pyTEMlib 0.2024.9.0__py3-none-any.whl → 0.2025.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyTEMlib might be problematic. Click here for more details.
- pyTEMlib/animation.py +1 -1
- pyTEMlib/atom_tools.py +2 -1
- pyTEMlib/core_loss_widget.py +337 -272
- pyTEMlib/eels_dialog.py +15 -10
- pyTEMlib/eels_tools.py +452 -125
- pyTEMlib/file_tools.py +319 -30
- pyTEMlib/image_tools.py +91 -15
- pyTEMlib/info_widget.py +211 -58
- pyTEMlib/info_widget3.py +1120 -0
- pyTEMlib/low_loss_widget.py +344 -41
- pyTEMlib/peak_dialog.py +141 -59
- pyTEMlib/probe_tools.py +65 -8
- pyTEMlib/version.py +2 -2
- {pyTEMlib-0.2024.9.0.dist-info → pytemlib-0.2025.2.2.dist-info}/METADATA +15 -5
- {pyTEMlib-0.2024.9.0.dist-info → pytemlib-0.2025.2.2.dist-info}/RECORD +19 -18
- {pyTEMlib-0.2024.9.0.dist-info → pytemlib-0.2025.2.2.dist-info}/WHEEL +1 -1
- {pyTEMlib-0.2024.9.0.dist-info → pytemlib-0.2025.2.2.dist-info}/LICENSE +0 -0
- {pyTEMlib-0.2024.9.0.dist-info → pytemlib-0.2025.2.2.dist-info}/entry_points.txt +0 -0
- {pyTEMlib-0.2024.9.0.dist-info → pytemlib-0.2025.2.2.dist-info}/top_level.txt +0 -0
pyTEMlib/low_loss_widget.py
CHANGED
|
@@ -14,12 +14,12 @@ from pyTEMlib import eels_tools
|
|
|
14
14
|
|
|
15
15
|
|
|
16
16
|
def get_low_loss_sidebar() -> Any:
|
|
17
|
-
side_bar = ipywidgets.GridspecLayout(
|
|
17
|
+
side_bar = ipywidgets.GridspecLayout(17, 3, width='auto', grid_gap="0px")
|
|
18
18
|
|
|
19
19
|
side_bar[0, :2] = ipywidgets.Dropdown(
|
|
20
20
|
options=[('None', 0)],
|
|
21
21
|
value=0,
|
|
22
|
-
description='
|
|
22
|
+
description='Low-Loss:',
|
|
23
23
|
disabled=False)
|
|
24
24
|
|
|
25
25
|
row = 1
|
|
@@ -32,10 +32,6 @@ def get_low_loss_sidebar() -> Any:
|
|
|
32
32
|
layout=ipywidgets.Layout(width='200px'))
|
|
33
33
|
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
34
34
|
row +=1
|
|
35
|
-
side_bar[row, 0] = ipywidgets.widgets.Label(value="thickness", layout=ipywidgets.Layout(width='100px'))
|
|
36
|
-
side_bar[row, 1] = ipywidgets.widgets.Label(value="", layout=ipywidgets.Layout(width='100px'))
|
|
37
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="* iMFP", layout=ipywidgets.Layout(width='100px'))
|
|
38
|
-
row +=1
|
|
39
35
|
side_bar[row, 0] = ipywidgets.ToggleButton(description='Plot Res.Fct.',
|
|
40
36
|
disabled=False,
|
|
41
37
|
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
@@ -54,11 +50,23 @@ def get_low_loss_sidebar() -> Any:
|
|
|
54
50
|
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
55
51
|
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
56
52
|
row += 1
|
|
57
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=
|
|
53
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=5, description='Start Fit:', disabled=False, color='black',
|
|
54
|
+
layout=ipywidgets.Layout(width='200px'))
|
|
55
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
56
|
+
row += 1
|
|
57
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=25, description='End Fit:', disabled=False, color='black',
|
|
58
|
+
layout=ipywidgets.Layout(width='200px'))
|
|
59
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='50px'))
|
|
60
|
+
row += 1
|
|
61
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=5, description='Energy:', disabled=False, color='black',
|
|
58
62
|
layout=ipywidgets.Layout(width='200px'))
|
|
59
63
|
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
60
64
|
row += 1
|
|
61
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=
|
|
65
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=25, description='Width:', disabled=False, color='black',
|
|
66
|
+
layout=ipywidgets.Layout(width='200px'))
|
|
67
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='50px'))
|
|
68
|
+
row += 1
|
|
69
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=25, description='Amplitude:', disabled=False, color='black',
|
|
62
70
|
layout=ipywidgets.Layout(width='200px'))
|
|
63
71
|
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='50px'))
|
|
64
72
|
row +=1
|
|
@@ -73,8 +81,38 @@ def get_low_loss_sidebar() -> Any:
|
|
|
73
81
|
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
74
82
|
tooltip='Changes y-axis to probability if flux is given',
|
|
75
83
|
layout=ipywidgets.Layout(width='100px'))
|
|
84
|
+
side_bar[row, 1] = ipywidgets.ToggleButton(description='Do All',
|
|
85
|
+
disabled=False,
|
|
86
|
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
87
|
+
tooltip='Changes y-axis to probability if flux is given',
|
|
88
|
+
layout=ipywidgets.Layout(width='100px'))
|
|
89
|
+
row += 1
|
|
90
|
+
side_bar[row, :3] = ipywidgets.Button(description='Multiple Scattering',
|
|
91
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
92
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
93
|
+
row += 1
|
|
94
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=5, description='Start Fit:', disabled=False, color='black',
|
|
95
|
+
layout=ipywidgets.Layout(width='200px'))
|
|
96
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
97
|
+
row += 1
|
|
98
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=-1, description='End Fit:', disabled=False, color='black',
|
|
99
|
+
layout=ipywidgets.Layout(width='200px'))
|
|
100
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='50px'))
|
|
101
|
+
row +=1
|
|
102
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=25, description='thickness:', disabled=False, color='black',
|
|
103
|
+
layout=ipywidgets.Layout(width='200px'))
|
|
104
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="* iMFP", layout=ipywidgets.Layout(width='50px'))
|
|
105
|
+
|
|
106
|
+
row +=1
|
|
107
|
+
side_bar[row, 0] = ipywidgets.ToggleButton(description='Plot LowLoss',
|
|
108
|
+
disabled=False,
|
|
109
|
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
110
|
+
tooltip='Plots resolution function on right',
|
|
111
|
+
layout=ipywidgets.Layout(width='100px'))
|
|
76
112
|
|
|
77
113
|
|
|
114
|
+
side_bar[row, 1:3] = ipywidgets.IntProgress(value=0, min=0, max=10, description=' ', bar_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
115
|
+
style={'bar_color': 'maroon'}, orientation='horizontal')
|
|
78
116
|
return side_bar
|
|
79
117
|
|
|
80
118
|
class LowLoss(object):
|
|
@@ -83,32 +121,247 @@ class LowLoss(object):
|
|
|
83
121
|
self.dataset = parent.dataset
|
|
84
122
|
self.low_loss_tab = sidebar
|
|
85
123
|
self.set_ll_action()
|
|
124
|
+
self.ll_key = ''
|
|
86
125
|
self.update_ll_sidebar()
|
|
87
126
|
|
|
88
127
|
def update_ll_sidebar(self):
|
|
89
128
|
spectrum_list = ['None']
|
|
129
|
+
ll_index = 0
|
|
130
|
+
self.ll_key = self.parent.lowloss_key
|
|
90
131
|
for index, key in enumerate(self.parent.datasets.keys()):
|
|
91
132
|
if isinstance(self.parent.datasets[key], sidpy.Dataset):
|
|
92
133
|
if 'SPECTR' in self.parent.datasets[key].data_type.name:
|
|
93
134
|
energy_offset = self.parent.datasets[key].get_spectral_dims(return_axis=True)[0][0]
|
|
94
135
|
if energy_offset < 0:
|
|
95
|
-
spectrum_list.append(f'{key}: {self.parent.datasets[key].title}')
|
|
96
|
-
|
|
136
|
+
spectrum_list.append(f'{key}: {self.parent.datasets[key].title}')
|
|
137
|
+
if key == self.ll_key:
|
|
138
|
+
ll_index = index-1
|
|
139
|
+
|
|
140
|
+
if ll_index >len(spectrum_list) - 1:
|
|
141
|
+
ll_index = len(spectrum_list) - 1
|
|
142
|
+
|
|
97
143
|
self.low_loss_tab[0, 0].options = spectrum_list
|
|
144
|
+
self.low_loss_tab[0, 0].value = spectrum_list[ll_index]
|
|
145
|
+
|
|
146
|
+
self.update_ll_dataset()
|
|
147
|
+
|
|
148
|
+
def update_ll_dataset(self, value=0):
|
|
149
|
+
self.ll_key = self.low_loss_tab[0, 0].value.split(':')[0]
|
|
150
|
+
self.parent.lowloss_key = self.ll_key
|
|
151
|
+
if 'None' in self.ll_key:
|
|
152
|
+
return
|
|
153
|
+
self.parent.set_dataset(self.ll_key)
|
|
154
|
+
self.dataset = self.parent.dataset
|
|
155
|
+
if self.low_loss_tab[13, 0].value < 0:
|
|
156
|
+
energy_scale = self.dataset.get_spectral_dims(return_axis=True)[0]
|
|
157
|
+
self.low_loss_tab[13, 0].value = np.round(self.dataset.get_spectral_dims(return_axis=True)[0][-2], 3)
|
|
98
158
|
|
|
99
|
-
|
|
100
|
-
|
|
159
|
+
|
|
160
|
+
def get_resolution_function(self, value=0):
|
|
161
|
+
|
|
101
162
|
zero_loss_fit_width=self.low_loss_tab[2, 0].value
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
if '
|
|
106
|
-
|
|
107
|
-
self.
|
|
108
|
-
|
|
109
|
-
|
|
163
|
+
spectrum = self.parent.spectrum
|
|
164
|
+
if 'zero_loss' not in self.parent.datasets.keys():
|
|
165
|
+
self.parent.datasets['zero_loss'] = self.parent.dataset.copy()*0
|
|
166
|
+
# if 'zero_loss' not in self.parent.datasets['zero_loss'].metadata.keys():
|
|
167
|
+
self.parent.datasets['zero_loss'].metadata['zero_loss']={}
|
|
168
|
+
self.parent.datasets['zero_loss'].metadata['zero_loss']['parameter'] = np.zeros([self.dataset.shape[0], self.dataset.shape[1], 6])
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
res = eels_tools.get_resolution_functions(spectrum, startFitEnergy=-zero_loss_fit_width, endFitEnergy=zero_loss_fit_width)
|
|
172
|
+
if len(self.parent.datasets['zero_loss'].shape) > 2:
|
|
173
|
+
self.parent.datasets['zero_loss'][self.parent.x, self.parent.y] = np.array(res)
|
|
174
|
+
self.parent.datasets['zero_loss'].metadata['zero_loss'][self.parent.x, self.parent.y] = res.metadata['zero_loss']['fit_parameter']
|
|
175
|
+
else:
|
|
176
|
+
self.parent.datasets['zero_loss'] = res
|
|
177
|
+
self.parent.datasets['zero_loss'].metadata['zero_loss'].update(res.metadata['zero_loss'])
|
|
110
178
|
|
|
111
|
-
|
|
179
|
+
self.parent.datasets['_relationship']['resolution_function'] = 'zero_loss'
|
|
180
|
+
|
|
181
|
+
self.parent.dataset.metadata['zero_loss'].update(self.parent.datasets['zero_loss'].metadata['zero_loss'])
|
|
182
|
+
|
|
183
|
+
if self.low_loss_tab[3, 0].value:
|
|
184
|
+
self.parent._update()
|
|
185
|
+
else:
|
|
186
|
+
self.low_loss_tab[3, 0].value = True
|
|
187
|
+
self.low_loss_tab[14, 1].value = np.round(np.log(self.parent.spectrum.sum()/res.sum()), 4)
|
|
188
|
+
self.parent.status_message('Fitted zero-loss peak')
|
|
189
|
+
|
|
190
|
+
def get_drude(self, value=0):
|
|
191
|
+
self.low_loss_tab[8, 0].value = False
|
|
192
|
+
fit_start = self.low_loss_tab[5, 0].value
|
|
193
|
+
fit_end = self.low_loss_tab[6, 0].value
|
|
194
|
+
if 'plasmon' not in self.parent.datasets.keys():
|
|
195
|
+
self.parent.datasets['plasmon'] = self.parent.dataset.copy()*0
|
|
196
|
+
if 'plasmon' not in self.parent.datasets['plasmon'].metadata.keys():
|
|
197
|
+
self.parent.datasets['plasmon'].metadata['plasmon'] = {}
|
|
198
|
+
if 'fit_parameter' not in self.parent.datasets['plasmon'].metadata['plasmon'].keys():
|
|
199
|
+
if len(self.dataset.shape) > 2:
|
|
200
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['fit_parameter'] = np.zeros([self.dataset.shape[0], self.dataset.shape[1], 4])
|
|
201
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['IMFP'] = np.zeros([self.dataset.shape[0], self.dataset.shape[1]])
|
|
202
|
+
|
|
203
|
+
if 'low_loss_model' not in self.parent.datasets.keys():
|
|
204
|
+
self.parent.datasets['low_loss_model'] = self.parent.dataset.copy()*0
|
|
205
|
+
self.parent.status_message(str(self.parent.x))
|
|
206
|
+
plasmon = eels_tools.fit_plasmon(self.parent.spectrum, fit_start, fit_end)
|
|
207
|
+
|
|
208
|
+
p = plasmon.metadata['plasmon']['parameter']
|
|
209
|
+
p = list(np.abs(p))
|
|
210
|
+
p.append(self.low_loss_tab[14, 0].value)
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
anglog, _, _ = eels_tools.angle_correction(self.parent.spectrum)
|
|
214
|
+
|
|
215
|
+
low_loss = eels_tools.multiple_scattering(self.parent.energy_scale, p) * anglog
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
if len(self.parent.datasets['plasmon'].shape) > 2:
|
|
219
|
+
self.parent.datasets['plasmon'][self.parent.x, self.parent.y] = np.array(plasmon)
|
|
220
|
+
self.parent.datasets['low_loss_model'][self.parent.x, self.parent.y] = np.array(low_loss)
|
|
221
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['fit_parameter'][self.parent.x, self.parent.y] = p
|
|
222
|
+
|
|
223
|
+
if 'zero_loss' in self.parent.datasets:
|
|
224
|
+
res = self.parent.datasets['zero_loss'][self.parent.x, self.parent.y]
|
|
225
|
+
|
|
226
|
+
else:
|
|
227
|
+
self.parent.datasets['plasmon'] = plasmon
|
|
228
|
+
self.parent.datasets['low_loss_model'] = low_loss
|
|
229
|
+
if 'zero_loss' in self.parent.datasets:
|
|
230
|
+
res = self.parent.datasets['zero_loss']
|
|
231
|
+
self.parent.datasets['_relationship']['plasmon'] = 'plasmon'
|
|
232
|
+
self.parent.datasets['_relationship']['low_loss_model'] = 'low_loss_model'
|
|
233
|
+
|
|
234
|
+
#self.dataset.metadata['plasmon'].update(self.parent.datasets['plasmon'].metadata['zero_loss'])
|
|
235
|
+
if self.low_loss_tab[10, 0].value:
|
|
236
|
+
self.parent._update()
|
|
237
|
+
self._update()
|
|
238
|
+
else:
|
|
239
|
+
self.low_loss_tab[10, 0].value = True
|
|
240
|
+
|
|
241
|
+
self.low_loss_tab[7, 0].value = np.round(np.abs(p[0]),3)
|
|
242
|
+
self.low_loss_tab[8, 0].value = np.round(p[1],3)
|
|
243
|
+
self.low_loss_tab[9, 0].value = np.round(p[2],1)
|
|
244
|
+
|
|
245
|
+
_, dsdo, _ = eels_tools.angle_correction(self.parent.spectrum)
|
|
246
|
+
|
|
247
|
+
if 'zero_loss' in self.parent.datasets:
|
|
248
|
+
I0 = res.sum() + p[2]
|
|
249
|
+
else:
|
|
250
|
+
I0 = self.parent.spectrum.sum()
|
|
251
|
+
# I0 = self.parent.spectrum.sum()
|
|
252
|
+
# print(I0)
|
|
253
|
+
# T = m_0 v**2 !!! a_0 = 0.05292 nm p[2] = S(E)/elf
|
|
254
|
+
t_nm = p[2]/I0*dsdo #Egerton equ 4.26% probability per eV
|
|
255
|
+
relative_thickness = self.low_loss_tab[14, 0].value
|
|
256
|
+
imfp, _ = eels_tools.inelatic_mean_free_path(p[0], self.parent.spectrum)
|
|
257
|
+
t_nm = float(relative_thickness * imfp)
|
|
258
|
+
# print(t_nm, relative_thickness, imfp)
|
|
259
|
+
self.parent.status_message(f'Fitted plasmon peak: thickness :{t_nm:.1f} nm and IMFP: {t_nm/relative_thickness:.1f} nm in free electron approximation')
|
|
260
|
+
|
|
261
|
+
if self.dataset.ndim>1:
|
|
262
|
+
# self.parent.datasets['plasmon'].metadata['plasmon'][self.parent.x, self.parent.y]['thickness'] = t_nm
|
|
263
|
+
# self.parent.datasets['plasmon'].metadata['plasmon'][self.parent.x, self.parent.y]['relative_thickness'] = relative_thickness
|
|
264
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['IMFP'][self.parent.x, self.parent.y] = t_nm/relative_thickness
|
|
265
|
+
|
|
266
|
+
else:
|
|
267
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['thickness'] = t_nm
|
|
268
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['relative_thickness'] = relative_thickness
|
|
269
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['IMFP'] = t_nm/relative_thickness
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
def multiple_scattering(self, value=0):
|
|
273
|
+
if self.dataset.ndim >1:
|
|
274
|
+
anglog, dsdo, _ = eels_tools.angle_correction(self.parent.spectrum)
|
|
275
|
+
par = np.array(self.parent.datasets['plasmon'].metadata['plasmon']['fit_parameter'])
|
|
276
|
+
for x in range(self.parent.dataset.shape[0]):
|
|
277
|
+
for y in range(self.parent.dataset.shape[1]):
|
|
278
|
+
self.parent.datasets['low_loss_model'][x, y] = eels_tools.multiple_scattering(self.parent.energy_scale, par[x, y]) * anglog
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
def do_all(self, value=0):
|
|
282
|
+
if len(self.parent.dataset.shape) < 3:
|
|
283
|
+
return
|
|
284
|
+
|
|
285
|
+
zero_loss_fit_width=self.low_loss_tab[2, 0].value
|
|
286
|
+
fit_start = self.low_loss_tab[5, 0].value
|
|
287
|
+
fit_end = self.low_loss_tab[6, 0].value
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
if 'low_loss_model' not in self.parent.datasets.keys():
|
|
291
|
+
self.parent.datasets['low_loss_model'] = self.parent.dataset.copy()*0
|
|
292
|
+
self.parent.datasets['low_loss_model'].title = self.parent.dataset.title + ' low_loss_model'
|
|
293
|
+
|
|
294
|
+
self.low_loss_tab[15,1].max = self.parent.dataset.shape[0]*self.parent.dataset.shape[1]
|
|
295
|
+
|
|
296
|
+
self.parent.datasets['zero_loss'] = eels_tools.get_resolution_functions(self.dataset, startFitEnergy=-zero_loss_fit_width, endFitEnergy=zero_loss_fit_width)
|
|
297
|
+
self.parent.datasets['zero_loss'].title = self.parent.dataset.title + ' zero_loss'
|
|
298
|
+
self.parent.status_message('Fitted zero-loss peak')
|
|
299
|
+
|
|
300
|
+
self.parent.datasets['plasmon'] = eels_tools.fit_plasmon(self.dataset, fit_start, fit_end)
|
|
301
|
+
self.parent.datasets['plasmon'].title = self.parent.dataset.title + ' plasmon'
|
|
302
|
+
|
|
303
|
+
self.parent.status_message('Fitted zero-loss + plasmon peak')
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
"""
|
|
307
|
+
anglog, _, _ = eels_tools.angle_correction(self.parent.spectrum)
|
|
308
|
+
i = 0
|
|
309
|
+
for x in range(self.parent.dataset.shape[0]):
|
|
310
|
+
for y in range(self.parent.dataset.shape[1]):
|
|
311
|
+
self.low_loss_tab[15,1].value = i
|
|
312
|
+
i+= 1
|
|
313
|
+
|
|
314
|
+
spectrum = self.parent.dataset[x, y]
|
|
315
|
+
|
|
316
|
+
plasmon = eels_tools.fit_plasmon(spectrum, fit_start, fit_end)
|
|
317
|
+
p =np.abs(plasmon.metadata['plasmon']['parameter'])
|
|
318
|
+
p = list(np.abs(p))
|
|
319
|
+
|
|
320
|
+
p.append(np.log(spectrum.sum()/self.parent.datasets['zero_loss'][x,y].sum()))
|
|
321
|
+
if p[-1] is np.nan:
|
|
322
|
+
p[-1] = 0
|
|
323
|
+
low_loss = eels_tools.multiple_scattering(self.parent.energy_scale, p) * anglog
|
|
324
|
+
self.parent.datasets['plasmon'][x, y] = np.array(plasmon.compute())
|
|
325
|
+
self.parent.datasets['low_loss_model'][x, y] = np.array(low_loss)
|
|
326
|
+
drude_p[x, y, :] = np.array(p)
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
self.parent.datasets['plasmon'].metadata['plasmon'].update({'parameter': drude_p})
|
|
331
|
+
self.parent.datasets['low_loss_model'].metadata['low_loss'] = ({'parameter': drude_p})
|
|
332
|
+
"""
|
|
333
|
+
|
|
334
|
+
imfp = np.log(self.parent.dataset.sum(axis=2)/self.parent.datasets['zero_loss'].sum(axis=2))
|
|
335
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['fit_parameter'] = np.append(self.parent.datasets['plasmon'].metadata['plasmon']['fit_parameter'], imfp[..., np.newaxis], axis=2)
|
|
336
|
+
E_p = self.parent.datasets['plasmon'].metadata['plasmon']['fit_parameter'][:,:,0]
|
|
337
|
+
self.parent.datasets['plasmon'].metadata['plasmon']['IMFP'], _ = eels_tools.inelatic_mean_free_path(E_p, self.parent.spectrum)
|
|
338
|
+
self.parent.datasets['_relationship']['zero_loss'] = 'zero_loss'
|
|
339
|
+
self.parent.datasets['_relationship']['plasmon'] = 'plasmon'
|
|
340
|
+
self.multiple_scattering()
|
|
341
|
+
self.parent.datasets['_relationship']['low_loss_model'] = 'low_loss_model'
|
|
342
|
+
|
|
343
|
+
self.low_loss_tab[10, 1].value = False
|
|
344
|
+
|
|
345
|
+
def get_multiple_scattering(self, value=0):
|
|
346
|
+
self.low_loss_tab[15, 0].value = False
|
|
347
|
+
fit_start = self.low_loss_tab[12, 0].value
|
|
348
|
+
fit_end = self.low_loss_tab[13, 0].value
|
|
349
|
+
|
|
350
|
+
p = [self.low_loss_tab[7, 0].value, self.low_loss_tab[8, 0].value, self.low_loss_tab[9, 0].value, self.low_loss_tab[14, 0].value]
|
|
351
|
+
low_loss = eels_tools.fit_multiple_scattering(self.parent.spectrum, fit_start, fit_end, pin=p)
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
self.parent.datasets['multiple_scattering'] = low_loss
|
|
355
|
+
self.parent.datasets['_relationship']['multiple_scattering'] = 'multiple_scattering'
|
|
356
|
+
self.low_loss_tab[10, 0].value = False
|
|
357
|
+
self.low_loss_tab[15, 0].value = True
|
|
358
|
+
p = low_loss.metadata['multiple_scattering']['parameter']
|
|
359
|
+
self.low_loss_tab[14, 0].value = np.round(p[3],3)
|
|
360
|
+
|
|
361
|
+
self.parent.status_message('Fitted multiple scattering')
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
return low_loss
|
|
112
365
|
|
|
113
366
|
def set_ll_action(self):
|
|
114
367
|
self.low_loss_tab[0, 0].observe(self.update_ll_dataset)
|
|
@@ -116,37 +369,90 @@ class LowLoss(object):
|
|
|
116
369
|
#self.low_loss_tab[2, 0].observe(self.set_energy_scale, names='value')
|
|
117
370
|
#self.low_loss_tab[3, 0].observe(self.set_energy_scale, names='value')
|
|
118
371
|
self.low_loss_tab[1, 0].on_click(self.get_resolution_function)
|
|
119
|
-
self.low_loss_tab[
|
|
120
|
-
self.low_loss_tab[
|
|
372
|
+
self.low_loss_tab[3, 2].observe(self.parent.info.set_y_scale, names='value')
|
|
373
|
+
self.low_loss_tab[3, 0].observe(self._update, names='value')
|
|
374
|
+
self.low_loss_tab[4, 0].on_click(self.get_drude)
|
|
375
|
+
self.low_loss_tab[10, 0].observe(self._update, names='value')
|
|
376
|
+
self.low_loss_tab[10, 1].observe(self.do_all, names='value')
|
|
377
|
+
self.low_loss_tab[10, 2].observe(self._update, names='value')
|
|
378
|
+
self.low_loss_tab[11, 0].on_click(self.get_multiple_scattering)
|
|
379
|
+
self.low_loss_tab[15, 0].observe(self._update, names='value')
|
|
121
380
|
|
|
381
|
+
|
|
122
382
|
def _update(self, ev=0):
|
|
123
|
-
|
|
383
|
+
low_loss = None
|
|
384
|
+
plasmon = None
|
|
385
|
+
resolution_function = None
|
|
386
|
+
if 'zero_loss' in self.parent.added_spectra.keys():
|
|
387
|
+
del self.parent.added_spectra['zero_loss']
|
|
388
|
+
if 'plasmon' in self.parent.added_spectra.keys():
|
|
389
|
+
del self.parent.added_spectra['plasmon']
|
|
390
|
+
if 'low_loss_model' in self.parent.added_spectra.keys():
|
|
391
|
+
del self.parent.added_spectra['low_loss_model']
|
|
124
392
|
|
|
125
|
-
if self.low_loss_tab[
|
|
126
|
-
if '
|
|
127
|
-
resolution_function = self.get_additional_spectrum('
|
|
128
|
-
self.parent.
|
|
129
|
-
|
|
130
|
-
|
|
393
|
+
if self .low_loss_tab[3, 0].value:
|
|
394
|
+
if 'zero_loss' in self.parent.datasets.keys():
|
|
395
|
+
resolution_function = np.array(self.parent.get_additional_spectrum('zero_loss'))
|
|
396
|
+
self.parent.added_spectra.update({'zero_loss': 'resolution'})
|
|
397
|
+
if self.low_loss_tab[10, 0].value:
|
|
398
|
+
if 'plasmon' in self.parent.datasets.keys():
|
|
399
|
+
plasmon = self.parent.get_additional_spectrum('plasmon')
|
|
400
|
+
if len(self.dataset.shape) > 1:
|
|
401
|
+
p = np.round(plasmon.metadata['plasmon']['fit_parameter'][self.parent.x, self.parent.y], 3)
|
|
402
|
+
imfp = np.array(plasmon.metadata['plasmon']['IMFP'][self.parent.x, self.parent.y])
|
|
403
|
+
else:
|
|
404
|
+
p = np.round(plasmon.metadata['plasmon']['fit_parameter'], 3)
|
|
405
|
+
imfp = plasmon.metadata['plasmon']['IMFP']
|
|
406
|
+
|
|
407
|
+
self.parent.added_spectra.update({'plasmon': 'plasmon'})
|
|
408
|
+
self.low_loss_tab[7, 1].value =p[0]
|
|
409
|
+
self.low_loss_tab[8, 1].value = p[1]
|
|
410
|
+
self.low_loss_tab[8, 1].value = p[2]
|
|
411
|
+
|
|
412
|
+
self.low_loss_tab[14, 1].value =p[-1]
|
|
413
|
+
t_nm = float(p[-1] * imfp)
|
|
414
|
+
# print(t_nm, p[-1], imfp)
|
|
415
|
+
self.parent.status_message(f'Fitted plasmon peak: thickness :{t_nm:.1f} nm and IMFP: {imfp:.1f} nm in free electron approximation')
|
|
131
416
|
|
|
132
|
-
|
|
417
|
+
if self.low_loss_tab[15, 0].value:
|
|
418
|
+
low_loss = np.array(self.parent.get_additional_spectrum('low_loss_model'))
|
|
419
|
+
self.parent.added_spectra.update({'low_loss': 'low_loss'})
|
|
420
|
+
|
|
421
|
+
if self.low_loss_tab[3, 0].value + self.low_loss_tab[10, 0].value + self.low_loss_tab[15, 0].value > 0:
|
|
422
|
+
self.parent.datasets['_difference'] = np.array(self.parent.spectrum)
|
|
423
|
+
if resolution_function is not None:
|
|
424
|
+
self.parent.datasets['_difference'] -= resolution_function
|
|
425
|
+
if low_loss is not None:
|
|
426
|
+
self.parent.datasets['_difference'] -= low_loss
|
|
427
|
+
else:
|
|
428
|
+
if plasmon is not None:
|
|
429
|
+
self.parent.datasets['_difference'] -= np.array(plasmon)
|
|
430
|
+
self.parent.added_spectra.update({'_difference': 'difference'})
|
|
431
|
+
else:
|
|
432
|
+
if '_difference' in self.parent.datasets.keys():
|
|
433
|
+
del self.parent.datasets['_difference']
|
|
434
|
+
self.parent._update()
|
|
133
435
|
|
|
134
436
|
def get_additional_spectrum(self, key):
|
|
135
437
|
if key not in self.parent.datasets.keys():
|
|
136
438
|
return
|
|
137
439
|
|
|
138
440
|
if self.parent.datasets[key].data_type == sidpy.DataType.SPECTRUM:
|
|
139
|
-
|
|
441
|
+
spectrum = self.parent.datasets[key].copy()
|
|
140
442
|
else:
|
|
141
443
|
image_dims = self.parent.datasets[key].get_dimensions_by_type(sidpy.DimensionType.SPATIAL)
|
|
142
444
|
selection = []
|
|
445
|
+
x = self.parent.x
|
|
446
|
+
y = self.parent.y
|
|
447
|
+
bin_x = self.parent.bin_x
|
|
448
|
+
bin_y = self.parent.bin_y
|
|
143
449
|
for dim, axis in self.parent.datasets[key]._axes.items():
|
|
144
450
|
# print(dim, axis.dimension_type)
|
|
145
451
|
if axis.dimension_type == sidpy.DimensionType.SPATIAL:
|
|
146
452
|
if dim == image_dims[0]:
|
|
147
|
-
selection.append(slice(
|
|
453
|
+
selection.append(slice(x, x + bin_x))
|
|
148
454
|
else:
|
|
149
|
-
selection.append(slice(
|
|
455
|
+
selection.append(slice(y, y + bin_y))
|
|
150
456
|
|
|
151
457
|
elif axis.dimension_type == sidpy.DimensionType.SPECTRAL:
|
|
152
458
|
selection.append(slice(None))
|
|
@@ -155,16 +461,13 @@ class LowLoss(object):
|
|
|
155
461
|
else:
|
|
156
462
|
selection.append(slice(0, 1))
|
|
157
463
|
|
|
158
|
-
|
|
464
|
+
spectrum = self.parent.datasets[key][tuple(selection)].mean(axis=tuple(image_dims))
|
|
159
465
|
|
|
160
|
-
|
|
466
|
+
spectrum *= self.parent.y_scale
|
|
161
467
|
|
|
162
|
-
return
|
|
468
|
+
return spectrum.squeeze()
|
|
469
|
+
|
|
163
470
|
|
|
164
|
-
def update_ll_dataset(self, value=0):
|
|
165
|
-
self.ll_key = self.low_loss_tab[0, 0].value.split(':')[0]
|
|
166
|
-
self.parent.set_dataset(self.ll_key)
|
|
167
|
-
self.dataset = self.parent.dataset
|
|
168
471
|
|
|
169
472
|
|
|
170
473
|
def set_binning(self, value):
|