+
if x >= 0:
|
|
28
|
+
z = np.exp(-x)
|
|
29
|
+
return 1 / (1 + z)
|
|
30
|
+
else:
|
|
31
|
+
z = np.exp(x)
|
|
32
|
+
return z / (1 + z)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@dataclass(frozen=True)
|
|
36
|
+
class PhysicalParams:
|
|
37
|
+
r"""Physical parameters for the active-finite-Voronoi (AFV) model.
|
|
38
|
+
|
|
39
|
+
.. warning::
|
|
40
|
+
* **Frozen dataclass** is used for :py:class:`PhysicalParams` to ensure immutability of instances.
|
|
41
|
+
* Do not set :py:attr:`delta` unless you know what you are doing.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
r: Radius (maximal) of the Voronoi cells, sometimes denoted as :math:`\ell`.
|
|
45
|
+
A0: Preferred area of the Voronoi cells.
|
|
46
|
+
P0: Preferred perimeter of the Voronoi cells.
|
|
47
|
+
KA: Area elasticity constant.
|
|
48
|
+
KP: Perimeter elasticity constant.
|
|
49
|
+
lambda_tension: Tension difference between non-contacting edges and contacting edges.
|
|
50
|
+
delta: Contact truncation threshold to avoid singularities in computations; if None, set to 0.45*r.
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
r: float = 1.0 #: Radius (maximal) of the Voronoi cells, sometimes denoted as :math:`\ell`.
|
|
54
|
+
A0: float = np.pi #: Preferred area of the Voronoi cells.
|
|
55
|
+
P0: float = 4.8 #: Preferred perimeter of the Voronoi cells.
|
|
56
|
+
KA: float = 1.0 #: Area elasticity constant.
|
|
57
|
+
KP: float = 1.0 #: Perimeter elasticity constant.
|
|
58
|
+
lambda_tension: float = 0.2 #: Tension difference between non-contacting edges and contacting edges.
|
|
59
|
+
delta: float | None = None #: Contact truncation threshold to avoid singularities in computations.
|
|
60
|
+
|
|
61
|
+
def __post_init__(self):
|
|
62
|
+
# Normalize and validate required scalar floats
|
|
63
|
+
object.__setattr__(self, "r", _require_float_scalar(self.r, "r"))
|
|
64
|
+
object.__setattr__(self, "A0", _require_float_scalar(self.A0, "A0"))
|
|
65
|
+
object.__setattr__(self, "P0", _require_float_scalar(self.P0, "P0"))
|
|
66
|
+
object.__setattr__(self, "KA", _require_float_scalar(self.KA, "KA"))
|
|
67
|
+
object.__setattr__(self, "KP", _require_float_scalar(self.KP, "KP"))
|
|
68
|
+
object.__setattr__(self, "lambda_tension", _require_float_scalar(self.lambda_tension, "lambda_tension"))
|
|
69
|
+
|
|
70
|
+
if self.delta is None:
|
|
71
|
+
object.__setattr__(self, "delta", 0.45 * self.r)
|
|
72
|
+
else:
|
|
73
|
+
try:
|
|
74
|
+
object.__setattr__(self, "delta", _require_float_scalar(self.delta, "delta"))
|
|
75
|
+
except TypeError: # pragma: no cover
|
|
76
|
+
raise TypeError(f"delta must be a real scalar (float-like) or None, got {type(self.delta).__name__}") from None
|
|
77
|
+
|
|
78
|
+
def get_steady_state(self) -> tuple[float, float]:
|
|
79
|
+
r"""Compute steady-state :math:`(\ell,d)` for the given physical parameters.
|
|
80
|
+
|
|
81
|
+
Returns:
|
|
82
|
+
Steady-state (optimal) :math:`(\ell_0,d_0)` values.
|
|
83
|
+
|
|
84
|
+
.. note::
|
|
85
|
+
:math:`\ell` is the maximal cell radius, and :math:`2d` is the cell-center distance of a doublet (rather than :math:`d`).
|
|
86
|
+
"""
|
|
87
|
+
params = [self.KA, self.KP, self.A0, self.P0, self.lambda_tension]
|
|
88
|
+
result = self._minimize_energy(params, restarts=10)
|
|
89
|
+
l, d = result[0]
|
|
90
|
+
return l, d
|
|
91
|
+
|
|
92
|
+
def with_optimal_radius(self) -> PhysicalParams:
|
|
93
|
+
"""Returns a new instance with the radius updated to steady state.
|
|
94
|
+
Other parameters remain unchanged (with the exception that :py:attr:`delta` is scaled with :py:attr:`r`).
|
|
95
|
+
|
|
96
|
+
Basically a wrapper around :py:meth:`get_steady_state` + creating a new instance.
|
|
97
|
+
|
|
98
|
+
Returns:
|
|
99
|
+
New instance with optimal radius.
|
|
100
|
+
"""
|
|
101
|
+
l, d = self.get_steady_state()
|
|
102
|
+
new_params = replace(self, r=l, delta=0.45*l)
|
|
103
|
+
return new_params
|
|
104
|
+
|
|
105
|
+
def with_delta(self, delta_new: float) -> PhysicalParams:
|
|
106
|
+
"""Returns a new instance with the specified delta.
|
|
107
|
+
Other parameters remain unchanged.
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
delta_new: New delta value.
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
New instance with updated delta.
|
|
114
|
+
"""
|
|
115
|
+
return replace(self, delta=delta_new)
|
|
116
|
+
|
|
117
|
+
def _energy_unconstrained(self, z, params):
|
|
118
|
+
v, u = float(z[0]), float(z[1])
|
|
119
|
+
l = np.exp(v) # l > 0
|
|
120
|
+
phi = 0.5*np.pi * sigmoid(u) # phi in (0, pi/2)
|
|
121
|
+
s, c = np.sin(phi), np.cos(phi)
|
|
122
|
+
theta = np.pi + 2.0*phi
|
|
123
|
+
A = 0.5*l*l*(theta + np.sin(2.0*phi))
|
|
124
|
+
P = 2.0*l*c + l*theta
|
|
125
|
+
ln = l*theta
|
|
126
|
+
|
|
127
|
+
KA, KP, A0, P0, Lambda = params
|
|
128
|
+
return KA * (A - A0)**2 + KP * (P - P0)**2 + Lambda * ln
|
|
129
|
+
|
|
130
|
+
def _minimize_energy(self, params, restarts=10, seed=None):
|
|
131
|
+
|
|
132
|
+
from scipy.optimize import minimize
|
|
133
|
+
|
|
134
|
+
rng = np.random.default_rng(seed)
|
|
135
|
+
best = None
|
|
136
|
+
for _ in range(restarts):
|
|
137
|
+
z0 = rng.normal(size=2)
|
|
138
|
+
|
|
139
|
+
res = minimize(lambda z: self._energy_unconstrained(z, params), z0, method="BFGS",
|
|
140
|
+
options={"gtol": 1e-8, "maxiter": 1e4})
|
|
141
|
+
val = res.fun
|
|
142
|
+
z = res.x
|
|
143
|
+
|
|
144
|
+
if (best is None) or (val < best[0]):
|
|
145
|
+
best = (val, z)
|
|
146
|
+
|
|
147
|
+
# map back to (l,d)
|
|
148
|
+
val, z = best
|
|
149
|
+
v, u = float(z[0]), float(z[1])
|
|
150
|
+
l = np.exp(v)
|
|
151
|
+
phi = 0.5*np.pi * sigmoid(u)
|
|
152
|
+
d = l*np.sin(phi)
|
|
153
|
+
|
|
154
|
+
return [l, d], val
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def target_delta(params: PhysicalParams, target_force: float) -> float:
|
|
158
|
+
r"""
|
|
159
|
+
Given the physical parameters and a target detachment force, compute the corresponding delta.
|
|
160
|
+
|
|
161
|
+
Args:
|
|
162
|
+
params: Physical parameters of the AFV model.
|
|
163
|
+
target_force: Target detachment force.
|
|
164
|
+
|
|
165
|
+
Raises:
|
|
166
|
+
TypeError: If *params* is not an instance of :py:class:`PhysicalParams`.
|
|
167
|
+
ValueError: If the target force is not within the achievable range.
|
|
168
|
+
|
|
169
|
+
Returns:
|
|
170
|
+
Corresponding value of the truncation threshold :math:`\delta`.
|
|
171
|
+
|
|
172
|
+
.. note::
|
|
173
|
+
We search for the cell-cell distance at which the intercellular force matches (last one) the target force, from :math:`10^{-6}\ell` to :math:`(2-10^{-6})\ell` with a step :math:`10^{-6}\ell`.
|
|
174
|
+
"""
|
|
175
|
+
|
|
176
|
+
if not isinstance(params, PhysicalParams): # pragma: no cover
|
|
177
|
+
raise TypeError("params must be an instance of PhysicalParams")
|
|
178
|
+
|
|
179
|
+
KA, KP, A0, P0, Lambda = params.KA, params.KP, params.A0, params.P0, params.lambda_tension
|
|
180
|
+
l = params.r
|
|
181
|
+
|
|
182
|
+
distances = np.linspace(1e-6, 2.-(1e-6), 10**6) * l
|
|
183
|
+
|
|
184
|
+
epsilon = l - (distances/2.)
|
|
185
|
+
|
|
186
|
+
theta = 2 * np.pi - 2 * np.arctan2(np.sqrt(l**2 - (l - epsilon)**2), l - epsilon)
|
|
187
|
+
A = (l - epsilon) * np.sqrt(l**2 -
|
|
188
|
+
(l - epsilon)**2) + 0.5 * (l**2 * theta)
|
|
189
|
+
P = 2 * np.sqrt(l**2 - (l - epsilon)**2) + l * theta
|
|
190
|
+
|
|
191
|
+
detachment_forces = 4. * np.sqrt((2 * l - epsilon) * epsilon) * (KA * (A - A0) + KP * ((P - P0)/(2 * l - epsilon))
|
|
192
|
+
+ (Lambda/2) * l /((2 * l - epsilon) * epsilon))
|
|
193
|
+
|
|
194
|
+
# idx = np.abs(detachment_forces[None, :] - target_force).argmin()
|
|
195
|
+
# target_distances = distances[idx]
|
|
196
|
+
|
|
197
|
+
# ---------------------- Better way to search foot ----------------------------
|
|
198
|
+
f = detachment_forces - target_force # find root of f=0
|
|
199
|
+
cross = (f[:-1] == 0) | (np.signbit(f[:-1]) != np.signbit(f[1:])) # crossing points
|
|
200
|
+
|
|
201
|
+
if np.any(cross):
|
|
202
|
+
i = np.flatnonzero(cross)[-1] # last crossing interval [i, i+1]
|
|
203
|
+
# optional: linear interpolation for a better distance estimate
|
|
204
|
+
x0, x1 = distances[i], distances[i+1]
|
|
205
|
+
f0, f1 = f[i], f[i+1]
|
|
206
|
+
target_distance = x0 if f1 == f0 else x0 + (0 - f0) * (x1 - x0) / (f1 - f0)
|
|
207
|
+
else:
|
|
208
|
+
raise ValueError("No valid delta found for the given target force.")
|
|
209
|
+
# ------------------------------------------------------------------------------
|
|
210
|
+
|
|
211
|
+
delta = np.sqrt(4*(l**2) - target_distance**2)
|
|
212
|
+
|
|
213
|
+
return delta
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
__all__ = [
|
|
217
|
+
"PhysicalParams",
|
|
218
|
+
"target_delta",
|
|
219
|
+
]
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pyafv
|
|
3
|
+
Version: 0.4.0
|
|
4
|
+
Summary: Python implementation of the active-finite-Voronoi (AFV) model
|
|
5
|
+
Project-URL: Homepage, https://pyafv.github.io
|
|
6
|
+
Project-URL: Download, https://pypi.org/project/pyafv/#files
|
|
7
|
+
Project-URL: Source Code, https://github.com/wwang721/pyafv
|
|
8
|
+
Project-URL: Documentation, https://pyafv.readthedocs.io/
|
|
9
|
+
Project-URL: Changelog, https://github.com/wwang721/pyafv/releases/latest
|
|
10
|
+
Author: Wei Wang
|
|
11
|
+
Author-email: ww000721@gmail.com
|
|
12
|
+
License-Expression: MIT
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
Keywords: biological-modeling,cellular-patterns,voronoi-model
|
|
15
|
+
Classifier: Development Status :: 4 - Beta
|
|
16
|
+
Classifier: Intended Audience :: Developers
|
|
17
|
+
Classifier: Intended Audience :: Science/Research
|
|
18
|
+
Classifier: Operating System :: OS Independent
|
|
19
|
+
Classifier: Programming Language :: Python :: 3
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
23
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
24
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
25
|
+
Classifier: Topic :: Scientific/Engineering
|
|
26
|
+
Requires-Python: <3.15,>=3.10
|
|
27
|
+
Requires-Dist: matplotlib>=3.8.4
|
|
28
|
+
Requires-Dist: numpy>=1.26.4
|
|
29
|
+
Requires-Dist: scipy>=1.13.1
|
|
30
|
+
Provides-Extra: examples
|
|
31
|
+
Requires-Dist: ipywidgets>=8.1.5; extra == 'examples'
|
|
32
|
+
Requires-Dist: jupyter>=1.1.0; extra == 'examples'
|
|
33
|
+
Requires-Dist: tqdm>=4.67.1; extra == 'examples'
|
|
34
|
+
Description-Content-Type: text/markdown
|
|
35
|
+
|
|
36
|
+
[](https://pypi.org/project/pyafv/)
|
|
37
|
+
[](https://pypi.org/project/pyafv/)
|
|
38
|
+
[](https://pyafv.readthedocs.io)
|
|
39
|
+
<!--[](https://github.com/wwang721/pyafv/actions/workflows/tests.yml?query=branch:main)-->
|
|
40
|
+
[](https://github.com/wwang721/pyafv/actions/workflows/tests_all_platform.yml)
|
|
41
|
+
[](https://github.com/wwang721/pyafv/actions/workflows/tests.yml)
|
|
42
|
+
[](https://codecov.io/github/wwang721/pyafv/tree/main)
|
|
43
|
+
[](https://opensource.org/licenses/MIT)
|
|
44
|
+
|
|
45
|
+
<!--
|
|
46
|
+
[](https://doi.org/10.48550/arXiv.2503.03126)
|
|
47
|
+
[](https://doi.org/10.1103/PhysRevE.109.054408)
|
|
48
|
+
[](https://doi.org/10.1103/PhysRevE.109.054408)
|
|
49
|
+
-->
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
# PyAFV
|
|
53
|
+
|
|
54
|
+
Python code that implements the **active-finite-Voronoi (AFV) model** in 2D.
|
|
55
|
+
The AFV framework was introduced and developed in, for example, Refs. [[1](#huang2023bridging)–[3](#wang2026divergence)].
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
## Installation
|
|
59
|
+
|
|
60
|
+
**PyAFV** is available on **PyPI** and can be installed using *pip* directly:
|
|
61
|
+
```bash
|
|
62
|
+
pip install pyafv
|
|
63
|
+
```
|
|
64
|
+
The package supports Python ≥ 3.10 and < 3.15, including Python 3.14t (the free-threaded, no-GIL build).
|
|
65
|
+
To verify that the installation was successful and that the correct version is installed, run the following in Python:
|
|
66
|
+
```python
|
|
67
|
+
import pyafv
|
|
68
|
+
print(pyafv.__version__)
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
> On HPC clusters, global Python path can contaminate the runtime environment. You may need to clear it explicitly using `unset PYTHONPATH` or prefixing the *pip* command with `PYTHONPATH=""`.
|
|
72
|
+
|
|
73
|
+
### Install from source
|
|
74
|
+
|
|
75
|
+
Installing from source can be necessary if *pip* installation does not work. First, download and unzip the source code, then navigate to the root directory of the package and run:
|
|
76
|
+
```bash
|
|
77
|
+
pip install .
|
|
78
|
+
```
|
|
79
|
+
|
|
80
|
+
> **Note:** A C/C++ compiler is required if you are building from source, since some components of **PyAFV** are implemented in Cython for performance optimization.
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
#### Windows MinGW GCC
|
|
84
|
+
|
|
85
|
+
If you are using **MinGW GCC** (rather than **MSVC**) on *Windows*, to build from the source code, add a `setup.cfg` at the repository root before running `pip install .` with the following content:
|
|
86
|
+
```ini
|
|
87
|
+
# setup.cfg
|
|
88
|
+
[build_ext]
|
|
89
|
+
compiler=mingw32
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
### Install offline
|
|
94
|
+
|
|
95
|
+
If you need to install **PyAFV** on a machine without internet access, you can download the corresponding wheel file from **PyPI** and transfer it to the target machine, and then run the following command to install using *pip*:
|
|
96
|
+
```bash
|
|
97
|
+
pip install pyafv-<version>-<platform>.whl
|
|
98
|
+
```
|
|
99
|
+
Alternatively, you can build **PyAFV** from source as described in the previous section. In this case, in addition to the required prerequisites of the package, the build-time dependencies **hatchling** and **hatch-cython** must also be available.
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
## Usage
|
|
103
|
+
|
|
104
|
+
Here is a simple example to get you started, demonstrating how to construct a finite-Voronoi diagram:
|
|
105
|
+
```python
|
|
106
|
+
import numpy as np
|
|
107
|
+
import pyafv as afv
|
|
108
|
+
|
|
109
|
+
N = 100 # number of cells
|
|
110
|
+
pts = np.random.rand(N, 2) * 10 # initial positions
|
|
111
|
+
params = afv.PhysicalParams() # use default parameter values
|
|
112
|
+
sim = afv.FiniteVoronoiSimulator(pts, params) # initialize the simulator
|
|
113
|
+
sim.plot_2d(show=True) # visualize the Voronoi diagram
|
|
114
|
+
```
|
|
115
|
+
To compute the conservative forces and extract detailed geometric information (e.g., cell areas, vertices, and edges), call:
|
|
116
|
+
```python
|
|
117
|
+
diag = sim.build()
|
|
118
|
+
```
|
|
119
|
+
The returned object `diag` is a Python `dict` containing these quantities.
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
## Simulation previews
|
|
123
|
+
|
|
124
|
+
Below are representative simulation snapshots generated using the code:
|
|
125
|
+
|
|
126
|
+
| Model illustration | Periodic boundary conditions |
|
|
127
|
+
|-----------------|-----------------|
|
|
128
|
+
| <img src="https://media.githubusercontent.com/media/wwang721/pyafv/main/assets/model_illustration.png" width="540"> | <img src="https://media.githubusercontent.com/media/wwang721/pyafv/main/assets/pbc.png" width="385">|
|
|
129
|
+
|
|
130
|
+
| Initial configuration | After relaxation | Active dynamics enabled |
|
|
131
|
+
|-----------------------|-----------------------|-----------------------|
|
|
132
|
+
| <img src="https://media.githubusercontent.com/media/wwang721/pyafv/main/assets/initial_configuration.png" width="300"> | <img src="https://media.githubusercontent.com/media/wwang721/pyafv/main/assets/relaxed_configuration.png" width="300"> | <img src="https://media.githubusercontent.com/media/wwang721/pyafv/main/assets/active_FV.png" width="300"> |
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
## More information
|
|
136
|
+
|
|
137
|
+
- **Full documentation** on [readthedocs](https://pyafv.readthedocs.io) or as [a single PDF file](https://pyafv.readthedocs.io/_/downloads/en/latest/pdf/).
|
|
138
|
+
|
|
139
|
+
- See [CONTRIBUTING.md](https://github.com/wwang721/pyafv/blob/main/CONTRIBUTING.md) or the [documentation](https://pyafv.readthedocs.io/latest/contributing.html) for **local development instructions**.
|
|
140
|
+
|
|
141
|
+
- See some important [**issues**](https://github.com/wwang721/pyafv/issues?q=is%3Aissue%20state%3Aclosed) for additional context, such as:
|
|
142
|
+
* [QhullError when 3+ points are collinear #1](https://github.com/wwang721/pyafv/issues/1) [Closed - see [comments](https://github.com/wwang721/pyafv/issues/1#issuecomment-3701355742)]
|
|
143
|
+
* [Add customized plotting to examples illustrating access to vertices and edges #5](https://github.com/wwang721/pyafv/issues/5) [Completed in PR [#7](https://github.com/wwang721/pyafv/pull/7)]
|
|
144
|
+
* [Time step dependence of intercellular adhesion in simulations #8](https://github.com/wwang721/pyafv/issues/8) [Closed in PR [#9](https://github.com/wwang721/pyafv/pull/9)]
|
|
145
|
+
|
|
146
|
+
- Some releases of this repository are cross-listed on [Zenodo](https://doi.org/10.5281/zenodo.18091659):
|
|
147
|
+
|
|
148
|
+
[](https://doi.org/10.5281/zenodo.18091659)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
## References
|
|
152
|
+
|
|
153
|
+
<table>
|
|
154
|
+
<tr>
|
|
155
|
+
<td id="huang2023bridging" valign="top">[1]</td>
|
|
156
|
+
<td>
|
|
157
|
+
J. Huang, H. Levine, and D. Bi, <em>Bridging the gap between collective motility and epithelial-mesenchymal transitions through the active finite Voronoi model</em>, <a href="https://doi.org/10.1039/D3SM00327B">Soft Matter <strong>19</strong>, 9389 (2023)</a>.
|
|
158
|
+
</td>
|
|
159
|
+
</tr>
|
|
160
|
+
<tr>
|
|
161
|
+
<td id="teomy2018confluent" valign="top">[2]</td>
|
|
162
|
+
<td>
|
|
163
|
+
E. Teomy, D. A. Kessler, and H. Levine, <em>Confluent and nonconfluent phases in a model of cell tissue</em>, <a href="https://doi.org/10.1103/PhysRevE.98.042418">Phys. Rev. E <strong>98</strong>, 042418 (2018)</a>.
|
|
164
|
+
</td>
|
|
165
|
+
</tr>
|
|
166
|
+
<tr>
|
|
167
|
+
<td id="wang2026divergence" valign="top">[3]</td>
|
|
168
|
+
<td>
|
|
169
|
+
W. Wang (汪巍) and B. A. Camley, <em>Divergence of detachment forces in the finite-Voronoi model</em>, manuscript in preparation (2026).
|
|
170
|
+
</td>
|
|
171
|
+
</tr>
|
|
172
|
+
</table>
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
pyafv-0.4.0.dist-info/RECORD,,
|
|
2
|
+
pyafv-0.4.0.dist-info/WHEEL,sha256=8gye15wTKSCqSQtfgS-BjXX53AznFEOl1uVSY24Nf68,133
|
|
3
|
+
pyafv-0.4.0.dist-info/METADATA,sha256=Wdbczpu4vFcOrpxah8YCvwxB2ok21ArlOzaOiXP1dDo,9006
|
|
4
|
+
pyafv-0.4.0.dist-info/licenses/LICENSE,sha256=TNjxBxdiOzyewn2FP7g1FjW3CJoxiGCY6ShPVFv02G8,1065
|
|
5
|
+
pyafv/cell_geom_fallback.py,sha256=XeafJJFV-ykAaKT-UoDnX7FIbmNXChzJn1AwVgQIM-8,9142
|
|
6
|
+
pyafv/backend.py,sha256=O15-rtzPQvTl_fIyZu4L0LU8UG4uRnAuq4bi5HBlKy8,418
|
|
7
|
+
pyafv/_version.py,sha256=QLeUU1ztJ_1r8s8Lv1p30i_l6hfxrqPOsnadE6C46es,42
|
|
8
|
+
pyafv/cell_geom.cpython-310-darwin.so,sha256=cdBB6q9H4xwVplQTO9ITn588_Mbr8s_U2sRRX16DrrU,331680
|
|
9
|
+
pyafv/__init__.py,sha256=6gCRIilt_3jbXBu0UM5X3zbm8SNZha8HSU4Cy-JLjGg,467
|
|
10
|
+
pyafv/finite_voronoi.py,sha256=RbSfY8jZEBNt9u9-fzaLcYtt-V4yA033u1cvtV45WvM,45180
|
|
11
|
+
pyafv/physical_params.py,sha256=a0DP1xZnua_tq44kCDFwJygxUoi0mTm7g-OH6Mwb8QI,8697
|
|
12
|
+
pyafv/calibrate/deformable_polygon.py,sha256=u3sfRmlCt6IuBGwGzM6jVAZ17CuiNShYrAMHLW0oOzE,12466
|
|
13
|
+
pyafv/calibrate/__init__.py,sha256=_4Z0PbRa0QkyS43TXWYb4-nj36_ieY_rauvxU6ZSEbM,405
|
|
14
|
+
pyafv/calibrate/core.py,sha256=xkGbtk2ZU4P_wC5s9NggaxpBV9qHdH1rCJTu4OgTsFw,4065
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Wei Wang
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|