pySEQTarget 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pySEQTarget/SEQopts.py +197 -0
- pySEQTarget/SEQoutput.py +163 -0
- pySEQTarget/SEQuential.py +375 -0
- pySEQTarget/__init__.py +5 -0
- pySEQTarget/analysis/__init__.py +8 -0
- pySEQTarget/analysis/_hazard.py +211 -0
- pySEQTarget/analysis/_outcome_fit.py +75 -0
- pySEQTarget/analysis/_risk_estimates.py +136 -0
- pySEQTarget/analysis/_subgroup_fit.py +30 -0
- pySEQTarget/analysis/_survival_pred.py +372 -0
- pySEQTarget/data/__init__.py +19 -0
- pySEQTarget/error/__init__.py +2 -0
- pySEQTarget/error/_datachecker.py +38 -0
- pySEQTarget/error/_param_checker.py +50 -0
- pySEQTarget/expansion/__init__.py +5 -0
- pySEQTarget/expansion/_binder.py +98 -0
- pySEQTarget/expansion/_diagnostics.py +53 -0
- pySEQTarget/expansion/_dynamic.py +73 -0
- pySEQTarget/expansion/_mapper.py +44 -0
- pySEQTarget/expansion/_selection.py +31 -0
- pySEQTarget/helpers/__init__.py +8 -0
- pySEQTarget/helpers/_bootstrap.py +111 -0
- pySEQTarget/helpers/_col_string.py +6 -0
- pySEQTarget/helpers/_format_time.py +6 -0
- pySEQTarget/helpers/_output_files.py +167 -0
- pySEQTarget/helpers/_pad.py +7 -0
- pySEQTarget/helpers/_predict_model.py +9 -0
- pySEQTarget/helpers/_prepare_data.py +19 -0
- pySEQTarget/initialization/__init__.py +5 -0
- pySEQTarget/initialization/_censoring.py +53 -0
- pySEQTarget/initialization/_denominator.py +39 -0
- pySEQTarget/initialization/_numerator.py +37 -0
- pySEQTarget/initialization/_outcome.py +56 -0
- pySEQTarget/plot/__init__.py +1 -0
- pySEQTarget/plot/_survival_plot.py +104 -0
- pySEQTarget/weighting/__init__.py +8 -0
- pySEQTarget/weighting/_weight_bind.py +86 -0
- pySEQTarget/weighting/_weight_data.py +47 -0
- pySEQTarget/weighting/_weight_fit.py +99 -0
- pySEQTarget/weighting/_weight_pred.py +192 -0
- pySEQTarget/weighting/_weight_stats.py +23 -0
- pyseqtarget-0.10.0.dist-info/METADATA +98 -0
- pyseqtarget-0.10.0.dist-info/RECORD +46 -0
- pyseqtarget-0.10.0.dist-info/WHEEL +5 -0
- pyseqtarget-0.10.0.dist-info/licenses/LICENSE +21 -0
- pyseqtarget-0.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,192 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import polars as pl
|
|
3
|
+
|
|
4
|
+
from ..helpers import _predict_model
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def _weight_predict(self, WDT):
|
|
8
|
+
grouping = [self.id_col]
|
|
9
|
+
grouping += ["trial"] if not self.weight_preexpansion else []
|
|
10
|
+
time = self.time_col if self.weight_preexpansion else "followup"
|
|
11
|
+
|
|
12
|
+
if self.method == "ITT":
|
|
13
|
+
WDT = WDT.with_columns(
|
|
14
|
+
[pl.lit(1.0).alias("numerator"), pl.lit(1.0).alias("denominator")]
|
|
15
|
+
)
|
|
16
|
+
else:
|
|
17
|
+
WDT = WDT.with_columns(
|
|
18
|
+
[pl.lit(1.0).alias("numerator"), pl.lit(1.0).alias("denominator")]
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
if not self.excused:
|
|
22
|
+
for i, level in enumerate(self.treatment_level):
|
|
23
|
+
mask = pl.col("tx_lag") == level
|
|
24
|
+
lag_mask = (WDT["tx_lag"] == level).to_numpy()
|
|
25
|
+
|
|
26
|
+
if self.denominator_model[i] is not None:
|
|
27
|
+
pred_denom = np.ones(WDT.height)
|
|
28
|
+
if lag_mask.sum() > 0:
|
|
29
|
+
subset = WDT.filter(pl.Series(lag_mask))
|
|
30
|
+
p = _predict_model(self, self.denominator_model[i], subset)
|
|
31
|
+
if p.ndim == 1:
|
|
32
|
+
p = p.reshape(-1, 1)
|
|
33
|
+
p = p[:, i]
|
|
34
|
+
switched_treatment = (
|
|
35
|
+
subset[self.treatment_col] != subset["tx_lag"]
|
|
36
|
+
).to_numpy()
|
|
37
|
+
pred_denom[lag_mask] = np.where(switched_treatment, 1.0 - p, p)
|
|
38
|
+
else:
|
|
39
|
+
pred_denom = np.ones(WDT.height)
|
|
40
|
+
|
|
41
|
+
if self.numerator_model[i] is not None:
|
|
42
|
+
pred_num = np.ones(WDT.height)
|
|
43
|
+
if lag_mask.sum() > 0:
|
|
44
|
+
subset = WDT.filter(pl.Series(lag_mask))
|
|
45
|
+
p = _predict_model(self, self.numerator_model[i], subset)
|
|
46
|
+
if p.ndim == 1:
|
|
47
|
+
p = p.reshape(-1, 1)
|
|
48
|
+
p = p[:, i]
|
|
49
|
+
switched_treatment = (
|
|
50
|
+
subset[self.treatment_col] != subset["tx_lag"]
|
|
51
|
+
).to_numpy()
|
|
52
|
+
pred_num[lag_mask] = np.where(switched_treatment, 1.0 - p, p)
|
|
53
|
+
else:
|
|
54
|
+
pred_num = np.ones(WDT.height)
|
|
55
|
+
|
|
56
|
+
WDT = WDT.with_columns(
|
|
57
|
+
[
|
|
58
|
+
pl.when(mask)
|
|
59
|
+
.then(pl.Series(pred_num))
|
|
60
|
+
.otherwise(pl.col("numerator"))
|
|
61
|
+
.alias("numerator"),
|
|
62
|
+
pl.when(mask)
|
|
63
|
+
.then(pl.Series(pred_denom))
|
|
64
|
+
.otherwise(pl.col("denominator"))
|
|
65
|
+
.alias("denominator"),
|
|
66
|
+
]
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
else:
|
|
70
|
+
for i, level in enumerate(self.treatment_level):
|
|
71
|
+
col = self.excused_colnames[i]
|
|
72
|
+
|
|
73
|
+
if col is not None:
|
|
74
|
+
denom_mask = ((WDT["tx_lag"] == level) & (WDT[col] != 1)).to_numpy()
|
|
75
|
+
|
|
76
|
+
if self.denominator_model[i] is not None and denom_mask.sum() > 0:
|
|
77
|
+
pred_denom = np.ones(WDT.height)
|
|
78
|
+
subset = WDT.filter(pl.Series(denom_mask))
|
|
79
|
+
p = _predict_model(self, self.denominator_model[i], subset)
|
|
80
|
+
|
|
81
|
+
if p.ndim == 1:
|
|
82
|
+
prob_switch = p
|
|
83
|
+
else:
|
|
84
|
+
prob_switch = p[:, 1] if p.shape[1] > 1 else p.flatten()
|
|
85
|
+
|
|
86
|
+
pred_denom[denom_mask] = prob_switch
|
|
87
|
+
|
|
88
|
+
WDT = WDT.with_columns(
|
|
89
|
+
pl.when(pl.Series(denom_mask))
|
|
90
|
+
.then(pl.Series(pred_denom))
|
|
91
|
+
.otherwise(pl.col("denominator"))
|
|
92
|
+
.alias("denominator")
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
if i == 0:
|
|
96
|
+
flip_mask = (
|
|
97
|
+
(WDT["tx_lag"] == level)
|
|
98
|
+
& (WDT[col] == 0)
|
|
99
|
+
& (WDT[self.treatment_col] == level)
|
|
100
|
+
).to_numpy()
|
|
101
|
+
else:
|
|
102
|
+
flip_mask = (
|
|
103
|
+
(WDT["tx_lag"] == level)
|
|
104
|
+
& (WDT[col] == 0)
|
|
105
|
+
& (WDT[self.treatment_col] != level)
|
|
106
|
+
).to_numpy()
|
|
107
|
+
|
|
108
|
+
WDT = WDT.with_columns(
|
|
109
|
+
pl.when(pl.Series(flip_mask))
|
|
110
|
+
.then(1.0 - pl.col("denominator"))
|
|
111
|
+
.otherwise(pl.col("denominator"))
|
|
112
|
+
.alias("denominator")
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
if self.weight_preexpansion:
|
|
116
|
+
WDT = WDT.with_columns(pl.lit(1.0).alias("numerator"))
|
|
117
|
+
else:
|
|
118
|
+
for i, level in enumerate(self.treatment_level):
|
|
119
|
+
col = self.excused_colnames[i]
|
|
120
|
+
|
|
121
|
+
if col is not None:
|
|
122
|
+
num_mask = (
|
|
123
|
+
(WDT[self.treatment_col] == level) & (WDT[col] == 0)
|
|
124
|
+
).to_numpy()
|
|
125
|
+
|
|
126
|
+
if self.numerator_model[i] is not None and num_mask.sum() > 0:
|
|
127
|
+
pred_num = np.ones(WDT.height)
|
|
128
|
+
subset = WDT.filter(pl.Series(num_mask))
|
|
129
|
+
p = _predict_model(self, self.numerator_model[i], subset)
|
|
130
|
+
|
|
131
|
+
if p.ndim == 1:
|
|
132
|
+
prob_switch = p
|
|
133
|
+
else:
|
|
134
|
+
prob_switch = p[:, 1] if p.shape[1] > 1 else p.flatten()
|
|
135
|
+
|
|
136
|
+
pred_num[num_mask] = prob_switch
|
|
137
|
+
|
|
138
|
+
WDT = WDT.with_columns(
|
|
139
|
+
pl.when(pl.Series(num_mask))
|
|
140
|
+
.then(pl.Series(pred_num))
|
|
141
|
+
.otherwise(pl.col("numerator"))
|
|
142
|
+
.alias("numerator")
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
first_level = self.treatment_level[0]
|
|
146
|
+
WDT = WDT.with_columns(
|
|
147
|
+
pl.when(pl.col(self.treatment_col) == first_level)
|
|
148
|
+
.then(1.0 - pl.col("numerator"))
|
|
149
|
+
.otherwise(pl.col("numerator"))
|
|
150
|
+
.alias("numerator")
|
|
151
|
+
)
|
|
152
|
+
if self.cense_colname is not None:
|
|
153
|
+
p_num = _predict_model(self, self.cense_numerator, WDT).flatten()
|
|
154
|
+
p_denom = _predict_model(self, self.cense_denominator, WDT).flatten()
|
|
155
|
+
WDT = WDT.with_columns(
|
|
156
|
+
[
|
|
157
|
+
pl.Series("cense_numerator", p_num),
|
|
158
|
+
pl.Series("cense_denominator", p_denom),
|
|
159
|
+
]
|
|
160
|
+
).with_columns(
|
|
161
|
+
(pl.col("cense_numerator") / pl.col("cense_denominator")).alias("_cense")
|
|
162
|
+
)
|
|
163
|
+
else:
|
|
164
|
+
WDT = WDT.with_columns(pl.lit(1.0).alias("_cense"))
|
|
165
|
+
|
|
166
|
+
if self.visit_colname is not None:
|
|
167
|
+
p_num = _predict_model(self, self.visit_numerator, WDT).flatten()
|
|
168
|
+
p_denom = _predict_model(self, self.visit_denominator, WDT).flatten()
|
|
169
|
+
|
|
170
|
+
WDT = WDT.with_columns(
|
|
171
|
+
[
|
|
172
|
+
pl.Series("visit_numerator", p_num),
|
|
173
|
+
pl.Series("visit_denominator", p_denom),
|
|
174
|
+
]
|
|
175
|
+
).with_columns(
|
|
176
|
+
(pl.col("visit_numerator") / pl.col("visit_denominator")).alias("_visit")
|
|
177
|
+
)
|
|
178
|
+
else:
|
|
179
|
+
WDT = WDT.with_columns(pl.lit(1.0).alias("_visit"))
|
|
180
|
+
|
|
181
|
+
kept = [
|
|
182
|
+
"numerator",
|
|
183
|
+
"denominator",
|
|
184
|
+
"_cense",
|
|
185
|
+
"_visit",
|
|
186
|
+
self.id_col,
|
|
187
|
+
"trial",
|
|
188
|
+
time,
|
|
189
|
+
"tx_lag",
|
|
190
|
+
]
|
|
191
|
+
exists = [col for col in kept if col in WDT.columns]
|
|
192
|
+
return WDT.select(exists).sort(grouping + [time])
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
import polars as pl
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def _weight_stats(self):
|
|
5
|
+
stats = self.DT.select(
|
|
6
|
+
[
|
|
7
|
+
pl.col("weight").min().alias("weight_min"),
|
|
8
|
+
pl.col("weight").max().alias("weight_max"),
|
|
9
|
+
pl.col("weight").mean().alias("weight_mean"),
|
|
10
|
+
pl.col("weight").std().alias("weight_std"),
|
|
11
|
+
pl.col("weight").quantile(0.01).alias("weight_p01"),
|
|
12
|
+
pl.col("weight").quantile(0.25).alias("weight_p25"),
|
|
13
|
+
pl.col("weight").quantile(0.50).alias("weight_p50"),
|
|
14
|
+
pl.col("weight").quantile(0.75).alias("weight_p75"),
|
|
15
|
+
pl.col("weight").quantile(0.99).alias("weight_p99"),
|
|
16
|
+
]
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
if self.weight_p99:
|
|
20
|
+
self.weight_min = stats.select("weight_p01").item()
|
|
21
|
+
self.weight_max = stats.select("weight_p99").item()
|
|
22
|
+
|
|
23
|
+
return stats
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pySEQTarget
|
|
3
|
+
Version: 0.10.0
|
|
4
|
+
Summary: Sequentially Nested Target Trial Emulation
|
|
5
|
+
Author-email: Ryan O'Dea <ryan.odea@psi.ch>, Alejandro Szmulewicz <aszmulewicz@hsph.harvard.edu>, Tom Palmer <tom.palmer@bristol.ac.uk>, Miguel Hernan <mhernan@hsph.harvard.edu>
|
|
6
|
+
Maintainer-email: Ryan O'Dea <ryan.odea@psi.ch>
|
|
7
|
+
License: MIT
|
|
8
|
+
Project-URL: Homepage, https://github.com/CausalInference/pySEQTarget
|
|
9
|
+
Project-URL: Repository, https://github.com/CausalInference/pySEQTarget
|
|
10
|
+
Project-URL: Bug Tracker, https://github.com/CausalInference/pySEQTarget/issues
|
|
11
|
+
Project-URL: Ryan O'Dea (ORCID), https://orcid.org/0009-0000-0103-9546
|
|
12
|
+
Project-URL: Alejandro Szmulewicz (ORCID), https://orcid.org/0000-0002-2664-802X
|
|
13
|
+
Project-URL: Tom Palmer (ORCID), https://orcid.org/0000-0003-4655-4511
|
|
14
|
+
Project-URL: Miguel Hernan (ORCID), https://orcid.org/0000-0003-1619-8456
|
|
15
|
+
Project-URL: University of Bristol (ROR), https://ror.org/0524sp257
|
|
16
|
+
Project-URL: Harvard University (ROR), https://ror.org/03vek6s52
|
|
17
|
+
Keywords: causal inference,sequential trial emulation,target trial,observational studies
|
|
18
|
+
Classifier: Development Status :: 4 - Beta
|
|
19
|
+
Classifier: Intended Audience :: Science/Research
|
|
20
|
+
Classifier: Programming Language :: Python :: 3
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
23
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
24
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
25
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
26
|
+
Requires-Python: >=3.10
|
|
27
|
+
Description-Content-Type: text/markdown
|
|
28
|
+
License-File: LICENSE
|
|
29
|
+
Requires-Dist: numpy
|
|
30
|
+
Requires-Dist: polars
|
|
31
|
+
Requires-Dist: tqdm
|
|
32
|
+
Requires-Dist: statsmodels
|
|
33
|
+
Requires-Dist: matplotlib
|
|
34
|
+
Requires-Dist: pyarrow
|
|
35
|
+
Requires-Dist: lifelines
|
|
36
|
+
Dynamic: license-file
|
|
37
|
+
|
|
38
|
+
# pySEQTarget - Sequentially Nested Target Trial Emulation
|
|
39
|
+
[](https://pypi.org/project/pySEQTarget)
|
|
40
|
+
[](https://pepy.tech/project/pySEQTarget)
|
|
41
|
+
[](https://codecov.io/gh/CausalInference/pySEQTarget)[](https://opensource.org/licenses/MIT)
|
|
42
|
+

|
|
43
|
+
[](https://pySEQTarget.readthedocs.io)
|
|
44
|
+
|
|
45
|
+
Implementation of sequential trial emulation for the analysis of
|
|
46
|
+
observational databases. The `SEQTaRget` software accommodates
|
|
47
|
+
time-varying treatments and confounders, as well as binary and failure
|
|
48
|
+
time outcomes. `SEQTaRget` allows to compare both static and dynamic
|
|
49
|
+
strategies, can be used to estimate observational analogs of
|
|
50
|
+
intention-to-treat and per-protocol effects, and can adjust for
|
|
51
|
+
potential selection bias.
|
|
52
|
+
|
|
53
|
+
## Installation
|
|
54
|
+
You can install the development version of pySEQTarget from github with:
|
|
55
|
+
```shell
|
|
56
|
+
pip install git+https://github.com/CausalInference/pySEQTarget
|
|
57
|
+
```
|
|
58
|
+
Or from pypi iwth
|
|
59
|
+
```shell
|
|
60
|
+
pip install pySEQTarget
|
|
61
|
+
```
|
|
62
|
+
|
|
63
|
+
## Setting up your Analysis
|
|
64
|
+
The primary API, `SEQuential` uses a dataclass system to handle function input. You can then recover elements as they are built by interacting with the `SEQuential` object you create.
|
|
65
|
+
|
|
66
|
+
From the user side, this amounts to creating a dataclass, `SEQopts`, and then feeding this into `SEQuential`. If you forgot to add something at class instantiation, you can, in some cases, add them when you call their respective class method.
|
|
67
|
+
|
|
68
|
+
```python
|
|
69
|
+
import polars as pl
|
|
70
|
+
from pySEQTarget import SEQuential, SEQopts
|
|
71
|
+
|
|
72
|
+
data = pl.from_pandas(SEQdata)
|
|
73
|
+
options = SEQopts(km_curves = True)
|
|
74
|
+
|
|
75
|
+
# Initiate the class
|
|
76
|
+
model = SEQuential(data,
|
|
77
|
+
id_col = "ID",
|
|
78
|
+
time_col = "time",
|
|
79
|
+
eligible_col = "eligible",
|
|
80
|
+
time_varying_cols = ["N", "L", "P"],
|
|
81
|
+
fixed_cols = ["sex"],
|
|
82
|
+
method = "ITT",
|
|
83
|
+
options = options)
|
|
84
|
+
model.expand() # Construct the nested structure
|
|
85
|
+
model.bootstrap(bootstrap_nboot = 20) # Run 20 bootstrap samples
|
|
86
|
+
model.fit() # Fit the model
|
|
87
|
+
model.survival() # Create survival curves
|
|
88
|
+
model.plot() # Create and show a plot of the survival curves
|
|
89
|
+
model.collect() # Collection of important information
|
|
90
|
+
|
|
91
|
+
```
|
|
92
|
+
|
|
93
|
+
## Assumptions
|
|
94
|
+
There are several key assumptions in this package -
|
|
95
|
+
1. User provided `time_col` begins at 0 per unique `id_col`, we also assume this column contains only integers and continues by 1 for every time step, e.g. (0, 1, 2, 3, 4, ...) is allowed and (0, 1, 2, 2.5, ...) or (0, 1, 4, 5) are not
|
|
96
|
+
1. Provided `time_col` entries may be out of order at intake as a sort is enforced at expansion.
|
|
97
|
+
2. `eligible_col` and elements of `excused_colnames` are once 1, only 1 (with respect to `time_col`) flag variables.
|
|
98
|
+
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
pySEQTarget/SEQopts.py,sha256=7AWqwJyQs5I3CkwchpyNwq3oRiQMhOM34l9EnlxZ3L4,8910
|
|
2
|
+
pySEQTarget/SEQoutput.py,sha256=NRXcX6TzuJjiix_I2_PwG18zn83U8cjc3Ihf-UXe-R8,6354
|
|
3
|
+
pySEQTarget/SEQuential.py,sha256=IQ3SpoylyMV28GQCA8cZEhqVZ52MeP6pskpwLadnd2w,12869
|
|
4
|
+
pySEQTarget/__init__.py,sha256=X3BKStCan0QmgpfJqN5ffBKZSDjw6s497N2b2AR3Ilg,147
|
|
5
|
+
pySEQTarget/analysis/__init__.py,sha256=3XOPVKVWeRoCHtuHAIqNOAcGgWmBzXpU2C7_p47xXqo,448
|
|
6
|
+
pySEQTarget/analysis/_hazard.py,sha256=lgluCVm6EpAcGzySRybXlsPrwhgHXW1zwxq47JVdvrg,6795
|
|
7
|
+
pySEQTarget/analysis/_outcome_fit.py,sha256=VR7wF4n0EKIVrm8H2e-PG1-N-Xsu8aJO_VNU8o2O4KI,2199
|
|
8
|
+
pySEQTarget/analysis/_risk_estimates.py,sha256=p40bSvN2wMOpCVq4Rv3ak6ZZVpobaI4zzjjeBKoQvCA,5300
|
|
9
|
+
pySEQTarget/analysis/_subgroup_fit.py,sha256=jeL1LBTtHiSpfiu7-w4LjVWlka8XMPVABGsvV9AFG60,829
|
|
10
|
+
pySEQTarget/analysis/_survival_pred.py,sha256=m_xbbz9awa3WZgaQt2-h4C3kAQLFL3aRB4U69TlsDcw,13993
|
|
11
|
+
pySEQTarget/data/__init__.py,sha256=2q_f_M9LW1R5iO4CaBtoC0y-wwMsFGSd54mHfJDsvJo,682
|
|
12
|
+
pySEQTarget/error/__init__.py,sha256=iC-55PhWIOymSHndMR-1buKE7sOApHw6Zb7W75T1Si0,116
|
|
13
|
+
pySEQTarget/error/_datachecker.py,sha256=h7LDXlA-6OBcpqlF7kymnKQoZ58yLRx9q2461EFcIdQ,1231
|
|
14
|
+
pySEQTarget/error/_param_checker.py,sha256=1d4k75b3qZUveq0S6DvaoGf6dYAKQHOc3q_KRoBie6I,1654
|
|
15
|
+
pySEQTarget/expansion/__init__.py,sha256=Qy-m2NB8AnGX4GOrr9n20GxOCPxf-KaMARjxyFL73yg,241
|
|
16
|
+
pySEQTarget/expansion/_binder.py,sha256=sa6UIcxgBl1uMIOBh-OnxYOMnEzNoceP1GVDiiYU6kM,3019
|
|
17
|
+
pySEQTarget/expansion/_diagnostics.py,sha256=QyQ8HRe2tt8oYfMK1Q_gQAmo_nnaBPHgDo_DDEk2DTM,1507
|
|
18
|
+
pySEQTarget/expansion/_dynamic.py,sha256=_iPJHR5KlCY9A71BfIS-V94hwFldPU17Yd36U7JAlJ0,2406
|
|
19
|
+
pySEQTarget/expansion/_mapper.py,sha256=ROw8EJhok3r_UfY3u6DEe9FtD_eco-IEd_MV72EajlE,1251
|
|
20
|
+
pySEQTarget/expansion/_selection.py,sha256=Ywas9JLBV3TEwm1kLb6CFD2CNza4_5DIDLgEVAobXEI,907
|
|
21
|
+
pySEQTarget/helpers/__init__.py,sha256=Q0H0t6kehgJBkiOaOuB_Truq7kzOKGSiNS-ihX_4sEI,416
|
|
22
|
+
pySEQTarget/helpers/_bootstrap.py,sha256=BiOxYfaf5HBEhoXJcw652JSJbe9BPFvT6GQ9Oq2p6A0,3375
|
|
23
|
+
pySEQTarget/helpers/_col_string.py,sha256=ABMK8vlesY7yIAVKnxN0DRgLZgOCImHxmKphFYRNSv0,213
|
|
24
|
+
pySEQTarget/helpers/_format_time.py,sha256=WGsJDJHxALz0NJSxC8Yht42yOUMju9hJQx8Nitt6bh8,247
|
|
25
|
+
pySEQTarget/helpers/_output_files.py,sha256=dOfgIw1Io0zNjkNexdtdduQcWfBrKK2_W2IPJiVwgDY,5100
|
|
26
|
+
pySEQTarget/helpers/_pad.py,sha256=9ePWswrhqSAVnAu7IBUmkBdI-w1YnBd0ozV9GvQR_dI,194
|
|
27
|
+
pySEQTarget/helpers/_predict_model.py,sha256=dtkMFGMi-ut_HG9Lyp33FUln7E4zitr1ALYC2Ylc8H4,267
|
|
28
|
+
pySEQTarget/helpers/_prepare_data.py,sha256=Nh9TZWlMqohCr4PJ0wlM8ej-w7bGc1rW_4_RVLcErq4,553
|
|
29
|
+
pySEQTarget/initialization/__init__.py,sha256=1ExTDKGsyVLUh6xV6zHda_6WjcD8JMAUyNvHbFVKgD4,273
|
|
30
|
+
pySEQTarget/initialization/_censoring.py,sha256=HkRzbdbTwG9zbX7KRqr9IgNogY3puX0qfClJdD7feo4,1720
|
|
31
|
+
pySEQTarget/initialization/_denominator.py,sha256=Nvqa8EErk-lIxxosm6pqBmr_O6CzpEOEHlI57StlWUg,1534
|
|
32
|
+
pySEQTarget/initialization/_numerator.py,sha256=LjzCVhhch_Ex4nA2el9V0xmwoTf0J2QWjUEfane_E2M,1396
|
|
33
|
+
pySEQTarget/initialization/_outcome.py,sha256=cMhF2KfbInrf7bH6uzngPhWgQEV769Ww578EgIeL_AE,2119
|
|
34
|
+
pySEQTarget/plot/__init__.py,sha256=Wf_4bmD-5gzLUXhSeDDaEIcxNknFjBvDyk55LOXiqOQ,61
|
|
35
|
+
pySEQTarget/plot/_survival_plot.py,sha256=WtHfcpJ5zfa71LjgiHDklxwLmanVorC4hJGJp1-Av5c,3095
|
|
36
|
+
pySEQTarget/weighting/__init__.py,sha256=Gv6zArKhK0many5qgi0ZikwQSCOAelCbuit13SP7DQc,449
|
|
37
|
+
pySEQTarget/weighting/_weight_bind.py,sha256=VP0RO-VIgXqmdp4uhsN78xefxI-Gid4J-QxH0MKDxNs,2508
|
|
38
|
+
pySEQTarget/weighting/_weight_data.py,sha256=P8E_-kOdb-s0Et5PL8b3Q-CnwuW6Ir8hMw_Zw80T0WM,1482
|
|
39
|
+
pySEQTarget/weighting/_weight_fit.py,sha256=o73Lmz-bw58y5JjU9IV584JM-rfSTQXQuJBKOwi7-6k,3143
|
|
40
|
+
pySEQTarget/weighting/_weight_pred.py,sha256=Rw1fQBi54ml62syKKE5xJFtIZJAchOvmnctJ10A82L8,7727
|
|
41
|
+
pySEQTarget/weighting/_weight_stats.py,sha256=pJNH6A9_jQd4WFV1LYMum66VBJHrGsu5CUOPtBKrLD8,815
|
|
42
|
+
pyseqtarget-0.10.0.dist-info/licenses/LICENSE,sha256=4iJQjIiCY2dK-vPGS4ptUlkstcDaS1MaQzv288_SNec,1065
|
|
43
|
+
pyseqtarget-0.10.0.dist-info/METADATA,sha256=q6tzVwxfbNwbJ5qfC367WOGfgJH0hD3ENie4HhXyy7g,4869
|
|
44
|
+
pyseqtarget-0.10.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
45
|
+
pyseqtarget-0.10.0.dist-info/top_level.txt,sha256=deyVmAqpFjyyxotp61jc5zwh0qdSqxCmvn8pWGw3YZo,12
|
|
46
|
+
pyseqtarget-0.10.0.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2024 CAUSALab
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
pySEQTarget
|