pyadps 0.2.0b0__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyadps/Home_Page.py +11 -5
- pyadps/pages/01_Read_File.py +623 -211
- pyadps/pages/02_View_Raw_Data.py +97 -41
- pyadps/pages/03_Download_Raw_File.py +200 -67
- pyadps/pages/04_Sensor_Health.py +905 -0
- pyadps/pages/05_QC_Test.py +493 -0
- pyadps/pages/06_Profile_Test.py +971 -0
- pyadps/pages/07_Velocity_Test.py +600 -0
- pyadps/pages/08_Write_File.py +623 -0
- pyadps/pages/09_Add-Ons.py +168 -0
- pyadps/utils/__init__.py +5 -3
- pyadps/utils/autoprocess.py +371 -80
- pyadps/utils/logging_utils.py +269 -0
- pyadps/utils/metadata/config.ini +22 -4
- pyadps/utils/metadata/demo.000 +0 -0
- pyadps/utils/metadata/flmeta.json +420 -420
- pyadps/utils/metadata/vlmeta.json +611 -565
- pyadps/utils/multifile.py +292 -0
- pyadps/utils/plotgen.py +505 -3
- pyadps/utils/profile_test.py +720 -125
- pyadps/utils/pyreadrdi.py +164 -92
- pyadps/utils/readrdi.py +436 -186
- pyadps/utils/script.py +197 -147
- pyadps/utils/sensor_health.py +120 -0
- pyadps/utils/signal_quality.py +472 -68
- pyadps/utils/velocity_test.py +79 -31
- pyadps/utils/writenc.py +222 -39
- {pyadps-0.2.0b0.dist-info → pyadps-0.3.0.dist-info}/METADATA +63 -33
- pyadps-0.3.0.dist-info/RECORD +35 -0
- {pyadps-0.2.0b0.dist-info → pyadps-0.3.0.dist-info}/WHEEL +1 -1
- {pyadps-0.2.0b0.dist-info → pyadps-0.3.0.dist-info}/entry_points.txt +1 -0
- pyadps/pages/04_QC_Test.py +0 -334
- pyadps/pages/05_Profile_Test.py +0 -575
- pyadps/pages/06_Velocity_Test.py +0 -341
- pyadps/pages/07_Write_File.py +0 -452
- pyadps/utils/cutbin.py +0 -413
- pyadps/utils/regrid.py +0 -279
- pyadps-0.2.0b0.dist-info/RECORD +0 -31
- {pyadps-0.2.0b0.dist-info → pyadps-0.3.0.dist-info}/LICENSE +0 -0
pyadps/pages/05_Profile_Test.py
DELETED
@@ -1,575 +0,0 @@
|
|
1
|
-
import numpy as np
|
2
|
-
# import pandas as pd
|
3
|
-
# import plotly.express as px
|
4
|
-
import plotly.graph_objects as go
|
5
|
-
import streamlit as st
|
6
|
-
from plotly.subplots import make_subplots
|
7
|
-
from plotly_resampler import FigureResampler
|
8
|
-
from utils.profile_test import side_lobe_beam_angle, manual_cut_bins
|
9
|
-
from utils.regrid import regrid2d, regrid3d
|
10
|
-
from utils.signal_quality import default_mask
|
11
|
-
|
12
|
-
if "flead" not in st.session_state:
|
13
|
-
st.write(":red[Please Select Data!]")
|
14
|
-
st.stop()
|
15
|
-
|
16
|
-
# `maskp` holds the temporary changes in the page
|
17
|
-
# `profile_mask`
|
18
|
-
if "maskp" not in st.session_state:
|
19
|
-
if "qc_mask" not in st.session_state:
|
20
|
-
st.session_state.maskp = np.copy(st.session_state.orig_mask)
|
21
|
-
else:
|
22
|
-
st.session_state.maskp = np.copy(st.session_state.qc_mask)
|
23
|
-
|
24
|
-
|
25
|
-
if st.session_state.isQCMask:
|
26
|
-
st.write(":grey[Working on a saved mask file ...]")
|
27
|
-
if st.session_state.isProfileMask:
|
28
|
-
st.write(
|
29
|
-
":orange[Warning: Profile test already completed. Reset to change settings.]"
|
30
|
-
)
|
31
|
-
reset_selectbox = st.selectbox(
|
32
|
-
"Choose reset option",
|
33
|
-
("QC Test", "Default"),
|
34
|
-
index=None,
|
35
|
-
placeholder="Reset mask to ...",
|
36
|
-
)
|
37
|
-
if reset_selectbox == "Default":
|
38
|
-
st.write("Default mask file selected")
|
39
|
-
st.session_state.maskp = st.session_state.orig_mask
|
40
|
-
elif reset_selectbox == "QC Test":
|
41
|
-
st.write("QC Test mask file selected")
|
42
|
-
st.session_state.maskp = st.session_state.qc_mask
|
43
|
-
else:
|
44
|
-
st.session_state.maskp = st.session_state.profile_mask
|
45
|
-
else:
|
46
|
-
st.session_state.maskp = st.session_state.qc_mask
|
47
|
-
else:
|
48
|
-
st.write(":orange[Creating a new mask file ...]")
|
49
|
-
|
50
|
-
mask = st.session_state.maskp
|
51
|
-
|
52
|
-
# Load data
|
53
|
-
flobj = st.session_state.flead
|
54
|
-
vlobj = st.session_state.vlead
|
55
|
-
velocity = st.session_state.velocity
|
56
|
-
echo = st.session_state.echo
|
57
|
-
correlation = st.session_state.correlation
|
58
|
-
pgood = st.session_state.pgood
|
59
|
-
fdata = flobj.fleader
|
60
|
-
vdata = vlobj.vleader
|
61
|
-
|
62
|
-
|
63
|
-
ensembles = st.session_state.head.ensembles
|
64
|
-
cells = flobj.field()["Cells"]
|
65
|
-
x = np.arange(0, ensembles, 1)
|
66
|
-
y = np.arange(0, cells, 1)
|
67
|
-
|
68
|
-
# Regrided data
|
69
|
-
if "velocity_regrid" not in st.session_state:
|
70
|
-
st.session_state.echo_regrid = np.copy(echo)
|
71
|
-
st.session_state.velocity_regrid = np.copy(velocity)
|
72
|
-
st.session_state.correlation_regrid = np.copy(correlation)
|
73
|
-
st.session_state.pgood_regrid = np.copy(pgood)
|
74
|
-
st.session_state.mask_regrid = np.copy(mask)
|
75
|
-
|
76
|
-
|
77
|
-
# @st.cache_data
|
78
|
-
def fillplot_plotly(
|
79
|
-
data, title="data", maskdata=None, missing=-32768, colorscale="balance"
|
80
|
-
):
|
81
|
-
fig = FigureResampler(go.Figure())
|
82
|
-
data = np.int32(data)
|
83
|
-
data1 = np.where(data == missing, np.nan, data)
|
84
|
-
fig.add_trace(
|
85
|
-
go.Heatmap(
|
86
|
-
z=data1,
|
87
|
-
x=x,
|
88
|
-
y=y,
|
89
|
-
colorscale=colorscale,
|
90
|
-
hoverongaps=False,
|
91
|
-
)
|
92
|
-
)
|
93
|
-
if mask is not None:
|
94
|
-
fig.add_trace(
|
95
|
-
go.Heatmap(
|
96
|
-
z=maskdata,
|
97
|
-
x=x,
|
98
|
-
y=y,
|
99
|
-
colorscale="gray",
|
100
|
-
hoverongaps=False,
|
101
|
-
showscale=False,
|
102
|
-
opacity=0.7,
|
103
|
-
)
|
104
|
-
)
|
105
|
-
fig.update_layout(
|
106
|
-
xaxis=dict(showline=True, mirror=True),
|
107
|
-
yaxis=dict(showline=True, mirror=True),
|
108
|
-
title_text=title,
|
109
|
-
)
|
110
|
-
fig.update_xaxes(title="Ensembles")
|
111
|
-
fig.update_yaxes(title="Depth Cells")
|
112
|
-
st.plotly_chart(fig)
|
113
|
-
|
114
|
-
|
115
|
-
def fillselect_plotly(data, title="data", colorscale="balance"):
|
116
|
-
fig = FigureResampler(go.Figure())
|
117
|
-
data = np.int32(data)
|
118
|
-
data1 = np.where(data == -32768, None, data)
|
119
|
-
fig.add_trace(
|
120
|
-
go.Heatmap(
|
121
|
-
z=data1,
|
122
|
-
x=x,
|
123
|
-
y=y,
|
124
|
-
colorscale=colorscale,
|
125
|
-
hoverongaps=False,
|
126
|
-
)
|
127
|
-
)
|
128
|
-
# fig.add_trace(
|
129
|
-
# go.Scatter(x=X, y=Y, marker=dict(color="black", size=16), mode="lines+markers")
|
130
|
-
# )
|
131
|
-
fig.update_layout(
|
132
|
-
xaxis=dict(showline=True, mirror=True),
|
133
|
-
yaxis=dict(showline=True, mirror=True),
|
134
|
-
title_text=title,
|
135
|
-
)
|
136
|
-
fig.update_xaxes(title="Ensembles")
|
137
|
-
fig.update_yaxes(title="Depth Cells")
|
138
|
-
fig.update_layout(clickmode="event+select")
|
139
|
-
event = st.plotly_chart(fig, key="1", on_select="rerun", selection_mode="box")
|
140
|
-
|
141
|
-
return event
|
142
|
-
|
143
|
-
|
144
|
-
@st.cache_data
|
145
|
-
def trim_ends(start_ens=0, end_ens=0, ens_range=20):
|
146
|
-
depth = vdata["Depth of Transducer"] / 10
|
147
|
-
fig = make_subplots(
|
148
|
-
rows=1,
|
149
|
-
cols=2,
|
150
|
-
subplot_titles=[
|
151
|
-
"Deployment Ensemble",
|
152
|
-
"Recovery Ensemble",
|
153
|
-
],
|
154
|
-
)
|
155
|
-
fig.add_trace(
|
156
|
-
go.Scatter(
|
157
|
-
x=x[0:ens_range],
|
158
|
-
y=depth[0:ens_range],
|
159
|
-
name="Deployment",
|
160
|
-
mode="markers",
|
161
|
-
marker=dict(color="#1f77b4"),
|
162
|
-
),
|
163
|
-
row=1,
|
164
|
-
col=1,
|
165
|
-
)
|
166
|
-
|
167
|
-
fig.add_trace(
|
168
|
-
go.Scatter(
|
169
|
-
x=x[-1 * ens_range :],
|
170
|
-
y=depth[-1 * ens_range :],
|
171
|
-
name="Recovery",
|
172
|
-
mode="markers",
|
173
|
-
marker=dict(color="#17becf"),
|
174
|
-
),
|
175
|
-
row=1,
|
176
|
-
col=2,
|
177
|
-
)
|
178
|
-
|
179
|
-
if start_ens > x[0]:
|
180
|
-
fig.add_trace(
|
181
|
-
go.Scatter(
|
182
|
-
x=x[0:start_ens],
|
183
|
-
y=depth[0:start_ens],
|
184
|
-
name="Selected Points (D)",
|
185
|
-
mode="markers",
|
186
|
-
marker=dict(color="red"),
|
187
|
-
),
|
188
|
-
row=1,
|
189
|
-
col=1,
|
190
|
-
)
|
191
|
-
|
192
|
-
if end_ens < x[-1] + 1:
|
193
|
-
fig.add_trace(
|
194
|
-
go.Scatter(
|
195
|
-
x=x[end_ens : x[-1] + 1],
|
196
|
-
y=depth[end_ens : x[-1] + 1],
|
197
|
-
name="Selected Points (R)",
|
198
|
-
mode="markers",
|
199
|
-
marker=dict(color="orange"),
|
200
|
-
),
|
201
|
-
row=1,
|
202
|
-
col=2,
|
203
|
-
)
|
204
|
-
|
205
|
-
fig.update_layout(height=600, width=800, title_text="Transducer depth")
|
206
|
-
fig.update_xaxes(title="Ensembles")
|
207
|
-
fig.update_yaxes(title="Depth (m)")
|
208
|
-
st.plotly_chart(fig)
|
209
|
-
|
210
|
-
|
211
|
-
st.header("Profile Test")
|
212
|
-
|
213
|
-
############## TRIM ENDS #################
|
214
|
-
st.header("Trim Ends", divider="blue")
|
215
|
-
n = 20
|
216
|
-
m = 20
|
217
|
-
if "update_mask" not in st.session_state:
|
218
|
-
st.session_state.update_mask = False
|
219
|
-
st.session_state.endpoints = None
|
220
|
-
st.session_state.isTrimEnds = False
|
221
|
-
if "update_mask_cutbin" not in st.session_state:
|
222
|
-
st.session_state.update_mask_cutbin = False
|
223
|
-
st.session_state.isCutBins = False
|
224
|
-
|
225
|
-
ens_range = st.number_input("Change range", x[0], x[-1], 20)
|
226
|
-
start_ens = st.slider("Deployment Ensembles", 0, ens_range, 0)
|
227
|
-
end_ens = st.slider("Recovery Ensembles", x[-1] - ens_range, x[-1] + 1, x[-1] + 1)
|
228
|
-
|
229
|
-
n = int(ens_range)
|
230
|
-
|
231
|
-
if start_ens or end_ens:
|
232
|
-
trim_ends(start_ens=start_ens, end_ens=end_ens, ens_range=n)
|
233
|
-
# st.session_state.update_mask = False
|
234
|
-
|
235
|
-
update_mask = st.button("Update mask data")
|
236
|
-
if update_mask:
|
237
|
-
if start_ens > 0:
|
238
|
-
mask[:, :start_ens] = 1
|
239
|
-
|
240
|
-
if end_ens < x[-1]:
|
241
|
-
mask[:, end_ens:] = 1
|
242
|
-
|
243
|
-
st.session_state.ens_range = ens_range
|
244
|
-
st.session_state.start_ens = start_ens
|
245
|
-
st.session_state.end_ens = end_ens
|
246
|
-
st.session_state.maskp = mask
|
247
|
-
st.write(":green[mask data updated]")
|
248
|
-
st.session_state.endpoints = np.array(
|
249
|
-
[st.session_state.start_ens, st.session_state.end_ens]
|
250
|
-
)
|
251
|
-
st.write(st.session_state.endpoints)
|
252
|
-
st.session_state.update_mask = True
|
253
|
-
st.session_state.isTrimEnds = True
|
254
|
-
|
255
|
-
if not st.session_state.update_mask:
|
256
|
-
st.write(":red[mask data not updated]")
|
257
|
-
|
258
|
-
|
259
|
-
############ CUT BINS (SIDE LOBE) ############################
|
260
|
-
st.header("Cut Bins: Side Lobe Contamination", divider="blue")
|
261
|
-
st.write(
|
262
|
-
"""
|
263
|
-
The side lobe echos from hard surface such as sea surface or bottom of the ocean can contaminate
|
264
|
-
data closer to this region. The data closer to the surface or bottom can be removed using
|
265
|
-
the relation between beam angle and the thickness of the contaminated layer.
|
266
|
-
"""
|
267
|
-
)
|
268
|
-
|
269
|
-
# Reset mask
|
270
|
-
mask = st.session_state.maskp
|
271
|
-
beam = st.radio("Select beam", (1, 2, 3, 4), horizontal=True)
|
272
|
-
beam = beam - 1
|
273
|
-
st.session_state.beam = beam
|
274
|
-
fillplot_plotly(echo[beam, :, :], title="Echo Intensity")
|
275
|
-
|
276
|
-
orientation = st.session_state.beam_direction
|
277
|
-
st.write(f"The orientation is `{orientation}`.")
|
278
|
-
water_column_depth = 0
|
279
|
-
with st.form(key="cutbin_form"):
|
280
|
-
extra_cells = st.number_input("Additional Cells to Delete", 0, 10, 0)
|
281
|
-
if orientation.lower() == 'down':
|
282
|
-
water_column_depth = st.number_input("Enter water column depth (m): ", 0, 15000, 0)
|
283
|
-
|
284
|
-
cut_bins_mask = st.form_submit_button(label="Cut bins")
|
285
|
-
|
286
|
-
if cut_bins_mask:
|
287
|
-
st.session_state.extra_cells = extra_cells
|
288
|
-
mask = side_lobe_beam_angle(flobj, vlobj, mask,
|
289
|
-
orientation=orientation,
|
290
|
-
water_column_depth=water_column_depth,
|
291
|
-
extra_cells=extra_cells)
|
292
|
-
fillplot_plotly(
|
293
|
-
echo[beam, :, :],
|
294
|
-
title="Echo Intensity (Masked)",
|
295
|
-
maskdata=mask,
|
296
|
-
)
|
297
|
-
fillplot_plotly(mask, colorscale="greys", title="Mask Data")
|
298
|
-
|
299
|
-
update_mask_cutbin = st.button("Update mask file after cutbin")
|
300
|
-
if update_mask_cutbin:
|
301
|
-
st.session_state.maskp = mask
|
302
|
-
st.write(":green[mask file updated]")
|
303
|
-
st.session_state.update_mask_cutbin = True
|
304
|
-
st.session_state.isCutBins = True
|
305
|
-
|
306
|
-
if not st.session_state.update_mask_cutbin:
|
307
|
-
st.write(":red[mask file not updated]")
|
308
|
-
|
309
|
-
|
310
|
-
########### CUT BINS: Manual #################
|
311
|
-
st.header("Cut Bins: Manual", divider="blue")
|
312
|
-
# Reset mask
|
313
|
-
# Selection of variable (Velocity, Echo Intensity, etc.)
|
314
|
-
variable = st.selectbox(
|
315
|
-
"Select Variable to Display",
|
316
|
-
("Velocity", "Echo Intensity", "Correlation", "Percentage Good")
|
317
|
-
)
|
318
|
-
|
319
|
-
# Map variable selection to corresponding data
|
320
|
-
data_dict = {
|
321
|
-
"Velocity": velocity,
|
322
|
-
"Echo Intensity": echo,
|
323
|
-
"Correlation": correlation,
|
324
|
-
"Percentage Good": pgood,
|
325
|
-
}
|
326
|
-
|
327
|
-
# User selects beam (1-4)
|
328
|
-
beam = st.radio("Select beam", (1, 2, 3, 4), horizontal=True, key="beam_selection")
|
329
|
-
beam_index = beam - 1
|
330
|
-
|
331
|
-
# Display the selected variable and beam
|
332
|
-
selected_data = data_dict[variable][beam_index, :, :]
|
333
|
-
fillplot_plotly(selected_data, title=f"{variable}")
|
334
|
-
|
335
|
-
|
336
|
-
st.subheader("Mask Selected Regions")
|
337
|
-
with st.form(key="manual_cutbin_form"):
|
338
|
-
st.write("Select the specific range of cells and ensembles to delete")
|
339
|
-
|
340
|
-
# Input for selecting minimum and maximum cells
|
341
|
-
min_cell = st.number_input("Min Cell", 0, int(flobj.field()["Cells"]), 0)
|
342
|
-
max_cell = st.number_input("Max Cell", 0, int(flobj.field()["Cells"]), 10)
|
343
|
-
|
344
|
-
# Input for selecting minimum and maximum ensembles
|
345
|
-
min_ensemble = st.number_input("Min Ensemble", 0, int(flobj.ensembles), 0)
|
346
|
-
max_ensemble = st.number_input("Max Ensemble", 0, int(flobj.ensembles), int(flobj.ensembles))
|
347
|
-
|
348
|
-
# Submit button to apply the mask
|
349
|
-
cut_bins_mask_manual = st.form_submit_button(label="Apply Manual Cut Bins")
|
350
|
-
|
351
|
-
if cut_bins_mask_manual:
|
352
|
-
mask = manual_cut_bins(mask, min_cell, max_cell, min_ensemble, max_ensemble)
|
353
|
-
st.session_state.maskp = mask
|
354
|
-
fillplot_plotly(
|
355
|
-
echo[beam, :, :],
|
356
|
-
title="Echo Intensity (Masked Manually)",
|
357
|
-
maskdata=mask,
|
358
|
-
)
|
359
|
-
fillplot_plotly(mask, colorscale="greys", title="Mask Data")
|
360
|
-
|
361
|
-
# Adding the new feature: Delete Single Cell or Ensemble
|
362
|
-
st.subheader("Delete Specific Cell or Ensemble")
|
363
|
-
|
364
|
-
# Step 1: User chooses between deleting a cell or an ensemble
|
365
|
-
delete_option = st.radio("Select option to delete", ("Cell", "Ensemble"), horizontal=True)
|
366
|
-
|
367
|
-
# Step 2: Display options based on user's choice
|
368
|
-
if delete_option == "Cell":
|
369
|
-
# Option to delete a specific cell across all ensembles
|
370
|
-
with st.form(key="delete_cell_form"):
|
371
|
-
st.write("Select a specific cell to delete across all ensembles")
|
372
|
-
|
373
|
-
# Input for selecting a single cell
|
374
|
-
cell = st.number_input("Cell", 0, int(flobj.field()["Cells"]), 0, key="single_cell")
|
375
|
-
|
376
|
-
# Submit button to apply the mask for cell deletion
|
377
|
-
delete_cell = st.form_submit_button(label="Delete Cell")
|
378
|
-
|
379
|
-
if delete_cell:
|
380
|
-
mask[cell, :] = 1 # Mask the entire row for the selected cell
|
381
|
-
st.session_state.maskp = mask
|
382
|
-
fillplot_plotly(
|
383
|
-
echo[beam, :, :],
|
384
|
-
title=f"Echo Intensity (Cell {cell} Deleted Across Ensembles)",
|
385
|
-
maskdata=mask,
|
386
|
-
)
|
387
|
-
fillplot_plotly(mask, colorscale="greys", title="Mask Data")
|
388
|
-
|
389
|
-
elif delete_option == "Ensemble":
|
390
|
-
# Option to delete a specific ensemble across all cells
|
391
|
-
with st.form(key="delete_ensemble_form"):
|
392
|
-
st.write("Select a specific ensemble to delete across all cells")
|
393
|
-
|
394
|
-
# Input for selecting a specific ensemble
|
395
|
-
ensemble = st.number_input("Ensemble", 0, int(flobj.ensembles), 0, key="single_ensemble")
|
396
|
-
|
397
|
-
# Submit button to apply the mask for ensemble deletion
|
398
|
-
delete_ensemble = st.form_submit_button(label="Delete Ensemble")
|
399
|
-
|
400
|
-
if delete_ensemble:
|
401
|
-
mask[:, ensemble-1] = 1 # Mask the entire column for the selected ensemble
|
402
|
-
st.session_state.maskp = mask
|
403
|
-
fillplot_plotly(
|
404
|
-
echo[beam, :, :],
|
405
|
-
title=f"Echo Intensity (Ensemble {ensemble} Deleted Across Cells)",
|
406
|
-
maskdata=mask,
|
407
|
-
)
|
408
|
-
fillplot_plotly(mask, colorscale="greys", title="Mask Data")
|
409
|
-
|
410
|
-
|
411
|
-
# Layout with two columns
|
412
|
-
col1, col2 = st.columns([2, 1])
|
413
|
-
|
414
|
-
with col1:
|
415
|
-
|
416
|
-
# Button to save mask data after manual cut bins, with unique key
|
417
|
-
update_mask_cutbin = st.button("Update mask file after cutbin Manual", key="update_cutbin_button")
|
418
|
-
if update_mask_cutbin:
|
419
|
-
st.session_state.maskp = mask
|
420
|
-
st.write(":green[mask file updated]")
|
421
|
-
st.session_state.update_mask_cutbin = True
|
422
|
-
st.session_state.isCutBins = True
|
423
|
-
|
424
|
-
if not st.session_state.update_mask_cutbin:
|
425
|
-
st.write(":red[mask file not updated]")
|
426
|
-
|
427
|
-
with col2:
|
428
|
-
# Button to reset the mask data, with unique key
|
429
|
-
reset_mask_button = st.button("Reset mask data", key="reset_mask_button")
|
430
|
-
if reset_mask_button:
|
431
|
-
st.session_state.maskp = np.copy(st.session_state.orig_mask)
|
432
|
-
st.write(":green[Mask data is reset to default]")
|
433
|
-
st.session_state.isQCMask = False
|
434
|
-
st.session_state.isProfileMask = False
|
435
|
-
st.session_state.isGrid = False
|
436
|
-
st.session_state.isGridSave = False
|
437
|
-
st.session_state.isVelocityMask = False
|
438
|
-
|
439
|
-
############ REGRID ###########################################
|
440
|
-
st.header("Regrid Depth Cells", divider="blue")
|
441
|
-
|
442
|
-
st.write(
|
443
|
-
"""
|
444
|
-
When the ADCP buoy has vertical oscillations (greater than depth cell size),
|
445
|
-
the depth bins has to be regridded based on the pressure sensor data. The data
|
446
|
-
can be regrided either till the surface or till the last bin.
|
447
|
-
If the `Cell` option is selected, ensure that the end data are trimmed.
|
448
|
-
Manual option permits choosing the end cell depth.
|
449
|
-
"""
|
450
|
-
)
|
451
|
-
|
452
|
-
if st.session_state.beam_direction.lower() == "up":
|
453
|
-
end_bin_option = st.radio(
|
454
|
-
"Select the depth of last bin for regridding", ("Cell", "Surface", "Manual"), horizontal=True
|
455
|
-
)
|
456
|
-
else:
|
457
|
-
end_bin_option = st.radio(
|
458
|
-
"Select the depth of last bin for regridding", ("Cell", "Manual"), horizontal=True
|
459
|
-
)
|
460
|
-
|
461
|
-
st.session_state.end_bin_option = end_bin_option
|
462
|
-
st.write(f"You have selected: `{end_bin_option}`")
|
463
|
-
|
464
|
-
if end_bin_option == "Manual":
|
465
|
-
mean_depth = np.mean(st.session_state.vlead.vleader["Depth of Transducer"]) / 10
|
466
|
-
mean_depth = round(mean_depth, 2)
|
467
|
-
|
468
|
-
st.write(f"The transducer depth is {mean_depth} m. The value should not exceed the transducer depth")
|
469
|
-
if st.session_state.beam_direction.lower() == "up":
|
470
|
-
boundary = st.number_input("Enter the depth (m):", max_value=int(mean_depth), min_value=0)
|
471
|
-
else:
|
472
|
-
boundary = st.number_input("Enter the depth (m):", min_value=int(mean_depth))
|
473
|
-
else:
|
474
|
-
boundary = 0
|
475
|
-
|
476
|
-
interpolate = st.radio("Choose interpolation method:", ("nearest", "linear", "cubic"))
|
477
|
-
|
478
|
-
regrid_button = st.button(label="Regrid Data")
|
479
|
-
|
480
|
-
if regrid_button:
|
481
|
-
st.write(st.session_state.endpoints)
|
482
|
-
z, st.session_state.velocity_regrid = regrid3d(
|
483
|
-
flobj, vlobj, velocity, -32768,
|
484
|
-
trimends=st.session_state.endpoints,
|
485
|
-
end_bin_option=st.session_state.end_bin_option,
|
486
|
-
orientation=st.session_state.beam_direction,
|
487
|
-
method=interpolate,
|
488
|
-
boundary_limit=boundary
|
489
|
-
)
|
490
|
-
st.write(":grey[Regrided velocity ...]")
|
491
|
-
z, st.session_state.echo_regrid = regrid3d(
|
492
|
-
flobj, vlobj, echo, -32768,
|
493
|
-
trimends=st.session_state.endpoints,
|
494
|
-
end_bin_option=st.session_state.end_bin_option,
|
495
|
-
orientation=st.session_state.beam_direction,
|
496
|
-
method=interpolate,
|
497
|
-
boundary_limit=boundary
|
498
|
-
)
|
499
|
-
st.write(":grey[Regrided echo intensity ...]")
|
500
|
-
z, st.session_state.correlation_regrid = regrid3d(
|
501
|
-
flobj, vlobj, correlation, -32768,
|
502
|
-
trimends=st.session_state.endpoints,
|
503
|
-
end_bin_option=st.session_state.end_bin_option,
|
504
|
-
orientation=st.session_state.beam_direction,
|
505
|
-
method=interpolate,
|
506
|
-
boundary_limit=boundary
|
507
|
-
)
|
508
|
-
st.write(":grey[Regrided correlation...]")
|
509
|
-
z, st.session_state.pgood_regrid = regrid3d(
|
510
|
-
flobj, vlobj, pgood, -32768,
|
511
|
-
trimends=st.session_state.endpoints,
|
512
|
-
end_bin_option=st.session_state.end_bin_option,
|
513
|
-
orientation=st.session_state.beam_direction,
|
514
|
-
method=interpolate,
|
515
|
-
boundary_limit=boundary
|
516
|
-
)
|
517
|
-
st.write(":grey[Regrided percent good...]")
|
518
|
-
z, st.session_state.mask_regrid = regrid2d(
|
519
|
-
flobj, vlobj, mask, 1,
|
520
|
-
trimends=st.session_state.endpoints,
|
521
|
-
end_bin_option=st.session_state.end_bin_option,
|
522
|
-
orientation=st.session_state.beam_direction,
|
523
|
-
method="nearest",
|
524
|
-
boundary_limit=boundary
|
525
|
-
)
|
526
|
-
|
527
|
-
st.session_state.depth = z
|
528
|
-
|
529
|
-
st.write(":grey[Regrided mask...]")
|
530
|
-
st.write(":green[All data regrided!]")
|
531
|
-
|
532
|
-
st.write("No. of grid depth bins before regridding: ", np.shape(velocity)[1])
|
533
|
-
st.write(
|
534
|
-
"No. of grid depth bins after regridding: ",
|
535
|
-
np.shape(st.session_state.velocity_regrid)[1],
|
536
|
-
)
|
537
|
-
fillplot_plotly(
|
538
|
-
st.session_state.velocity_regrid[0, :, :], title="Regridded Velocity File"
|
539
|
-
)
|
540
|
-
fillplot_plotly(velocity[0, :, :], title="Original File")
|
541
|
-
fillplot_plotly(
|
542
|
-
st.session_state.mask_regrid, colorscale="greys", title="Regridded Mask File"
|
543
|
-
)
|
544
|
-
|
545
|
-
st.session_state.isGrid = True
|
546
|
-
st.session_state.isGridSave = False
|
547
|
-
|
548
|
-
|
549
|
-
########### Save and Reset Mask ##############
|
550
|
-
st.header("Save & Reset Mask Data", divider="blue")
|
551
|
-
|
552
|
-
col1, col2 = st.columns([1, 1])
|
553
|
-
with col1:
|
554
|
-
save_mask_button = st.button(label="Save Mask Data")
|
555
|
-
if save_mask_button:
|
556
|
-
if st.session_state.isGrid:
|
557
|
-
st.session_state.profile_mask = st.session_state.mask_regrid
|
558
|
-
st.session_state.isGridSave = True
|
559
|
-
else:
|
560
|
-
st.session_state.profile_mask = st.session_state.maskp
|
561
|
-
st.session_state.isProfileMask = True
|
562
|
-
st.session_state.isVelocityMask = False
|
563
|
-
st.write(":green[Mask data saved]")
|
564
|
-
else:
|
565
|
-
st.write(":red[Mask data not saved]")
|
566
|
-
with col2:
|
567
|
-
reset_mask_button = st.button("Reset mask data")
|
568
|
-
if reset_mask_button:
|
569
|
-
st.session_state.maskp = np.copy(st.session_state.orig_mask)
|
570
|
-
st.write(":green[Mask data is reset to default]")
|
571
|
-
st.session_state.isQCMask = False
|
572
|
-
st.session_state.isProfileMask = False
|
573
|
-
st.session_state.isGrid = False
|
574
|
-
st.session_state.isGridSave = False
|
575
|
-
st.session_state.isVelocityMask = False
|