pyTEMlib 0.2023.4.0__py2.py3-none-any.whl → 0.2023.8.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyTEMlib might be problematic. Click here for more details.
- pyTEMlib/crystal_tools.py +47 -5
- pyTEMlib/eels_dialog.py +656 -41
- pyTEMlib/eels_dialog_utilities.py +8 -4
- pyTEMlib/eels_dlg.py +4 -3
- pyTEMlib/eels_tools.py +93 -39
- pyTEMlib/file_tools.py +95 -13
- pyTEMlib/graph_tools.py +716 -10
- pyTEMlib/image_dialog.py +1 -1
- pyTEMlib/image_dlg.py +1 -1
- pyTEMlib/image_tools.py +82 -39
- pyTEMlib/info_dialog.py +356 -15
- pyTEMlib/info_dlg.py +1 -1
- pyTEMlib/info_widget.py +655 -0
- pyTEMlib/interactive_eels.py +12 -4
- pyTEMlib/peak_dialog.py +621 -22
- pyTEMlib/peak_dlg.py +1 -1
- pyTEMlib/version.py +2 -2
- pyTEMlib/viz.py +217 -0
- {pyTEMlib-0.2023.4.0.dist-info → pyTEMlib-0.2023.8.0.dist-info}/METADATA +5 -5
- pyTEMlib-0.2023.8.0.dist-info/RECORD +40 -0
- {pyTEMlib-0.2023.4.0.dist-info → pyTEMlib-0.2023.8.0.dist-info}/WHEEL +1 -1
- pyTEMlib-0.2023.4.0.dist-info/RECORD +0 -39
- {pyTEMlib-0.2023.4.0.dist-info → pyTEMlib-0.2023.8.0.dist-info}/LICENSE +0 -0
- {pyTEMlib-0.2023.4.0.dist-info → pyTEMlib-0.2023.8.0.dist-info}/entry_points.txt +0 -0
- {pyTEMlib-0.2023.4.0.dist-info → pyTEMlib-0.2023.8.0.dist-info}/top_level.txt +0 -0
pyTEMlib/info_widget.py
ADDED
|
@@ -0,0 +1,655 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import sidpy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import pyTEMlib.eels_dialog_utilities as ieels
|
|
6
|
+
import pyTEMlib.file_tools as ft
|
|
7
|
+
from pyTEMlib.microscope import microscope
|
|
8
|
+
import ipywidgets
|
|
9
|
+
import matplotlib.pylab as plt
|
|
10
|
+
import matplotlib
|
|
11
|
+
|
|
12
|
+
from IPython.display import display
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from pyTEMlib import file_tools
|
|
16
|
+
from pyTEMlib import eels_tools
|
|
17
|
+
|
|
18
|
+
def get_info_sidebar():
|
|
19
|
+
side_bar = ipywidgets.GridspecLayout(17, 3,width='auto', grid_gap="0px")
|
|
20
|
+
|
|
21
|
+
side_bar[0, :2] = ipywidgets.Dropdown(
|
|
22
|
+
options=[('None', 0)],
|
|
23
|
+
value=0,
|
|
24
|
+
description='Main Dataset:',
|
|
25
|
+
disabled=False)
|
|
26
|
+
|
|
27
|
+
row = 1
|
|
28
|
+
side_bar[row, :3] = ipywidgets.Button(description='Energy Scale',
|
|
29
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
30
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
31
|
+
row += 1
|
|
32
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Offset:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
33
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
34
|
+
row += 1
|
|
35
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Dispersion:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
36
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
37
|
+
|
|
38
|
+
row += 1
|
|
39
|
+
side_bar[row, :3] = ipywidgets.Button(description='Microscope',
|
|
40
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
41
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
42
|
+
row += 1
|
|
43
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Conv.Angle:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
44
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="mrad", layout=ipywidgets.Layout(width='100px'))
|
|
45
|
+
row += 1
|
|
46
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Coll.Angle:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
47
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="mrad", layout=ipywidgets.Layout(width='100px'))
|
|
48
|
+
row += 1
|
|
49
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Acc Voltage:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
50
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="keV", layout=ipywidgets.Layout(width='100px'))
|
|
51
|
+
row += 1
|
|
52
|
+
|
|
53
|
+
side_bar[row, :3] = ipywidgets.Button(description='Quantification',
|
|
54
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
55
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
56
|
+
row+=1
|
|
57
|
+
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
58
|
+
options=[('None', 0)],
|
|
59
|
+
value=0,
|
|
60
|
+
description='Reference:',
|
|
61
|
+
disabled=False)
|
|
62
|
+
side_bar[row,2] = ipywidgets.ToggleButton(
|
|
63
|
+
description='Probability',
|
|
64
|
+
disabled=False,
|
|
65
|
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
66
|
+
tooltip='Changes y-axis to probability if flux is given',
|
|
67
|
+
layout=ipywidgets.Layout(width='100px'))
|
|
68
|
+
row += 1
|
|
69
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Exp_Time:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
70
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="s", layout=ipywidgets.Layout(width='100px'))
|
|
71
|
+
row += 1
|
|
72
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Flux:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
73
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="Mcounts", layout=ipywidgets.Layout(width='100px'))
|
|
74
|
+
row += 1
|
|
75
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Conversion:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
76
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value=r"e$^-$/counts", layout=ipywidgets.Layout(width='100px'))
|
|
77
|
+
row += 1
|
|
78
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Current:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
79
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="pA", layout=ipywidgets.Layout(width='100px') )
|
|
80
|
+
|
|
81
|
+
row += 1
|
|
82
|
+
|
|
83
|
+
side_bar[row, :3] = ipywidgets.Button(description='Spectrum Image',
|
|
84
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
85
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
86
|
+
|
|
87
|
+
row += 1
|
|
88
|
+
side_bar[row, :2] = ipywidgets.IntText(value=1, description='bin X:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
89
|
+
row += 1
|
|
90
|
+
side_bar[row, :2] = ipywidgets.IntText(value=1, description='bin X:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
91
|
+
|
|
92
|
+
for i in range(14, 17):
|
|
93
|
+
side_bar[i, 0].layout.display = "none"
|
|
94
|
+
return side_bar
|
|
95
|
+
|
|
96
|
+
from sidpy.io.interface_utils import open_file_dialog
|
|
97
|
+
class EELSWidget(object):
|
|
98
|
+
def __init__(self, datasets, sidebar, tab_title = None):
|
|
99
|
+
|
|
100
|
+
self.datasets = datasets
|
|
101
|
+
self.dataset = None
|
|
102
|
+
|
|
103
|
+
if not isinstance(sidebar, list):
|
|
104
|
+
tab = ipywidgets.Tab()
|
|
105
|
+
tab.children = [ft.FileWidget(), sidebar]
|
|
106
|
+
tab.titles = ['Load', 'Info']
|
|
107
|
+
else:
|
|
108
|
+
tab = sidebar
|
|
109
|
+
|
|
110
|
+
self.sidebar = sidebar
|
|
111
|
+
with plt.ioff():
|
|
112
|
+
self.figure = plt.figure()
|
|
113
|
+
|
|
114
|
+
self.figure.canvas.toolbar_position = 'right'
|
|
115
|
+
self.figure.canvas.toolbar_visible = True
|
|
116
|
+
|
|
117
|
+
self.start_cursor = ipywidgets.FloatText(value=0, description='Start:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
118
|
+
self.end_cursor = ipywidgets.FloatText(value=0, description='End:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
119
|
+
self.panel = ipywidgets.VBox([ipywidgets.HBox([ipywidgets.Label('',layout=ipywidgets.Layout(width='100px')), ipywidgets.Label('Cursor:'),
|
|
120
|
+
self.start_cursor,ipywidgets.Label('eV'),
|
|
121
|
+
self.end_cursor, ipywidgets.Label('eV')]),
|
|
122
|
+
self.figure.canvas])
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
self.app_layout = ipywidgets.AppLayout(
|
|
126
|
+
left_sidebar=tab,
|
|
127
|
+
center=self.panel,
|
|
128
|
+
footer=None,#message_bar,
|
|
129
|
+
pane_heights=[0, 10, 0],
|
|
130
|
+
pane_widths=[4, 10, 0],
|
|
131
|
+
)
|
|
132
|
+
self.set_dataset()
|
|
133
|
+
|
|
134
|
+
display(self.app_layout)
|
|
135
|
+
|
|
136
|
+
def plot(self, scale=True):
|
|
137
|
+
self.figure.clear()
|
|
138
|
+
self.energy_scale = self.dataset.energy_loss.values
|
|
139
|
+
|
|
140
|
+
if self.dataset.data_type.name == 'SPECTRUM':
|
|
141
|
+
self.axis = self.figure.subplots(ncols=1)
|
|
142
|
+
else:
|
|
143
|
+
self.plot_spectrum_image()
|
|
144
|
+
self.axis = self.axes[-1]
|
|
145
|
+
self.spectrum = self.get_spectrum()
|
|
146
|
+
|
|
147
|
+
self.plot_spectrum()
|
|
148
|
+
|
|
149
|
+
def plot_spectrum(self):
|
|
150
|
+
self.axis.plot(self.energy_scale, self.spectrum, label='spectrum')
|
|
151
|
+
x_limit = self.axis.get_xlim()
|
|
152
|
+
y_limit = np.array(self.axis.get_ylim())
|
|
153
|
+
self.xlabel = self.datasets[self.key].labels[0]
|
|
154
|
+
self.ylabel = self.datasets[self.key].data_descriptor
|
|
155
|
+
self.axis.set_xlabel(self.datasets[self.key].labels[0])
|
|
156
|
+
self.axis.set_ylabel(self.datasets[self.key].data_descriptor)
|
|
157
|
+
self.axis.ticklabel_format(style='sci', scilimits=(-2, 3))
|
|
158
|
+
#if scale:
|
|
159
|
+
# self.axis.set_ylim(np.array(y_limit)*self.change_y_scale)
|
|
160
|
+
self.change_y_scale = 1.0
|
|
161
|
+
if self.y_scale != 1.:
|
|
162
|
+
self.axis.set_ylabel('scattering probability (ppm/eV)')
|
|
163
|
+
self.selector = matplotlib.widgets.SpanSelector(self.axis, self.line_select_callback,
|
|
164
|
+
direction="horizontal",
|
|
165
|
+
interactive=True,
|
|
166
|
+
props=dict(facecolor='blue', alpha=0.2))
|
|
167
|
+
self.axis.legend()
|
|
168
|
+
if self.dataset.data_type.name == 'SPECTRUM':
|
|
169
|
+
self.axis.set_title(self.dataset.title)
|
|
170
|
+
else:
|
|
171
|
+
self.axis.set_title(f'spectrum {self.x}, {self.y}')
|
|
172
|
+
self.figure.canvas.draw_idle()
|
|
173
|
+
|
|
174
|
+
def _update(self, ev=None):
|
|
175
|
+
|
|
176
|
+
xlim = np.array(self.axes[1].get_xlim())
|
|
177
|
+
ylim = np.array(self.axes[1].get_ylim())
|
|
178
|
+
self.axes[1].clear()
|
|
179
|
+
self.get_spectrum()
|
|
180
|
+
if len(self.energy_scale)!=self.spectrum.shape[0]:
|
|
181
|
+
self.spectrum = self.spectrum.T
|
|
182
|
+
self.axes[1].plot(self.energy_scale, self.spectrum.compute(), label='experiment')
|
|
183
|
+
|
|
184
|
+
self.axes[1].set_title(f'spectrum {self.x}, {self.y}')
|
|
185
|
+
self.figure.tight_layout()
|
|
186
|
+
self.selector = matplotlib.widgets.SpanSelector(self.axis, self.line_select_callback,
|
|
187
|
+
direction="horizontal",
|
|
188
|
+
interactive=True,
|
|
189
|
+
props=dict(facecolor='blue', alpha=0.2))
|
|
190
|
+
|
|
191
|
+
self.axes[1].set_xlim(xlim)
|
|
192
|
+
self.axes[1].set_ylim(ylim*self.change_y_scale)
|
|
193
|
+
self.axes[1].set_xlabel(self.xlabel)
|
|
194
|
+
self.axes[1].set_ylabel(self.ylabel)
|
|
195
|
+
self.change_y_scale = 1.0
|
|
196
|
+
self.figure.canvas.draw_idle()
|
|
197
|
+
|
|
198
|
+
def _onclick(self, event):
|
|
199
|
+
self.event = event
|
|
200
|
+
if event.inaxes in [self.axes[0]]:
|
|
201
|
+
x = int(event.xdata)
|
|
202
|
+
y = int(event.ydata)
|
|
203
|
+
|
|
204
|
+
x = int(x - self.rectangle[0])
|
|
205
|
+
y = int(y - self.rectangle[2])
|
|
206
|
+
|
|
207
|
+
if x >= 0 and y >= 0:
|
|
208
|
+
if x <= self.rectangle[1] and y <= self.rectangle[3]:
|
|
209
|
+
self.x = int(x / (self.rect.get_width() / self.bin_x))
|
|
210
|
+
self.y = int(y / (self.rect.get_height() / self.bin_y))
|
|
211
|
+
image_dims = self.dataset.get_dimensions_by_type(sidpy.DimensionType.SPATIAL)
|
|
212
|
+
|
|
213
|
+
if self.x + self.bin_x > self.dataset.shape[image_dims[0]]:
|
|
214
|
+
self.x = self.dataset.shape[image_dims[0]] - self.bin_x
|
|
215
|
+
if self.y + self.bin_y > self.dataset.shape[image_dims[1]]:
|
|
216
|
+
self.y = self.dataset.shape[image_dims[1]] - self.bin_y
|
|
217
|
+
|
|
218
|
+
self.rect.set_xy([self.x * self.rect.get_width() / self.bin_x + self.rectangle[0],
|
|
219
|
+
self.y * self.rect.get_height() / self.bin_y + self.rectangle[2]])
|
|
220
|
+
# self.get_spectrum()
|
|
221
|
+
self._update()
|
|
222
|
+
else:
|
|
223
|
+
if event.dblclick:
|
|
224
|
+
bottom = float(self.spectrum.min())
|
|
225
|
+
if bottom < 0:
|
|
226
|
+
bottom *= 1.02
|
|
227
|
+
else:
|
|
228
|
+
bottom *= 0.98
|
|
229
|
+
top = float(self.spectrum.max())
|
|
230
|
+
if top > 0:
|
|
231
|
+
top *= 1.02
|
|
232
|
+
else:
|
|
233
|
+
top *= 0.98
|
|
234
|
+
self.axis.set_ylim(bottom=bottom, top=top)
|
|
235
|
+
|
|
236
|
+
def get_spectrum(self):
|
|
237
|
+
if self.dataset.data_type == sidpy.DataType.SPECTRUM:
|
|
238
|
+
self.spectrum = self.dataset.copy()
|
|
239
|
+
else:
|
|
240
|
+
image_dims = self.dataset.get_dimensions_by_type(sidpy.DimensionType.SPATIAL)
|
|
241
|
+
if self.x > self.dataset.shape[image_dims[0]] - self.bin_x:
|
|
242
|
+
self.x = self.dataset.shape[image_dims[0]] - self.bin_x
|
|
243
|
+
if self.y > self.dataset.shape[image_dims[1]] - self.bin_y:
|
|
244
|
+
self.y = self.dataset.shape[image_dims[1]] - self.bin_y
|
|
245
|
+
selection = []
|
|
246
|
+
self.axis.clear()
|
|
247
|
+
for dim, axis in self.dataset._axes.items():
|
|
248
|
+
# print(dim, axis.dimension_type)
|
|
249
|
+
if axis.dimension_type == sidpy.DimensionType.SPATIAL:
|
|
250
|
+
if dim == image_dims[0]:
|
|
251
|
+
selection.append(slice(self.x, self.x + self.bin_x))
|
|
252
|
+
else:
|
|
253
|
+
selection.append(slice(self.y, self.y + self.bin_y))
|
|
254
|
+
|
|
255
|
+
elif axis.dimension_type == sidpy.DimensionType.SPECTRAL:
|
|
256
|
+
selection.append(slice(None))
|
|
257
|
+
elif axis.dimension_type == sidpy.DimensionType.CHANNEL:
|
|
258
|
+
selection.append(slice(None))
|
|
259
|
+
else:
|
|
260
|
+
selection.append(slice(0, 1))
|
|
261
|
+
|
|
262
|
+
self.spectrum = self.dataset[tuple(selection)].mean(axis=tuple(image_dims))
|
|
263
|
+
|
|
264
|
+
self.spectrum *= self.y_scale
|
|
265
|
+
|
|
266
|
+
return self.spectrum.squeeze()
|
|
267
|
+
|
|
268
|
+
def plot_spectrum_image(self):
|
|
269
|
+
self.axes = self.figure.subplots(ncols=2)
|
|
270
|
+
self.axis = self.axes[-1]
|
|
271
|
+
|
|
272
|
+
spec_dim = self.dataset.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL)
|
|
273
|
+
if len(spec_dim) != 1:
|
|
274
|
+
raise ValueError('Only one spectral dimension')
|
|
275
|
+
|
|
276
|
+
channel_dim = self.dataset.get_dimensions_by_type(sidpy.DimensionType.CHANNEL)
|
|
277
|
+
channel_dim =[]
|
|
278
|
+
if len(channel_dim) > 1:
|
|
279
|
+
raise ValueError('Maximal one channel dimension')
|
|
280
|
+
|
|
281
|
+
if len(channel_dim) > 0:
|
|
282
|
+
self.image = self.dataset.mean(axis=(spec_dim[0] ,channel_dim[0]))
|
|
283
|
+
else:
|
|
284
|
+
self.image = self.dataset.mean(axis=(spec_dim[0]))
|
|
285
|
+
|
|
286
|
+
self.rect = matplotlib.patches.Rectangle((0, 0), self.bin_x, self.bin_y, linewidth=1, edgecolor='r',
|
|
287
|
+
facecolor='red', alpha=0.2)
|
|
288
|
+
size_x = self.image.shape[0]
|
|
289
|
+
size_y = self.image.shape[1]
|
|
290
|
+
self.extent = [0, size_x, size_y, 0]
|
|
291
|
+
self.rectangle = [0, size_x, 0, size_y]
|
|
292
|
+
self.axes[0].imshow(self.image.T, extent=self.extent)
|
|
293
|
+
self.axes[0].set_aspect('equal')
|
|
294
|
+
self.axes[0].add_patch(self.rect)
|
|
295
|
+
self.cid = self.axes[0].figure.canvas.mpl_connect('button_press_event', self._onclick)
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def line_select_callback(self, x_min, x_max):
|
|
299
|
+
self.start_cursor.value = np.round(x_min, 3)
|
|
300
|
+
self.end_cursor.value = np.round(x_max, 3)
|
|
301
|
+
self.start_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.start_cursor.value)
|
|
302
|
+
self.end_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.end_cursor.value)
|
|
303
|
+
|
|
304
|
+
def set_dataset(self, index=0):
|
|
305
|
+
|
|
306
|
+
if len(self.datasets) == 0:
|
|
307
|
+
data_set = sidpy.Dataset.from_array([0, 1], name='generic')
|
|
308
|
+
data_set.set_dimension(0, sidpy.Dimension([0,1], 'energy_loss', units='channel', quantity='generic',
|
|
309
|
+
dimension_type='spectral'))
|
|
310
|
+
data_set.data_type = 'spectrum'
|
|
311
|
+
data_set.metadata= {'experiment':{'convergence_angle': 0,
|
|
312
|
+
'collection_angle': 0,
|
|
313
|
+
'acceleration_voltage':0,
|
|
314
|
+
'exposure_time':0}}
|
|
315
|
+
self.datasets={'Channel_000': data_set}
|
|
316
|
+
index = 0
|
|
317
|
+
|
|
318
|
+
dataset_index = index
|
|
319
|
+
|
|
320
|
+
self.key = list(self.datasets)[dataset_index]
|
|
321
|
+
self.dataset = self.datasets[self.key]
|
|
322
|
+
|
|
323
|
+
self._udpate_sidbar()
|
|
324
|
+
self.y_scale = 1.0
|
|
325
|
+
self.change_y_scale = 1.0
|
|
326
|
+
self.x = 0
|
|
327
|
+
self.y = 0
|
|
328
|
+
self.bin_x = 1
|
|
329
|
+
self.bin_y = 1
|
|
330
|
+
self.count = 0
|
|
331
|
+
|
|
332
|
+
self.plot()
|
|
333
|
+
|
|
334
|
+
def _udpate_sidbar(self):
|
|
335
|
+
pass
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def set_energy_scale(self, value):
|
|
339
|
+
dispersion = self.datasets[self.key].energy_loss[1] - self.datasets[self.key].energy_loss[0]
|
|
340
|
+
self.datasets[self.key].energy_loss *= (self.sidebar[3, 0].value/dispersion)
|
|
341
|
+
self.datasets[self.key].energy_loss += (self.sidebar[2, 0].value-self.datasets[self.key].energy_loss[0])
|
|
342
|
+
self.plot()
|
|
343
|
+
|
|
344
|
+
def set_y_scale(self, value):
|
|
345
|
+
self.count += 1
|
|
346
|
+
self.change_y_scale = 1.0/self.y_scale
|
|
347
|
+
if self.sidebar[9,2].value:
|
|
348
|
+
dispersion = self.datasets[self.key].energy_loss[1] - self.datasets[self.key].energy_loss[0]
|
|
349
|
+
self.y_scale = 1/self.datasets[self.key].metadata['experiment']['flux_ppm'] * dispersion
|
|
350
|
+
self.ylabel='scattering probability (ppm)'
|
|
351
|
+
else:
|
|
352
|
+
self.y_scale = 1.0
|
|
353
|
+
self.ylabel='intensity (counts)'
|
|
354
|
+
self.change_y_scale *= self.y_scale
|
|
355
|
+
self._update()
|
|
356
|
+
|
|
357
|
+
class InfoWidget(EELSWidget):
|
|
358
|
+
def __init__(self, datasets):
|
|
359
|
+
|
|
360
|
+
sidebar = get_info_sidebar()
|
|
361
|
+
super().__init__(datasets, sidebar)
|
|
362
|
+
self.set_action()
|
|
363
|
+
|
|
364
|
+
def set_flux(self, value):
|
|
365
|
+
self.datasets[self.key].metadata['experiment']['exposure_time'] = self.sidebar[10,0].value
|
|
366
|
+
if self.sidebar[9,0].value < 0:
|
|
367
|
+
self.datasets[self.key].metadata['experiment']['flux_ppm'] = 0.
|
|
368
|
+
else:
|
|
369
|
+
key = list(self.datasets.keys())[self.sidebar[9,0].value]
|
|
370
|
+
self.datasets[self.key].metadata['experiment']['flux_ppm'] = (np.array(self.datasets[key])*1e-6).sum() / self.datasets[key].metadata['experiment']['exposure_time']
|
|
371
|
+
self.datasets[self.key].metadata['experiment']['flux_ppm'] *= self.datasets[self.key].metadata['experiment']['exposure_time']
|
|
372
|
+
self.sidebar[11,0].value = np.round(self.datasets[self.key].metadata['experiment']['flux_ppm'], 2)
|
|
373
|
+
|
|
374
|
+
def set_microscope_parameter(self, value):
|
|
375
|
+
self.datasets[self.key].metadata['experiment']['convergence_angle'] = self.sidebar[5,0].value
|
|
376
|
+
self.datasets[self.key].metadata['experiment']['collection_angle'] = self.sidebar[6,0].value
|
|
377
|
+
self.datasets[self.key].metadata['experiment']['acceleration_voltage'] = self.sidebar[7,0].value*1000
|
|
378
|
+
|
|
379
|
+
def cursor2energy_scale(self, value):
|
|
380
|
+
dispersion = (self.end_cursor.value - self.start_cursor.value) / (self.end_channel - self.start_channel)
|
|
381
|
+
self.datasets[self.key].energy_loss *= (self.sidebar[3, 0].value/dispersion)
|
|
382
|
+
self.sidebar[3, 0].value = dispersion
|
|
383
|
+
offset = self.start_cursor.value - self.start_channel * dispersion
|
|
384
|
+
self.datasets[self.key].energy_loss += (self.sidebar[2, 0].value-self.datasets[self.key].energy_loss[0])
|
|
385
|
+
self.sidebar[2, 0].value = offset
|
|
386
|
+
self.plot()
|
|
387
|
+
|
|
388
|
+
def set_binning(self, value):
|
|
389
|
+
if 'SPECTRAL' in self.dataset.data_type.name:
|
|
390
|
+
bin_x = self.sidebar[15,0].value
|
|
391
|
+
bin_y = self.sidebar[16,0].value
|
|
392
|
+
self.dataset.view.set_bin([bin_x, bin_y])
|
|
393
|
+
self.datasets[self.key].metadata['experiment']['SI_bin_x'] = bin_x
|
|
394
|
+
self.datasets[self.key].metadata['experiment']['SI_bin_y'] = bin_y
|
|
395
|
+
|
|
396
|
+
def _udpate_sidbar(self):
|
|
397
|
+
spectrum_list = []
|
|
398
|
+
reference_list =[('None', -1)]
|
|
399
|
+
for index, key in enumerate(self.datasets.keys()):
|
|
400
|
+
if 'Reference' not in key:
|
|
401
|
+
if 'SPECTR' in self.datasets[key].data_type.name:
|
|
402
|
+
spectrum_list.append((f'{key}: {self.datasets[key].title}', index))
|
|
403
|
+
reference_list.append((f'{key}: {self.datasets[key].title}', index))
|
|
404
|
+
|
|
405
|
+
self.sidebar[0,0].options = spectrum_list
|
|
406
|
+
self.sidebar[9,0].options = reference_list
|
|
407
|
+
|
|
408
|
+
if 'SPECTRUM' in self.dataset.data_type.name:
|
|
409
|
+
for i in range(14, 17):
|
|
410
|
+
self.sidebar[i, 0].layout.display = "none"
|
|
411
|
+
else:
|
|
412
|
+
for i in range(14, 17):
|
|
413
|
+
self.sidebar[i, 0].layout.display = "flex"
|
|
414
|
+
#self.sidebar[0,0].value = dataset_index #f'{self.key}: {self.datasets[self.key].title}'
|
|
415
|
+
self.sidebar[2,0].value = np.round(self.datasets[self.key].energy_loss[0], 3)
|
|
416
|
+
self.sidebar[3,0].value = np.round(self.datasets[self.key].energy_loss[1] - self.datasets[self.key].energy_loss[0], 4)
|
|
417
|
+
self.sidebar[5,0].value = np.round(self.datasets[self.key].metadata['experiment']['convergence_angle'], 1)
|
|
418
|
+
self.sidebar[6,0].value = np.round(self.datasets[self.key].metadata['experiment']['collection_angle'], 1)
|
|
419
|
+
self.sidebar[7,0].value = np.round(self.datasets[self.key].metadata['experiment']['acceleration_voltage']/1000, 1)
|
|
420
|
+
self.sidebar[10,0].value = np.round(self.datasets[self.key].metadata['experiment']['exposure_time'], 4)
|
|
421
|
+
if 'flux_ppm' not in self.datasets[self.key].metadata['experiment']:
|
|
422
|
+
self.datasets[self.key].metadata['experiment']['flux_ppm'] = 0
|
|
423
|
+
self.sidebar[11,0].value = self.datasets[self.key].metadata['experiment']['flux_ppm']
|
|
424
|
+
if 'count_conversion' not in self.datasets[self.key].metadata['experiment']:
|
|
425
|
+
self.datasets[self.key].metadata['experiment']['count_conversion'] = 1
|
|
426
|
+
self.sidebar[12,0].value = self.datasets[self.key].metadata['experiment']['count_conversion']
|
|
427
|
+
if 'beam_current' not in self.datasets[self.key].metadata['experiment']:
|
|
428
|
+
self.datasets[self.key].metadata['experiment']['beam_current'] = 0
|
|
429
|
+
self.sidebar[13,0].value = self.datasets[self.key].metadata['experiment']['beam_current']
|
|
430
|
+
|
|
431
|
+
def update_dataset(self):
|
|
432
|
+
dataset_index = self.sidebar[0, 0].value
|
|
433
|
+
self.set_dataset(dataset_index)
|
|
434
|
+
|
|
435
|
+
def set_action(self):
|
|
436
|
+
self.sidebar[0,0].observe(self.update_dataset)
|
|
437
|
+
self.sidebar[1,0].on_click(self.cursor2energy_scale)
|
|
438
|
+
self.sidebar[2,0].observe(self.set_energy_scale, names='value')
|
|
439
|
+
self.sidebar[3,0].observe(self.set_energy_scale, names='value')
|
|
440
|
+
self.sidebar[5,0].observe(self.set_microscope_parameter)
|
|
441
|
+
self.sidebar[6,0].observe(self.set_microscope_parameter)
|
|
442
|
+
self.sidebar[7,0].observe(self.set_microscope_parameter)
|
|
443
|
+
self.sidebar[9,0].observe(self.set_flux)
|
|
444
|
+
self.sidebar[9,2].observe(self.set_y_scale, names='value')
|
|
445
|
+
self.sidebar[10,0].observe(self.set_flux)
|
|
446
|
+
self.sidebar[15,0].observe(self.set_binning)
|
|
447
|
+
self.sidebar[16,0].observe(self.set_binning)
|
|
448
|
+
|
|
449
|
+
def get_low_loss_sidebar():
|
|
450
|
+
side_bar = ipywidgets.GridspecLayout(17, 3,width='auto', grid_gap="0px")
|
|
451
|
+
|
|
452
|
+
side_bar[0, :2] = ipywidgets.Dropdown(
|
|
453
|
+
options=[('None', 0)],
|
|
454
|
+
value=0,
|
|
455
|
+
description='Main Dataset:',
|
|
456
|
+
disabled=False)
|
|
457
|
+
|
|
458
|
+
row = 1
|
|
459
|
+
side_bar[row, :3] = ipywidgets.Button(description='Fix Energy Scale',
|
|
460
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
461
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
462
|
+
row += 1
|
|
463
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Offset:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
464
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
465
|
+
row += 1
|
|
466
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Dispersion:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
467
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
468
|
+
|
|
469
|
+
row += 1
|
|
470
|
+
side_bar[row, :3] = ipywidgets.Button(description='Resolution_function',
|
|
471
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
472
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
473
|
+
row += 1
|
|
474
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.3, description='Fit Window:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
475
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
476
|
+
row += 1
|
|
477
|
+
side_bar[row,:2] = ipywidgets.ToggleButton(
|
|
478
|
+
description='Show Resolution Function',
|
|
479
|
+
disabled=False,
|
|
480
|
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
481
|
+
tooltip='Changes y-axis to probability if flux is given',
|
|
482
|
+
layout=ipywidgets.Layout(width='100px'))
|
|
483
|
+
side_bar[row,2] = ipywidgets.ToggleButton(
|
|
484
|
+
description='Probability',
|
|
485
|
+
disabled=False,
|
|
486
|
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
487
|
+
tooltip='Changes y-axis to probability if flux is given',
|
|
488
|
+
layout=ipywidgets.Layout(width='100px'))
|
|
489
|
+
row += 2
|
|
490
|
+
|
|
491
|
+
side_bar[row, :3] = ipywidgets.Button(description='Drude Fit',
|
|
492
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
493
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
494
|
+
row+=1
|
|
495
|
+
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
496
|
+
options=[('None', 0)],
|
|
497
|
+
value=0,
|
|
498
|
+
description='Reference:',
|
|
499
|
+
disabled=False)
|
|
500
|
+
side_bar[row,2] = ipywidgets.ToggleButton(
|
|
501
|
+
description='Probability',
|
|
502
|
+
disabled=False,
|
|
503
|
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
504
|
+
tooltip='Changes y-axis to probability if flux is given',
|
|
505
|
+
layout=ipywidgets.Layout(width='100px'))
|
|
506
|
+
row += 1
|
|
507
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Exp_Time:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
508
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="s", layout=ipywidgets.Layout(width='100px'))
|
|
509
|
+
row += 1
|
|
510
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Flux:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
511
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="Mcounts", layout=ipywidgets.Layout(width='100px'))
|
|
512
|
+
row += 1
|
|
513
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Conversion:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
514
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value=r"e$^-$/counts", layout=ipywidgets.Layout(width='100px'))
|
|
515
|
+
row += 1
|
|
516
|
+
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Current:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
517
|
+
side_bar[row, 2] = ipywidgets.widgets.Label(value="pA", layout=ipywidgets.Layout(width='100px') )
|
|
518
|
+
|
|
519
|
+
row += 1
|
|
520
|
+
|
|
521
|
+
side_bar[row, :3] = ipywidgets.Button(description='Spectrum Image',
|
|
522
|
+
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
523
|
+
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
524
|
+
|
|
525
|
+
row += 1
|
|
526
|
+
side_bar[row, :2] = ipywidgets.IntText(value=1, description='bin X:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
527
|
+
row += 1
|
|
528
|
+
side_bar[row, :2] = ipywidgets.IntText(value=1, description='bin X:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
529
|
+
|
|
530
|
+
for i in range(14, 17):
|
|
531
|
+
pass
|
|
532
|
+
# side_bar[i, 0].layout.display = "none"
|
|
533
|
+
return side_bar
|
|
534
|
+
|
|
535
|
+
class LowLossWidget(EELSWidget):
|
|
536
|
+
def __init__(self, datasets):
|
|
537
|
+
sidebar = get_low_loss_sidebar()
|
|
538
|
+
super().__init__(datasets, sidebar)
|
|
539
|
+
self.sidebar[3,0].value = self.energy_scale[0]
|
|
540
|
+
self.sidebar[4,0].value = self.energy_scale[1] - self.energy_scale[0]
|
|
541
|
+
|
|
542
|
+
self.set_action()
|
|
543
|
+
|
|
544
|
+
def _udpate_sidbar(self):
|
|
545
|
+
spectrum_list = []
|
|
546
|
+
reference_list =[('None', -1)]
|
|
547
|
+
for index, key in enumerate(self.datasets.keys()):
|
|
548
|
+
if 'Reference' not in key:
|
|
549
|
+
if 'SPECTR' in self.datasets[key].data_type.name:
|
|
550
|
+
spectrum_list.append((f'{key}: {self.datasets[key].title}', index))
|
|
551
|
+
reference_list.append((f'{key}: {self.datasets[key].title}', index))
|
|
552
|
+
|
|
553
|
+
self.sidebar[0,0].options = spectrum_list
|
|
554
|
+
self.sidebar[9,0].options = reference_list
|
|
555
|
+
|
|
556
|
+
if 'SPECTRUM' in self.dataset.data_type.name:
|
|
557
|
+
for i in range(14, 17):
|
|
558
|
+
self.sidebar[i, 0].layout.display = "none"
|
|
559
|
+
else:
|
|
560
|
+
for i in range(14, 17):
|
|
561
|
+
self.sidebar[i, 0].layout.display = "flex"
|
|
562
|
+
|
|
563
|
+
def get_resolution_function(self, value):
|
|
564
|
+
self.datasets['resolution_functions'] = eels_tools.get_resolution_functions(self.dataset, zero_loss_fit_width=self.sidebar[5,0].value)
|
|
565
|
+
if 'low_loss' not in self.dataset.metadata:
|
|
566
|
+
self.dataset.metadata['low_loss'] = {}
|
|
567
|
+
self.dataset.metadata['low_loss'].update(self.datasets['resolution_functions'].metadata['low_loss'])
|
|
568
|
+
self.sidebar[6,0].value = True
|
|
569
|
+
|
|
570
|
+
def update_dataset(self):
|
|
571
|
+
dataset_index = self.sidebar[0, 0].value
|
|
572
|
+
self.set_dataset(dataset_index)
|
|
573
|
+
|
|
574
|
+
def set_action(self):
|
|
575
|
+
self.sidebar[0,0].observe(self.update_dataset)
|
|
576
|
+
self.sidebar[1,0].on_click(self.fix_energy_scale)
|
|
577
|
+
self.sidebar[2,0].observe(self.set_energy_scale, names='value')
|
|
578
|
+
self.sidebar[3,0].observe(self.set_energy_scale, names='value')
|
|
579
|
+
self.sidebar[4,0].on_click(self.get_resolution_function)
|
|
580
|
+
self.sidebar[6,2].observe(self.set_y_scale, names='value')
|
|
581
|
+
self.sidebar[6,0].observe(self._update, names='value')
|
|
582
|
+
|
|
583
|
+
def fix_energy_scale(self, value=0):
|
|
584
|
+
self.dataset = eels_tools.shift_on_same_scale(self.dataset)
|
|
585
|
+
self.datasets[self.key] = self.dataset
|
|
586
|
+
if 'resolution_functions' in self.datasets:
|
|
587
|
+
self.datasets['resolution_functions'] = eels_tools.shift_on_same_scale(self.datasets['resolution_functions'])
|
|
588
|
+
self._update()
|
|
589
|
+
|
|
590
|
+
|
|
591
|
+
def set_y_scale(self, value):
|
|
592
|
+
self.change_y_scale = 1.0/self.y_scale
|
|
593
|
+
if self.sidebar[6,2].value:
|
|
594
|
+
dispersion = self.dataset.energy_loss[1] - self.dataset.energy_loss[0]
|
|
595
|
+
if self.dataset.data_type.name == 'SPECTRUM':
|
|
596
|
+
sum = self.dataset.sum()
|
|
597
|
+
else:
|
|
598
|
+
image_dims = self.dataset.get_dimensions_by_type(sidpy.DimensionType.SPATIAL)
|
|
599
|
+
sum = np.average(self.dataset, axis=image_dims).sum()
|
|
600
|
+
|
|
601
|
+
self.y_scale = 1/sum * dispersion * 1e6
|
|
602
|
+
# self.datasets[self.key].metadata['experiment']['flux_ppm'] * dispersion
|
|
603
|
+
self.ylabel='scattering probability (ppm)'
|
|
604
|
+
else:
|
|
605
|
+
self.y_scale = 1.0
|
|
606
|
+
self.ylabel='intensity (counts)'
|
|
607
|
+
self.change_y_scale *= self.y_scale
|
|
608
|
+
self._update()
|
|
609
|
+
|
|
610
|
+
def _update(self, ev=0):
|
|
611
|
+
super()._update(ev)
|
|
612
|
+
if self.sidebar[6,0].value:
|
|
613
|
+
if 'resolution_functions' in self.datasets:
|
|
614
|
+
resolution_function = self.get_additional_spectrum('resolution_functions')
|
|
615
|
+
self.axis.plot(self.energy_scale, resolution_function, label='resolution_function')
|
|
616
|
+
self.axis.legend()
|
|
617
|
+
|
|
618
|
+
def get_additional_spectrum(self, key):
|
|
619
|
+
if key not in self.datasets.keys():
|
|
620
|
+
return
|
|
621
|
+
|
|
622
|
+
if self.datasets[key].data_type == sidpy.DataType.SPECTRUM:
|
|
623
|
+
self.spectrum = self.datasets[key].copy()
|
|
624
|
+
else:
|
|
625
|
+
image_dims = self.datasets[key].get_dimensions_by_type(sidpy.DimensionType.SPATIAL)
|
|
626
|
+
selection = []
|
|
627
|
+
for dim, axis in self.datasets[key]._axes.items():
|
|
628
|
+
# print(dim, axis.dimension_type)
|
|
629
|
+
if axis.dimension_type == sidpy.DimensionType.SPATIAL:
|
|
630
|
+
if dim == image_dims[0]:
|
|
631
|
+
selection.append(slice(self.x, self.x + self.bin_x))
|
|
632
|
+
else:
|
|
633
|
+
selection.append(slice(self.y, self.y + self.bin_y))
|
|
634
|
+
|
|
635
|
+
elif axis.dimension_type == sidpy.DimensionType.SPECTRAL:
|
|
636
|
+
selection.append(slice(None))
|
|
637
|
+
elif axis.dimension_type == sidpy.DimensionType.CHANNEL:
|
|
638
|
+
selection.append(slice(None))
|
|
639
|
+
else:
|
|
640
|
+
selection.append(slice(0, 1))
|
|
641
|
+
|
|
642
|
+
self.spectrum = self.datasets[key][tuple(selection)].mean(axis=tuple(image_dims))
|
|
643
|
+
|
|
644
|
+
self.spectrum *= self.y_scale
|
|
645
|
+
|
|
646
|
+
return self.spectrum.squeeze()
|
|
647
|
+
|
|
648
|
+
def set_binning(self, value):
|
|
649
|
+
if 'SPECTRAL' in self.dataset.data_type.name:
|
|
650
|
+
bin_x = self.sidebar[15,0].value
|
|
651
|
+
bin_y = self.sidebar[16,0].value
|
|
652
|
+
self.dataset.view.set_bin([bin_x, bin_y])
|
|
653
|
+
self.datasets[self.key].metadata['experiment']['SI_bin_x'] = bin_x
|
|
654
|
+
self.datasets[self.key].metadata['experiment']['SI_bin_y'] = bin_y
|
|
655
|
+
|
pyTEMlib/interactive_eels.py
CHANGED
|
@@ -14,14 +14,22 @@ except:
|
|
|
14
14
|
Qt_available = False
|
|
15
15
|
print('Qt dialogs are not available')
|
|
16
16
|
|
|
17
|
+
from pyTEMlib import eels_dialog
|
|
18
|
+
from pyTEMlib import info_dialog
|
|
19
|
+
from pyTEMlib import peak_dialog
|
|
20
|
+
|
|
17
21
|
if Qt_available:
|
|
18
|
-
from pyTEMlib import eels_dialog
|
|
19
|
-
|
|
20
|
-
from pyTEMlib import info_dialog
|
|
21
|
-
from pyTEMlib import peak_dialog
|
|
22
22
|
from pyTEMlib.eels_dialog_utilities import *
|
|
23
23
|
|
|
24
24
|
CompositionDialog = eels_dialog.EELSDialog
|
|
25
25
|
CurveVisualizer = eels_dialog.CurveVisualizer
|
|
26
26
|
InfoDialog = info_dialog.InfoDialog
|
|
27
27
|
PeakFitDialog = peak_dialog.PeakFitDialog
|
|
28
|
+
else:
|
|
29
|
+
CompositionDialog = eels_dialog.CompositionWidget
|
|
30
|
+
InfoDialog = info_dialog.InfoWidget
|
|
31
|
+
PeakFitDialog = peak_dialog.PeakFitWidget
|
|
32
|
+
|
|
33
|
+
InfoWidget = info_dialog.InfoWidget
|
|
34
|
+
CompositionWidget = eels_dialog.CompositionWidget
|
|
35
|
+
PeakFitWidget = peak_dialog.PeakFitWidget
|