pyTEMlib 0.2020.11.1__py3-none-any.whl → 0.2024.8.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyTEMlib might be problematic. Click here for more details.
- pyTEMlib/__init__.py +11 -11
- pyTEMlib/animation.py +631 -0
- pyTEMlib/atom_tools.py +240 -245
- pyTEMlib/config_dir.py +57 -33
- pyTEMlib/core_loss_widget.py +658 -0
- pyTEMlib/crystal_tools.py +1255 -0
- pyTEMlib/diffraction_plot.py +756 -0
- pyTEMlib/dynamic_scattering.py +293 -0
- pyTEMlib/eds_tools.py +609 -0
- pyTEMlib/eels_dialog.py +749 -491
- pyTEMlib/{interactive_eels.py → eels_dialog_utilities.py} +1199 -1177
- pyTEMlib/eels_tools.py +2031 -1698
- pyTEMlib/file_tools.py +1276 -560
- pyTEMlib/file_tools_qt.py +193 -0
- pyTEMlib/graph_tools.py +1166 -450
- pyTEMlib/graph_viz.py +449 -0
- pyTEMlib/image_dialog.py +158 -0
- pyTEMlib/image_dlg.py +146 -232
- pyTEMlib/image_tools.py +1399 -1028
- pyTEMlib/info_widget.py +933 -0
- pyTEMlib/interactive_image.py +1 -226
- pyTEMlib/kinematic_scattering.py +1196 -0
- pyTEMlib/low_loss_widget.py +176 -0
- pyTEMlib/microscope.py +61 -81
- pyTEMlib/peak_dialog.py +1047 -410
- pyTEMlib/peak_dlg.py +286 -242
- pyTEMlib/probe_tools.py +653 -207
- pyTEMlib/sidpy_tools.py +153 -136
- pyTEMlib/simulation_tools.py +104 -87
- pyTEMlib/version.py +6 -3
- pyTEMlib/xrpa_x_sections.py +20972 -0
- {pyTEMlib-0.2020.11.1.dist-info → pyTEMlib-0.2024.8.4.dist-info}/LICENSE +21 -21
- pyTEMlib-0.2024.8.4.dist-info/METADATA +93 -0
- pyTEMlib-0.2024.8.4.dist-info/RECORD +37 -0
- {pyTEMlib-0.2020.11.1.dist-info → pyTEMlib-0.2024.8.4.dist-info}/WHEEL +6 -5
- {pyTEMlib-0.2020.11.1.dist-info → pyTEMlib-0.2024.8.4.dist-info}/entry_points.txt +0 -1
- pyTEMlib/KinsCat.py +0 -2758
- pyTEMlib/__version__.py +0 -2
- pyTEMlib/data/TEMlibrc +0 -68
- pyTEMlib/data/edges_db.csv +0 -189
- pyTEMlib/data/edges_db.pkl +0 -0
- pyTEMlib/data/fparam.txt +0 -103
- pyTEMlib/data/microscopes.csv +0 -7
- pyTEMlib/data/microscopes.xml +0 -167
- pyTEMlib/data/path.txt +0 -1
- pyTEMlib/defaults_parser.py +0 -90
- pyTEMlib/dm3_reader.py +0 -613
- pyTEMlib/edges_db.py +0 -76
- pyTEMlib/eels_dlg.py +0 -224
- pyTEMlib/hdf_utils.py +0 -483
- pyTEMlib/image_tools1.py +0 -2194
- pyTEMlib/info_dialog.py +0 -237
- pyTEMlib/info_dlg.py +0 -202
- pyTEMlib/nion_reader.py +0 -297
- pyTEMlib/nsi_reader.py +0 -170
- pyTEMlib/structure_tools.py +0 -316
- pyTEMlib/test.py +0 -2072
- pyTEMlib-0.2020.11.1.dist-info/METADATA +0 -20
- pyTEMlib-0.2020.11.1.dist-info/RECORD +0 -45
- {pyTEMlib-0.2020.11.1.dist-info → pyTEMlib-0.2024.8.4.dist-info}/top_level.txt +0 -0
pyTEMlib/probe_tools.py
CHANGED
|
@@ -1,207 +1,653 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
import
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
def make_gauss(size_x, size_y, width=1.0, x0=0.0, y0=0.0, intensity=1.0):
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
0.
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
def
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
#
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
""
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
1
|
+
"""Functions to calculate electron probe"""
|
|
2
|
+
import numpy as np
|
|
3
|
+
import pyTEMlib.image_tools
|
|
4
|
+
import scipy.ndimage as ndimage
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def make_gauss(size_x, size_y, width=1.0, x0=0.0, y0=0.0, intensity=1.0):
|
|
8
|
+
"""Make a Gaussian shaped probe """
|
|
9
|
+
size_x = size_x / 2
|
|
10
|
+
size_y = size_y / 2
|
|
11
|
+
x, y = np.mgrid[-size_x:size_x, -size_y:size_y]
|
|
12
|
+
g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / 2.0 / width ** 2)
|
|
13
|
+
probe = g / g.sum() * intensity
|
|
14
|
+
|
|
15
|
+
return probe
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def make_lorentz(size_x, size_y, gamma=1.0, x0=0., y0=0., intensity=1.):
|
|
19
|
+
"""Make a Lorentzian shaped probe """
|
|
20
|
+
|
|
21
|
+
size_x = np.floor(size_x / 2)
|
|
22
|
+
size_y = np.floor(size_y / 2)
|
|
23
|
+
x, y = np.mgrid[-size_x:size_x, -size_y:size_y]
|
|
24
|
+
g = gamma / (2 * np.pi) / np.power(((x - x0) ** 2 + (y - y0) ** 2 + gamma ** 2), 1.5)
|
|
25
|
+
probe = g / g.sum() * intensity
|
|
26
|
+
return probe
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def zero_loss_peak_weight():
|
|
30
|
+
# US100 zero_loss peak for Cc of aberrations
|
|
31
|
+
x = np.linspace(-0.5, 0.9, 29)
|
|
32
|
+
y = [0.0143, 0.0193, 0.0281, 0.0440, 0.0768, 0.1447, 0.2785, 0.4955, 0.7442, 0.9380, 1.0000, 0.9483, 0.8596,
|
|
33
|
+
0.7620, 0.6539, 0.5515, 0.4478, 0.3500, 0.2683, 0.1979, 0.1410, 0.1021, 0.0752, 0.0545, 0.0401, 0.0300,
|
|
34
|
+
0.0229, 0.0176, 0.0139]
|
|
35
|
+
return x, y
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def make_chi(phi, theta, aberrations):
|
|
39
|
+
maximum_aberration_order = 5
|
|
40
|
+
chi = np.zeros(theta.shape)
|
|
41
|
+
for n in range(maximum_aberration_order + 1): # First Sum up to fifth order
|
|
42
|
+
term_first_sum = np.power(theta, n + 1) / (n + 1) # term in first sum
|
|
43
|
+
|
|
44
|
+
second_sum = np.zeros(theta.shape) # second Sum initialized with zeros
|
|
45
|
+
for m in range((n + 1) % 2, n + 2, 2):
|
|
46
|
+
if m > 0:
|
|
47
|
+
if f'C{n}{m}a' not in aberrations: # Set non existent aberrations coefficient to zero
|
|
48
|
+
aberrations[f'C{n}{m}a'] = 0.
|
|
49
|
+
if f'C{n}{m}b' not in aberrations:
|
|
50
|
+
aberrations[f'C{n}{m}b'] = 0.
|
|
51
|
+
|
|
52
|
+
# term in second sum
|
|
53
|
+
second_sum = second_sum + aberrations[f'C{n}{m}a'] * np.cos(m * phi) + aberrations[
|
|
54
|
+
f'C{n}{m}b'] * np.sin(m * phi)
|
|
55
|
+
else:
|
|
56
|
+
if f'C{n}{m}' not in aberrations: # Set non existent aberrations coefficient to zero
|
|
57
|
+
aberrations[f'C{n}{m}'] = 0.
|
|
58
|
+
|
|
59
|
+
# term in second sum
|
|
60
|
+
second_sum = second_sum + aberrations[f'C{n}{m}']
|
|
61
|
+
chi = chi + term_first_sum * second_sum * 2 * np.pi / aberrations['wavelength']
|
|
62
|
+
|
|
63
|
+
return chi
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def get_chi(ab, size_x, size_y, verbose=False):
|
|
67
|
+
""" Get aberration function chi without defocus spread
|
|
68
|
+
|
|
69
|
+
# Internally reciprocal lattice vectors in 1/nm or rad.
|
|
70
|
+
# All calculations of chi in angles.
|
|
71
|
+
# All aberration coefficients in nm
|
|
72
|
+
"""
|
|
73
|
+
aperture_angle = ab['convergence_angle'] / 1000.0 # in rad
|
|
74
|
+
|
|
75
|
+
wavelength = pyTEMlib.image_tools.get_wavelength(ab['acceleration_voltage'])
|
|
76
|
+
if verbose:
|
|
77
|
+
print(f"Acceleration voltage {ab['acceleration_voltage'] / 1000:}kV => wavelength {wavelength * 1000.:.2f}pm")
|
|
78
|
+
|
|
79
|
+
ab['wavelength'] = wavelength
|
|
80
|
+
|
|
81
|
+
# Reciprocal plane in 1/nm
|
|
82
|
+
dk = 1 / ab['FOV']
|
|
83
|
+
k_x = np.array(dk * (-size_x / 2. + np.arange(size_x)))
|
|
84
|
+
k_y = np.array(dk * (-size_y / 2. + np.arange(size_y)))
|
|
85
|
+
t_x_v, t_y_v = np.meshgrid(k_x, k_y)
|
|
86
|
+
|
|
87
|
+
# define reciprocal plane in angles
|
|
88
|
+
phi = np.arctan2(t_x_v, t_y_v)
|
|
89
|
+
theta = np.arctan2(np.sqrt(t_x_v ** 2 + t_y_v ** 2), 1 / wavelength)
|
|
90
|
+
|
|
91
|
+
# calculate chi
|
|
92
|
+
chi = make_chi(phi, theta, ab)
|
|
93
|
+
|
|
94
|
+
# Aperture function
|
|
95
|
+
mask = theta >= aperture_angle
|
|
96
|
+
|
|
97
|
+
aperture = np.ones((size_x, size_y), dtype=float)
|
|
98
|
+
aperture[mask] = 0.
|
|
99
|
+
|
|
100
|
+
return chi, aperture
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def print_aberrations(ab):
|
|
104
|
+
from IPython.display import HTML, display
|
|
105
|
+
output = '<html><body>'
|
|
106
|
+
output += f"Aberrations [nm] for acceleration voltage: {ab['acceleration_voltage'] / 1e3:.0f} kV"
|
|
107
|
+
output += '<table>'
|
|
108
|
+
output += f"<tr><td> C10 </td><td> {ab['C10']:.1f} </tr>"
|
|
109
|
+
output += f"<tr><td> C12a </td><td> {ab['C12a']:20.1f} <td> C12b </td><td> {ab['C12b']:20.1f} </tr>"
|
|
110
|
+
output += f"<tr><td> C21a </td><td> {ab['C21a']:.1f} <td> C21b </td><td> {ab['C21b']:.1f} "
|
|
111
|
+
output += f" <td> C23a </td><td> {ab['C23a']:.1f} <td> C23b </td><td> {ab['C23b']:.1f} </tr>"
|
|
112
|
+
output += f"<tr><td> C30 </td><td> {ab['C30']:.1f} </tr>"
|
|
113
|
+
output += f"<tr><td> C32a </td><td> {ab['C32a']:20.1f} <td> C32b </td><td> {ab['C32b']:20.1f} "
|
|
114
|
+
output += f"<td> C34a </td><td> {ab['C34a']:20.1f} <td> C34b </td><td> {ab['C34b']:20.1f} </tr>"
|
|
115
|
+
output += f"<tr><td> C41a </td><td> {ab['C41a']:.3g} <td> C41b </td><td> {ab['C41b']:.3g} "
|
|
116
|
+
output += f" <td> C43a </td><td> {ab['C43a']:.3g} <td> C43b </td><td> {ab['C41b']:.3g} "
|
|
117
|
+
output += f" <td> C45a </td><td> {ab['C45a']:.3g} <td> C45b </td><td> {ab['C45b']:.3g} </tr>"
|
|
118
|
+
output += f"<tr><td> C50 </td><td> {ab['C50']:.3g} </tr>"
|
|
119
|
+
output += f"<tr><td> C52a </td><td> {ab['C52a']:20.1f} <td> C52b </td><td> {ab['C52b']:20.1f} "
|
|
120
|
+
output += f"<td> C54a </td><td> {ab['C54a']:20.1f} <td> C54b </td><td> {ab['C54b']:20.1f} "
|
|
121
|
+
output += f"<td> C56a </td><td> {ab['C56a']:20.1f} <td> C56b </td><td> {ab['C56b']:20.1f} </tr>"
|
|
122
|
+
output += f"<tr><td> Cc </td><td> {ab['Cc']:.3g} </tr>"
|
|
123
|
+
|
|
124
|
+
output += '</table></body></html>'
|
|
125
|
+
|
|
126
|
+
display(HTML(output))
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
def get_ronchigram(size, ab, scale='mrad'):
|
|
130
|
+
""" Get Ronchigram
|
|
131
|
+
|
|
132
|
+
"""
|
|
133
|
+
size_x = size_y = size
|
|
134
|
+
chi, A_k = get_chi(ab, size_x, size_y)
|
|
135
|
+
|
|
136
|
+
v_noise = np.random.rand(size_x, size_y)
|
|
137
|
+
smoothing = 5
|
|
138
|
+
phi_r = ndimage.gaussian_filter(v_noise, sigma=(smoothing, smoothing), order=0)
|
|
139
|
+
|
|
140
|
+
sigma = 6 # 6 for carbon and thin
|
|
141
|
+
|
|
142
|
+
q_r = np.exp(-1j * sigma * phi_r)
|
|
143
|
+
# q_r = 1-phi_r * sigma
|
|
144
|
+
|
|
145
|
+
T_k = A_k * (np.exp(-1j * chi))
|
|
146
|
+
t_r = (np.fft.ifft2(np.fft.fftshift(T_k)))
|
|
147
|
+
|
|
148
|
+
psi_k = np.fft.fftshift(np.fft.fft2(q_r * t_r))
|
|
149
|
+
|
|
150
|
+
ronchigram = np.absolute(psi_k * np.conjugate(psi_k))
|
|
151
|
+
|
|
152
|
+
fov_reciprocal = 1 / ab['FOV'] * size_x / 2
|
|
153
|
+
if scale == '1/nm':
|
|
154
|
+
extent = [-fov_reciprocal, fov_reciprocal, -fov_reciprocal, fov_reciprocal]
|
|
155
|
+
ylabel = 'reciprocal distance [1/nm]'
|
|
156
|
+
else:
|
|
157
|
+
fov_mrad = fov_reciprocal * ab['wavelength'] * 1000
|
|
158
|
+
extent = [-fov_mrad, fov_mrad, -fov_mrad, fov_mrad]
|
|
159
|
+
ylabel = 'reciprocal distance [mrad]'
|
|
160
|
+
|
|
161
|
+
ab['ronchi_extent'] = extent
|
|
162
|
+
ab['ronchi_label'] = ylabel
|
|
163
|
+
return ronchigram
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
def get_chi_2(ab, u, v):
|
|
167
|
+
chi1 = ab['C10'] * (u ** 2 + v ** 2) / 2 \
|
|
168
|
+
+ ab['C12a'] * (u ** 2 - v ** 2) / 2 \
|
|
169
|
+
- ab['C12b'] * u * v
|
|
170
|
+
|
|
171
|
+
chi2 = ab['C21a'] * (u ** 3 + u * v ** 2) / 3 \
|
|
172
|
+
- ab['C21b'] * (u ** 2 * v + v ** 3) / 3 \
|
|
173
|
+
+ ab['C23a'] * (u ** 3 - 3 * u * v ** 2) / 3 \
|
|
174
|
+
- ab['C23b'] * (3 * u ** 2 * v - v ** 3) / 3
|
|
175
|
+
|
|
176
|
+
chi3 = ab['C30'] * (u ** 4 + 2 * u ** 2 * v ** 2 + v ** 4) / 4 \
|
|
177
|
+
+ ab['C32a'] * (u ** 4 - v ** 4) / 4 \
|
|
178
|
+
- ab['C32b'] * (u ** 3 * v + u * v ** 3) / 2 \
|
|
179
|
+
+ ab['C34a'] * (u ** 4 - 6 * u ** 2 * v ** 2 + v ** 4) / 4 \
|
|
180
|
+
- ab['C34b'] * (4 * u ** 3 * v - 4 * u * v ** 3) / 4
|
|
181
|
+
|
|
182
|
+
chi4 = ab['C41a'] * (u ** 5 + 2 * u ** 3 * v ** 2 + u * v ** 4) / 5 \
|
|
183
|
+
- ab['C41b'] * (u ** 4 * v + 2 * u ** 2 * v ** 3 + v ** 5) / 5 \
|
|
184
|
+
+ ab['C43a'] * (u ** 5 - 2 * u ** 3 * v ** 2 - 3 * u * v ** 4) / 5 \
|
|
185
|
+
- ab['C43b'] * (3 * u ** 4 * v + 2 * u ** 2 * v ** 3 - v ** 5) / 5 \
|
|
186
|
+
+ ab['C45a'] * (u ** 5 - 10 * u ** 3 * v ** 2 + 5 * u * v ** 4) / 5 \
|
|
187
|
+
- ab['C45b'] * (5 * u ** 4 * v - 10 * u ** 2 * v ** 3 + v ** 5) / 5
|
|
188
|
+
|
|
189
|
+
chi5 = ab['C50'] * (u ** 6 + 3 * u ** 4 * v ** 2 + 3 * u ** 2 * v ** 4 + v ** 6) / 6 \
|
|
190
|
+
+ ab['C52a'] * (u ** 6 + u ** 4 * v ** 2 - u ** 2 * v ** 4 - v ** 6) / 6 \
|
|
191
|
+
- ab['C52b'] * (2 * u ** 5 * v + 4 * u ** 3 * v ** 3 + 2 * u * v ** 5) / 6 \
|
|
192
|
+
+ ab['C54a'] * (u ** 6 - 5 * u ** 4 * v ** 2 - 5 * u ** 2 * v ** 4 + v ** 6) / 6 \
|
|
193
|
+
- ab['C54b'] * (4 * u ** 5 * v - 4 * u * v ** 5) / 6 \
|
|
194
|
+
+ ab['C56a'] * (u ** 6 - 15 * u ** 4 * v ** 2 + 15 * u ** 2 * v ** 4 - v ** 6) / 6 \
|
|
195
|
+
- ab['C56b'] * (6 * u ** 5 * v - 20 * u ** 3 * v ** 3 + 6 * u * v ** 5) / 6
|
|
196
|
+
|
|
197
|
+
chi = chi1 + chi2 + chi3 + chi4 + chi5
|
|
198
|
+
return chi * 2 * np.pi / ab['wavelength']
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
def get_d2chidu2(ab, u, v):
|
|
202
|
+
d2chi1du2 = ab['C10'] + ab['C12a']
|
|
203
|
+
|
|
204
|
+
d2chi2du2 = ab['C21a'] * 2 * u \
|
|
205
|
+
- ab['C21b'] * 2 / 3 * v \
|
|
206
|
+
+ ab['C23a'] * 2 * u \
|
|
207
|
+
- ab['C23b'] * 2 * v
|
|
208
|
+
|
|
209
|
+
d2chi3du2 = ab['C30'] * (3 * u ** 2 + v ** 2) \
|
|
210
|
+
+ ab['C32a'] * 3 * u ** 2 \
|
|
211
|
+
- ab['C32b'] * 3 * u * v \
|
|
212
|
+
+ ab['C34a'] * (3 * u ** 2 - 3 * v ** 2) \
|
|
213
|
+
- ab['C34b'] * 6 * u * v
|
|
214
|
+
|
|
215
|
+
d2chi4du2 = ab['C41a'] * 4 / 5 * (5 * u ** 3 + 3 * u * v ** 2) \
|
|
216
|
+
- ab['C41b'] * 4 / 5 * (3 * u ** 2 * v + v ** 3) \
|
|
217
|
+
+ ab['C43a'] * 4 / 5 * (5 * u ** 3 - 3 * u * v ** 2) \
|
|
218
|
+
- ab['C43b'] * 4 / 5 * (9 * u ** 2 * v + v ** 3) \
|
|
219
|
+
+ ab['C45a'] * 4 * (u ** 3 - 3 * u * v ** 2) \
|
|
220
|
+
- ab['C45b'] * 4 * (3 * u ** 2 * v - v ** 3)
|
|
221
|
+
|
|
222
|
+
d2chi5du2 = ab['C50'] * (5 * u ** 4 + 6 * u ** 2 * v ** 2 + v ** 4) \
|
|
223
|
+
+ ab['C52a'] * (15 * u ** 4 + 6 * u ** 2 * v ** 2 - v ** 4) / 3 \
|
|
224
|
+
- ab['C52b'] * (20 * u ** 3 * v + 12 * u * v ** 3) / 3 \
|
|
225
|
+
+ ab['C54a'] * 5 / 3 * (3 * u ** 4 - 6 * u ** 2 * v ** 2 - v ** 4) \
|
|
226
|
+
- ab['C54b'] * 5 / 3 * (8 * u ** 3 * v) \
|
|
227
|
+
+ ab['C56a'] * 5 * (u ** 4 - 6 * u ** 2 * v ** 2 + v ** 4) \
|
|
228
|
+
- ab['C56b'] * 20 * (u ** 3 * v - u * v ** 3)
|
|
229
|
+
|
|
230
|
+
d2chidu2 = d2chi1du2 + d2chi2du2 + d2chi3du2 + d2chi4du2 + d2chi5du2
|
|
231
|
+
return d2chidu2
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
def get_d2chidudv(ab, u, v):
|
|
235
|
+
d2chi1dudv = -ab['C12b']
|
|
236
|
+
|
|
237
|
+
d2chi2dudv = ab['C21a'] * 2 / 3 * v \
|
|
238
|
+
- ab['C21b'] * 2 / 3 * u \
|
|
239
|
+
- ab['C23a'] * 2 * v \
|
|
240
|
+
- ab['C23b'] * 2 * u
|
|
241
|
+
|
|
242
|
+
d2chi3dudv = ab['C30'] * 2 * u * v \
|
|
243
|
+
+ ab['C32a'] * 0 \
|
|
244
|
+
- ab['C32b'] * 3 / 2 * (u ** 2 + v ** 2) \
|
|
245
|
+
- ab['C34a'] * 6 * u * v \
|
|
246
|
+
- ab['C34b'] * 3 * (u ** 2 - v ** 2)
|
|
247
|
+
|
|
248
|
+
d2chi4dudv = ab['C41a'] * 4 / 5 * (3 * u ** 2 * v + v ** 3) \
|
|
249
|
+
- ab['C41b'] * 4 / 5 * (u ** 3 + 3 * u * v ** 2) \
|
|
250
|
+
- ab['C43a'] * 12 / 5 * (u ** 2 * v + v ** 3) \
|
|
251
|
+
- ab['C43b'] * 12 / 5 * (u ** 3 + u * v ** 2) \
|
|
252
|
+
- ab['C45a'] * 4 * (3 * u ** 2 * v - v ** 3) \
|
|
253
|
+
- ab['C45b'] * 4 * (u ** 3 - 3 * u * v ** 2)
|
|
254
|
+
|
|
255
|
+
d2chi5dudv = ab['C50'] * 4 * u * v * (u ** 2 + v ** 2) \
|
|
256
|
+
+ ab['C52a'] * 4 / 3 * (u ** 3 * v - u * v ** 3) \
|
|
257
|
+
- ab['C52b'] * (5 * u ** 4 + 18 * u ** 2 * v ** 2 + 5 * v ** 4) / 3 \
|
|
258
|
+
- ab['C54a'] * 20 / 3 * (u ** 3 * v + u * v ** 3) \
|
|
259
|
+
- ab['C54b'] * 10 / 3 * (u ** 4 - v ** 4) \
|
|
260
|
+
- ab['C56a'] * 20 * (u ** 3 * v - u * v ** 3) \
|
|
261
|
+
- ab['C56b'] * 5 * (u ** 4 - 6 * u ** 2 * v ** 2 + v ** 4)
|
|
262
|
+
|
|
263
|
+
d2chidudv = d2chi1dudv + d2chi2dudv + d2chi3dudv + d2chi4dudv + d2chi5dudv
|
|
264
|
+
return d2chidudv
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
def get_d2chidv2(ab, u, v):
|
|
268
|
+
d2chi1dv2 = ab['C10'] - ab['C12a']
|
|
269
|
+
|
|
270
|
+
d2chi2dv2 = ab['C21a'] * 2 / 3 * u \
|
|
271
|
+
- ab['C21b'] * 2 * v \
|
|
272
|
+
- ab['C23a'] * 2 * u \
|
|
273
|
+
+ ab['C23b'] * 2 * v
|
|
274
|
+
|
|
275
|
+
d2chi3dv2 = ab['C30'] * (u ** 2 + 3 * v ** 2) \
|
|
276
|
+
- ab['C32a'] * 3 * v ** 2 \
|
|
277
|
+
- ab['C32b'] * 3 * v * u \
|
|
278
|
+
- ab['C34a'] * 3 * (u ** 2 - v ** 2) \
|
|
279
|
+
+ ab['C34b'] * 6 * u * v
|
|
280
|
+
|
|
281
|
+
d2chi4dv2 = ab['C41a'] * 4 / 5 * (u ** 3 + 3 * u * v ** 2) \
|
|
282
|
+
- ab['C41b'] * 4 / 5 * (3 * u ** 2 * v + 5 * v ** 3) \
|
|
283
|
+
- ab['C43a'] * 4 / 5 * (u ** 3 + 9 * u * v ** 2) \
|
|
284
|
+
- ab['C43b'] * 4 / 5 * (3 * u ** 2 * v - 5 * v ** 3) \
|
|
285
|
+
- ab['C45a'] * 4 * (u ** 3 - 3 * u * v ** 2) \
|
|
286
|
+
+ ab['C45b'] * 4 * (3 * u ** 2 * v - v ** 3)
|
|
287
|
+
|
|
288
|
+
d2chi5dv2 = ab['C50'] * (u ** 4 + 6 * u ** 2 * v ** 2 + 5 * v ** 4) \
|
|
289
|
+
+ ab['C52a'] * (u ** 4 - 6 * u ** 2 * v ** 2 - 15 * v ** 4) / 3 \
|
|
290
|
+
- ab['C52b'] * (12 * u ** 3 * v + 20 * u * v ** 3) / 3 \
|
|
291
|
+
- ab['C54a'] * 5 / 3 * (u ** 4 + 6 * u ** 2 * v ** 2 - 3 * v ** 4) \
|
|
292
|
+
+ ab['C54b'] * 40 / 3 * u * v ** 3 \
|
|
293
|
+
- ab['C56a'] * 5 * (u ** 4 - 6 * u ** 2 * v ** 2 + v ** 4) \
|
|
294
|
+
+ ab['C56b'] * 20 * (u ** 3 * v - u * v ** 3)
|
|
295
|
+
|
|
296
|
+
d2chidv2 = d2chi1dv2 + d2chi2dv2 + d2chi3dv2 + d2chi4dv2 + d2chi5dv2
|
|
297
|
+
return d2chidv2
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def get_source_energy_spread():
|
|
301
|
+
x = np.linspace(-0.5, .9, 29)
|
|
302
|
+
y = [0.0143, 0.0193, 0.0281, 0.0440, 0.0768, 0.1447, 0.2785, 0.4955, 0.7442, 0.9380, 1.0000, 0.9483, 0.8596, 0.7620,
|
|
303
|
+
0.6539, 0.5515, 0.4478, 0.3500, 0.2683, 0.1979, 0.1410, 0.1021, 0.0752, 0.0545, 0.0401, 0.0300, 0.0229, 0.0176,
|
|
304
|
+
0.0139]
|
|
305
|
+
|
|
306
|
+
return x, y
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
def get_target_aberrations(TEM_name, acceleration_voltage):
|
|
310
|
+
ab = {}
|
|
311
|
+
if TEM_name == 'NionUS200':
|
|
312
|
+
if int(acceleration_voltage) == 200000:
|
|
313
|
+
print(f' **** Using Target Values at {acceleration_voltage / 1000}kV for Aberrations of {TEM_name}****')
|
|
314
|
+
ab = {'C10': 0, 'C12a': 0, 'C12b': 0, 'C21a': -335., 'C21b': 283., 'C23a': -34., 'C23b': 220.,
|
|
315
|
+
'C30': -8080.,
|
|
316
|
+
'C32a': 18800., 'C32b': -2260., 'C34a': 949., 'C34b': 949., 'C41a': 54883., 'C41b': -464102.,
|
|
317
|
+
'C43a': 77240.5,
|
|
318
|
+
'C43b': -540842., 'C45a': -79844.4, 'C45b': -76980.8, 'C50': 9546970., 'C52a': -2494290.,
|
|
319
|
+
'C52b': 2999910.,
|
|
320
|
+
'C54a': -2020140., 'C54b': -2019630., 'C56a': -535079., 'C56b': 1851850.}
|
|
321
|
+
ab['source_size'] = 0.051
|
|
322
|
+
ab['acceleration_voltage'] = acceleration_voltage
|
|
323
|
+
ab['convergence_angle'] = 30
|
|
324
|
+
|
|
325
|
+
ab['Cc'] = 1.3e6 # // Cc in nm
|
|
326
|
+
|
|
327
|
+
if int(acceleration_voltage) == 100000:
|
|
328
|
+
print(f' **** Using Target Values at {acceleration_voltage / 1000}kV for Aberrations of {TEM_name}****')
|
|
329
|
+
|
|
330
|
+
ab = {'C10': 0, 'C12a': 0, 'C12b': 0, 'C21a': 157., 'C21b': 169, 'C23a': -173., 'C23b': 48.7, 'C30': 201.,
|
|
331
|
+
'C32a': 1090., 'C32b': 6840., 'C34a': 1010., 'C34b': 79.9, 'C41a': -210696., 'C41b': -262313.,
|
|
332
|
+
'C43a': 348450., 'C43b': -9.7888e4, 'C45a': 6.80247e4, 'C45b': -3.14637e1, 'C50': -193896.,
|
|
333
|
+
'C52a': -1178950, 'C52b': -7414340, 'C54a': -1753890, 'C54b': -1753890, 'C56a': -631786,
|
|
334
|
+
'C56b': -165705}
|
|
335
|
+
ab['source_size'] = 0.051
|
|
336
|
+
ab['acceleration_voltage'] = acceleration_voltage
|
|
337
|
+
ab['convergence_angle'] = 30
|
|
338
|
+
ab['Cc'] = 1.3e6
|
|
339
|
+
|
|
340
|
+
if int(acceleration_voltage) == 60000:
|
|
341
|
+
print(f' **** Using Target Values at {acceleration_voltage / 1000}kV for Aberrations of {TEM_name}****')
|
|
342
|
+
|
|
343
|
+
ab = {'C10': 0, 'C12a': 0, 'C12b': 0, 'C21a': 11.5, 'C21b': 113, 'C23a': -136., 'C23b': 18.2, 'C30': 134.,
|
|
344
|
+
'C32a': 1080., 'C32b': 773., 'C34a': 1190., 'C34b': -593., 'C41a': -179174., 'C41b': -350378.,
|
|
345
|
+
'C43a': 528598, 'C43b': -257349., 'C45a': 63853.4, 'C45b': 1367.98, 'C50': 239021., 'C52a': 1569280.,
|
|
346
|
+
'C52b': -6229310., 'C54a': -3167620., 'C54b': -449198., 'C56a': -907315., 'C56b': -16281.9}
|
|
347
|
+
ab['source_size'] = 0.081
|
|
348
|
+
ab['acceleration_voltage'] = acceleration_voltage
|
|
349
|
+
ab['convergence_angle'] = 30
|
|
350
|
+
ab['Cc'] = 1.3e6 # // Cc in nm
|
|
351
|
+
|
|
352
|
+
ab['origin'] = 'target aberrations'
|
|
353
|
+
ab['TEM_name'] = TEM_name
|
|
354
|
+
ab['wavelength'] = pyTEMlib.image_tools.get_wavelength(ab['acceleration_voltage'])
|
|
355
|
+
|
|
356
|
+
if TEM_name == 'NionUS100':
|
|
357
|
+
if int(acceleration_voltage) == 100000:
|
|
358
|
+
print(f' **** Using Target Values at {acceleration_voltage / 1000}kV for Aberrations of {TEM_name}****')
|
|
359
|
+
|
|
360
|
+
ab = {'C10': 0, 'C12a': 0, 'C12b': 0, 'C21a': 157., 'C21b': 169, 'C23a': -173., 'C23b': 48.7, 'C30': 201.,
|
|
361
|
+
'C32a': 1090., 'C32b': 6840., 'C34a': 1010., 'C34b': 79.9, 'C41a': -210696., 'C41b': -262313.,
|
|
362
|
+
'C43a': 348450., 'C43b': -9.7888e4, 'C45a': 6.80247e4, 'C45b': -3.14637e1, 'C50': -193896.,
|
|
363
|
+
'C52a': -1178950, 'C52b': -7414340, 'C54a': -1753890, 'C54b': -1753890, 'C56a': -631786,
|
|
364
|
+
'C56b': -165705}
|
|
365
|
+
ab['source_size'] = 0.051
|
|
366
|
+
ab['acceleration_voltage'] = acceleration_voltage
|
|
367
|
+
ab['convergence_angle'] = 30
|
|
368
|
+
ab['Cc'] = 1.3e6 # // Cc in nm
|
|
369
|
+
|
|
370
|
+
if int(acceleration_voltage) == 60000:
|
|
371
|
+
print(f' **** Using Target Values at {acceleration_voltage / 1000}kV for Aberrations of {TEM_name}****')
|
|
372
|
+
|
|
373
|
+
ab = {'C10': 0, 'C12a': 0, 'C12b': 0, 'C21a': 11.5, 'C21b': 113, 'C23a': -136., 'C23b': 18.2, 'C30': 134.,
|
|
374
|
+
'C32a': 1080., 'C32b': 773., 'C34a': 1190., 'C34b': -593., 'C41a': -179174., 'C41b': -350378.,
|
|
375
|
+
'C43a': 528598, 'C43b': -257349., 'C45a': 63853.4, 'C45b': 1367.98, 'C50': 239021., 'C52a': 1569280.,
|
|
376
|
+
'C52b': -6229310., 'C54a': -3167620., 'C54b': -449198., 'C56a': -907315., 'C56b': -16281.9}
|
|
377
|
+
ab['source_size'] = 0.081
|
|
378
|
+
ab['acceleration_voltage'] = acceleration_voltage
|
|
379
|
+
ab['convergence_angle'] = 30
|
|
380
|
+
ab['Cc'] = 1.3e6 # // Cc in nm
|
|
381
|
+
|
|
382
|
+
ab['origin'] = 'target aberrations'
|
|
383
|
+
ab['TEM_name'] = TEM_name
|
|
384
|
+
ab['wavelength'] = pyTEMlib.image_tools.get_wavelength(ab['acceleration_voltage'])
|
|
385
|
+
|
|
386
|
+
if TEM_name == 'ZeissMC200':
|
|
387
|
+
ab = {'C10': 0, 'C12a': 0, 'C12b': 0, 'C21a': 0, 'C21b': 0, 'C23a': 0, 'C23b': 0, 'C30': 0.,
|
|
388
|
+
'C32a': 0., 'C32b': -0., 'C34a': 0., 'C34b': 0., 'C41a': 0., 'C41b': -0., 'C43a': 0.,
|
|
389
|
+
'C43b': -0., 'C45a': -0., 'C45b': -0., 'C50': 0., 'C52a': -0., 'C52b': 0.,
|
|
390
|
+
'C54a': -0., 'C54b': -0., 'C56a': -0., 'C56b': 0.}
|
|
391
|
+
ab['C30'] = 2.2 * 1e6
|
|
392
|
+
|
|
393
|
+
ab['Cc'] = 2.0 * 1e6
|
|
394
|
+
|
|
395
|
+
ab['source_size'] = 0.2
|
|
396
|
+
ab['acceleration_voltage'] = acceleration_voltage
|
|
397
|
+
ab['convergence_angle'] = 10
|
|
398
|
+
|
|
399
|
+
ab['origin'] = 'target aberrations'
|
|
400
|
+
ab['TEM_name'] = TEM_name
|
|
401
|
+
|
|
402
|
+
ab['wavelength'] = pyTEMlib.image_tools.get_wavelength(ab['acceleration_voltage'])
|
|
403
|
+
return ab
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
def get_ronchigram_2(size, ab, scale='mrad', threshold=3):
|
|
407
|
+
aperture_angle = ab['convergence_angle'] / 1000.0 # in rad
|
|
408
|
+
|
|
409
|
+
wavelength = pyTEMlib.image_tools.get_wavelength(ab['acceleration_voltage'])
|
|
410
|
+
# if verbose:
|
|
411
|
+
# print(f"Acceleration voltage {ab['acceleration_voltage']/1000:}kV => wavelength {wavelength*1000.:.2f}pm")
|
|
412
|
+
|
|
413
|
+
ab['wavelength'] = wavelength
|
|
414
|
+
|
|
415
|
+
size_x = size_y = size
|
|
416
|
+
|
|
417
|
+
# Reciprocal plane in 1/nm
|
|
418
|
+
dk = ab['reciprocal_FOV'] / size
|
|
419
|
+
k_x = np.array(dk * (-size_x / 2. + np.arange(size_x)))
|
|
420
|
+
k_y = np.array(dk * (-size_y / 2. + np.arange(size_y)))
|
|
421
|
+
t_x_v, t_y_v = np.meshgrid(k_x, k_y)
|
|
422
|
+
|
|
423
|
+
chi = get_chi_2(ab, t_x_v, t_y_v) # , verbose= True)
|
|
424
|
+
# define reciprocal plane in angles
|
|
425
|
+
phi = np.arctan2(t_x_v, t_y_v)
|
|
426
|
+
theta = np.arctan2(np.sqrt(t_x_v ** 2 + t_y_v ** 2), 1 / wavelength)
|
|
427
|
+
|
|
428
|
+
# Aperture function
|
|
429
|
+
mask = theta >= aperture_angle
|
|
430
|
+
|
|
431
|
+
aperture = np.ones((size_x, size_y), dtype=float)
|
|
432
|
+
aperture[mask] = 0.
|
|
433
|
+
|
|
434
|
+
v_noise = np.random.rand(size_x, size_y)
|
|
435
|
+
smoothing = 5
|
|
436
|
+
phi_r = ndimage.gaussian_filter(v_noise, sigma=(smoothing, smoothing), order=0)
|
|
437
|
+
|
|
438
|
+
sigma = 6 # 6 for carbon and thin
|
|
439
|
+
|
|
440
|
+
q_r = np.exp(-1j * sigma * phi_r)
|
|
441
|
+
# q_r = 1-phi_r * sigma
|
|
442
|
+
|
|
443
|
+
T_k = aperture * (np.exp(-1j * chi))
|
|
444
|
+
t_r = np.fft.ifft2(np.fft.fftshift(T_k))
|
|
445
|
+
|
|
446
|
+
Psi_k = np.fft.fftshift(np.fft.fft2(q_r * t_r))
|
|
447
|
+
|
|
448
|
+
ronchigram = I_k = np.absolute(Psi_k * np.conjugate(Psi_k))
|
|
449
|
+
|
|
450
|
+
fov_reciprocal = ab['reciprocal_FOV']
|
|
451
|
+
if scale == '1/nm':
|
|
452
|
+
extent = [-fov_reciprocal, fov_reciprocal, -fov_reciprocal, fov_reciprocal]
|
|
453
|
+
ylabel = 'reciprocal distance [1/nm]'
|
|
454
|
+
else:
|
|
455
|
+
fov_mrad = fov_reciprocal * ab['wavelength'] * 1000
|
|
456
|
+
extent = [-fov_mrad, fov_mrad, -fov_mrad, fov_mrad]
|
|
457
|
+
ylabel = 'reciprocal distance [mrad]'
|
|
458
|
+
|
|
459
|
+
ab['ronchi_extent'] = extent
|
|
460
|
+
ab['ronchi_label'] = ylabel
|
|
461
|
+
|
|
462
|
+
h = np.zeros([chi.shape[0], chi.shape[1], 2, 2])
|
|
463
|
+
h[:, :, 0, 0] = get_d2chidu2(ab, t_x_v, t_y_v)
|
|
464
|
+
h[:, :, 0, 1] = get_d2chidudv(ab, t_x_v, t_y_v)
|
|
465
|
+
h[:, :, 1, 0] = get_d2chidudv(ab, t_x_v, t_y_v)
|
|
466
|
+
h[:, :, 1, 1] = get_d2chidv2(ab, t_x_v, t_y_v)
|
|
467
|
+
|
|
468
|
+
# get Eigenvalues
|
|
469
|
+
_, s, _ = np.linalg.svd(h)
|
|
470
|
+
|
|
471
|
+
# get smallest Eigenvalue per pixel
|
|
472
|
+
infinite_magnification = np.min(s, axis=2)
|
|
473
|
+
|
|
474
|
+
# set all values below a threshold value to one, otherwise 0
|
|
475
|
+
infinite_magnification[infinite_magnification <= threshold] = 1
|
|
476
|
+
infinite_magnification[infinite_magnification > threshold] = 0
|
|
477
|
+
|
|
478
|
+
return ronchigram, infinite_magnification
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
# ## Aberration Function for Probe calculations
|
|
482
|
+
def make_chi1(phi, theta, wavelength, ab, c1_include):
|
|
483
|
+
"""
|
|
484
|
+
# ##
|
|
485
|
+
# Aberration function chi without defocus
|
|
486
|
+
# ##
|
|
487
|
+
"""
|
|
488
|
+
t0 = np.power(theta, 1) / 1 * (float(ab['C01a']) * np.cos(1 * phi) + float(ab['C01b']) * np.sin(1 * phi))
|
|
489
|
+
|
|
490
|
+
if c1_include == 1: # First and second terms
|
|
491
|
+
t1 = np.power(theta, 2) / 2 * (ab['C10'] + ab['C12a'] * np.cos(2 * phi) + ab['C12b'] * np.sin(2 * phi))
|
|
492
|
+
elif c1_include == 2: # Second terms only
|
|
493
|
+
t1 = np.power(theta, 2) / 2 * (ab['C12a'] * np.cos(2 * phi) + ab['C12b'] * np.sin(2 * phi))
|
|
494
|
+
else: # none for zero
|
|
495
|
+
t1 = t0 * 0.
|
|
496
|
+
|
|
497
|
+
t2 = np.power(theta, 3) / 3 * (ab['C21a'] * np.cos(1 * phi) + ab['C21b'] * np.sin(1 * phi)
|
|
498
|
+
+ ab['C23a'] * np.cos(3 * phi) + ab['C23b'] * np.sin(3 * phi))
|
|
499
|
+
|
|
500
|
+
t3 = np.power(theta, 4) / 4 * (ab['C30']
|
|
501
|
+
+ ab['C32a'] * np.cos(2 * phi)
|
|
502
|
+
+ ab['C32b'] * np.sin(2 * phi)
|
|
503
|
+
+ ab['C34a'] * np.cos(4 * phi)
|
|
504
|
+
+ ab['C34b'] * np.sin(4 * phi))
|
|
505
|
+
|
|
506
|
+
t4 = np.power(theta, 5) / 5 * (ab['C41a'] * np.cos(1 * phi)
|
|
507
|
+
+ ab['C41b'] * np.sin(1 * phi)
|
|
508
|
+
+ ab['C43a'] * np.cos(3 * phi)
|
|
509
|
+
+ ab['C43b'] * np.sin(3 * phi)
|
|
510
|
+
+ ab['C45a'] * np.cos(5 * phi)
|
|
511
|
+
+ ab['C45b'] * np.sin(5 * phi))
|
|
512
|
+
|
|
513
|
+
t5 = np.power(theta, 6) / 6 * (ab['C50']
|
|
514
|
+
+ ab['C52a'] * np.cos(2 * phi)
|
|
515
|
+
+ ab['C52b'] * np.sin(2 * phi)
|
|
516
|
+
+ ab['C54a'] * np.cos(4 * phi)
|
|
517
|
+
+ ab['C54b'] * np.sin(4 * phi)
|
|
518
|
+
+ ab['C56a'] * np.cos(6 * phi)
|
|
519
|
+
+ ab['C56b'] * np.sin(6 * phi))
|
|
520
|
+
|
|
521
|
+
chi = t0 + t1 + t2 + t3 + t4 + t5
|
|
522
|
+
if 'C70' in ab:
|
|
523
|
+
chi += np.power(theta, 8) / 8 * (ab['C70'])
|
|
524
|
+
|
|
525
|
+
return chi * 2 * np.pi / wavelength # np.power(theta,6)/6*( ab['C50'] )
|
|
526
|
+
|
|
527
|
+
|
|
528
|
+
def probe2(ab, size_x, size_y, tags, verbose=False):
|
|
529
|
+
"""
|
|
530
|
+
|
|
531
|
+
* This function creates an incident STEM probe
|
|
532
|
+
* at position (0,0)
|
|
533
|
+
* with parameters given in ab dictionary
|
|
534
|
+
*
|
|
535
|
+
* The following Aberration functions are being used:
|
|
536
|
+
* 1) ddf = Cc*de/E but not + Cc2*(de/E)^2,
|
|
537
|
+
* Cc, Cc2 = chrom. Aber. (1st, 2nd order) [1]
|
|
538
|
+
* 2) chi(qx,qy) = (2*pi/lambda)*{0.5*C1*(qx^2+qy^2)+
|
|
539
|
+
* 0.5*C12a*(qx^2-qy^2)+
|
|
540
|
+
* C12b*qx*qy+
|
|
541
|
+
* C21a/3*qx*(qx^2+qy^2)+
|
|
542
|
+
* ...
|
|
543
|
+
* +0.5*C3*(qx^2+qy^2)^2
|
|
544
|
+
* +0.125*C5*(qx^2+qy^2)^3
|
|
545
|
+
* ... (need to finish)
|
|
546
|
+
*
|
|
547
|
+
*
|
|
548
|
+
* qx = acos(k_x/K), qy = acos(k_y/K)
|
|
549
|
+
*
|
|
550
|
+
* References:
|
|
551
|
+
* [1] J. Zach, M. Haider,
|
|
552
|
+
* "Correction of spherical and Chromatic Aberration
|
|
553
|
+
* in a low Voltage SEM", Optik 98 (3), 112-118 (1995)
|
|
554
|
+
* [2] O.L. Krivanek, N. Delby, A.R. Lupini,
|
|
555
|
+
* "Towards sub-Angstrom Electron Beams",
|
|
556
|
+
* Ultramicroscopy 78, 1-11 (1999)
|
|
557
|
+
*
|
|
558
|
+
|
|
559
|
+
|
|
560
|
+
# Internally reciprocal lattice vectors in 1/nm or rad.
|
|
561
|
+
# All calculations of chi in angles.
|
|
562
|
+
# All aberration coefficients in nm
|
|
563
|
+
"""
|
|
564
|
+
|
|
565
|
+
if 'fov' not in ab:
|
|
566
|
+
if 'fov' not in tags:
|
|
567
|
+
print(' need field of view in tags ')
|
|
568
|
+
else:
|
|
569
|
+
ab['fov'] = tags['fov']
|
|
570
|
+
|
|
571
|
+
if 'convAngle' not in ab:
|
|
572
|
+
ab['convAngle'] = 30 # in mrad
|
|
573
|
+
|
|
574
|
+
ap_angle = ab['convAngle'] / 1000.0 # in rad
|
|
575
|
+
|
|
576
|
+
e0 = ab['EHT'] = float(ab['EHT']) # acceleration voltage in ev
|
|
577
|
+
|
|
578
|
+
# defocus = ab['C10']
|
|
579
|
+
|
|
580
|
+
if 'C01a' not in ab:
|
|
581
|
+
ab['C01a'] = 0.
|
|
582
|
+
if 'C01b' not in ab:
|
|
583
|
+
ab['C01b'] = 0.
|
|
584
|
+
|
|
585
|
+
if 'C50' not in ab:
|
|
586
|
+
ab['C50'] = 0.
|
|
587
|
+
if 'C70' not in ab:
|
|
588
|
+
ab['C70'] = 0.
|
|
589
|
+
|
|
590
|
+
if 'Cc' not in ab:
|
|
591
|
+
ab['Cc'] = 1.3e6 # Cc in nm
|
|
592
|
+
|
|
593
|
+
def get_wl():
|
|
594
|
+
h = 6.626 * 10 ** -34
|
|
595
|
+
m0 = 9.109 * 10 ** -31
|
|
596
|
+
ev = 1.602 * 10 ** -19 * e0
|
|
597
|
+
c = 2.998 * 10 ** 8
|
|
598
|
+
return h / np.sqrt(2 * m0 * ev * (1 + ev / (2 * m0 * c ** 2))) * 10 ** 9
|
|
599
|
+
|
|
600
|
+
wavelength = get_wl()
|
|
601
|
+
if verbose:
|
|
602
|
+
print('Acceleration voltage {0:}kV => wavelength {1:.2f}pm'.format(int(e0 / 1000), wavelength * 1000))
|
|
603
|
+
ab['wavelength'] = wavelength
|
|
604
|
+
|
|
605
|
+
# Reciprocal plane in 1/nm
|
|
606
|
+
dk = 1 / ab['fov']
|
|
607
|
+
k_x = np.array(dk * (-size_x / 2. + np.arange(size_x)))
|
|
608
|
+
k_y = np.array(dk * (-size_y / 2. + np.arange(size_y)))
|
|
609
|
+
t_xv, t_yv = np.meshgrid(k_x, k_y)
|
|
610
|
+
|
|
611
|
+
# define reciprocal plane in angles
|
|
612
|
+
phi = np.arctan2(t_xv, t_yv)
|
|
613
|
+
theta = np.arctan2(np.sqrt(t_xv ** 2 + t_yv ** 2), 1 / wavelength)
|
|
614
|
+
|
|
615
|
+
# calculate chi but omit defocus
|
|
616
|
+
chi = np.fft.ifftshift(make_chi1(phi, theta, wavelength, ab, 2))
|
|
617
|
+
probe = np.zeros((size_x, size_y))
|
|
618
|
+
|
|
619
|
+
# Aperture function
|
|
620
|
+
mask = theta >= ap_angle
|
|
621
|
+
|
|
622
|
+
# Calculate probe with Cc
|
|
623
|
+
|
|
624
|
+
for i in range(len(ab['zeroLoss'])):
|
|
625
|
+
df = ab['C10'] + ab['Cc'] * ab['zeroEnergy'][i] / e0
|
|
626
|
+
if verbose:
|
|
627
|
+
print('defocus due to Cc: {0:.2f} nm with weight {1:.2f}'.format(df, ab['zeroLoss'][i]))
|
|
628
|
+
# Add defocus
|
|
629
|
+
chi2 = chi + np.power(theta, 2) / 2 * df
|
|
630
|
+
# Calculate exponent of - i * chi
|
|
631
|
+
chi_t = np.fft.ifftshift(np.vectorize(complex)(np.cos(chi2), -np.sin(chi2)))
|
|
632
|
+
# Apply aperture function
|
|
633
|
+
chi_t[mask] = 0.
|
|
634
|
+
# inverse fft of aberration function
|
|
635
|
+
i2 = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(chi_t)))
|
|
636
|
+
# add intensities
|
|
637
|
+
probe = probe + np.real(i2 * np.conjugate(i2)).T * ab['zeroLoss'][i]
|
|
638
|
+
|
|
639
|
+
ab0 = {}
|
|
640
|
+
for key in ab:
|
|
641
|
+
ab0[key] = 0.
|
|
642
|
+
# chiIA = np.fft.fftshift(make_chi1(phi, theta, wavelength, ab0, 0)) # np.ones(chi2.shape)*2*np.pi/wavelength
|
|
643
|
+
chi_i = np.ones((size_y, size_x))
|
|
644
|
+
chi_i[mask] = 0.
|
|
645
|
+
i2 = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(chi_i)))
|
|
646
|
+
ideal = np.real(i2 * np.conjugate(i2))
|
|
647
|
+
|
|
648
|
+
probe_f = np.fft.fft2(probe, probe.shape) + 1e-12
|
|
649
|
+
ideal_f = np.fft.fft2(ideal, probe.shape)
|
|
650
|
+
fourier_space_division = ideal_f / probe_f
|
|
651
|
+
probe_r = (np.fft.ifft2(fourier_space_division, probe.shape))
|
|
652
|
+
|
|
653
|
+
return probe / sum(ab['zeroLoss']), np.real(probe_r)
|