pyRDDLGym-jax 0.3__py3-none-any.whl → 0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyRDDLGym_jax/__init__.py +1 -1
- pyRDDLGym_jax/core/compiler.py +90 -67
- pyRDDLGym_jax/core/logic.py +286 -82
- pyRDDLGym_jax/core/planner.py +191 -97
- pyRDDLGym_jax/core/simulator.py +2 -1
- pyRDDLGym_jax/core/tuning.py +58 -63
- pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_replan.cfg +2 -1
- pyRDDLGym_jax/examples/configs/PowerGen_Continuous_replan.cfg +2 -1
- pyRDDLGym_jax/examples/configs/Reservoir_Continuous_replan.cfg +2 -1
- pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_replan.cfg +4 -3
- pyRDDLGym_jax/examples/configs/default_replan.cfg +2 -1
- pyRDDLGym_jax/examples/run_tune.py +1 -3
- pyRDDLGym_jax-0.5.dist-info/METADATA +278 -0
- {pyRDDLGym_jax-0.3.dist-info → pyRDDLGym_jax-0.5.dist-info}/RECORD +17 -17
- {pyRDDLGym_jax-0.3.dist-info → pyRDDLGym_jax-0.5.dist-info}/WHEEL +1 -1
- pyRDDLGym_jax-0.3.dist-info/METADATA +0 -26
- {pyRDDLGym_jax-0.3.dist-info → pyRDDLGym_jax-0.5.dist-info}/LICENSE +0 -0
- {pyRDDLGym_jax-0.3.dist-info → pyRDDLGym_jax-0.5.dist-info}/top_level.txt +0 -0
pyRDDLGym_jax/core/simulator.py
CHANGED
pyRDDLGym_jax/core/tuning.py
CHANGED
|
@@ -1,20 +1,18 @@
|
|
|
1
|
-
from bayes_opt import BayesianOptimization
|
|
2
|
-
from bayes_opt.util import UtilityFunction
|
|
3
1
|
from copy import deepcopy
|
|
4
2
|
import csv
|
|
5
3
|
import datetime
|
|
6
|
-
import jax
|
|
7
4
|
from multiprocessing import get_context
|
|
8
|
-
import numpy as np
|
|
9
5
|
import os
|
|
10
6
|
import time
|
|
11
7
|
from typing import Any, Callable, Dict, Optional, Tuple
|
|
12
|
-
|
|
13
|
-
Kwargs = Dict[str, Any]
|
|
14
|
-
|
|
15
8
|
import warnings
|
|
16
9
|
warnings.filterwarnings("ignore")
|
|
17
10
|
|
|
11
|
+
from bayes_opt import BayesianOptimization
|
|
12
|
+
from bayes_opt.acquisition import AcquisitionFunction, UpperConfidenceBound
|
|
13
|
+
import jax
|
|
14
|
+
import numpy as np
|
|
15
|
+
|
|
18
16
|
from pyRDDLGym.core.debug.exception import raise_warning
|
|
19
17
|
from pyRDDLGym.core.env import RDDLEnv
|
|
20
18
|
|
|
@@ -26,6 +24,7 @@ from pyRDDLGym_jax.core.planner import (
|
|
|
26
24
|
JaxOnlineController
|
|
27
25
|
)
|
|
28
26
|
|
|
27
|
+
Kwargs = Dict[str, Any]
|
|
29
28
|
|
|
30
29
|
# ===============================================================================
|
|
31
30
|
#
|
|
@@ -37,6 +36,9 @@ from pyRDDLGym_jax.core.planner import (
|
|
|
37
36
|
# 3. deep reactive policies
|
|
38
37
|
#
|
|
39
38
|
# ===============================================================================
|
|
39
|
+
COLUMNS = ['pid', 'worker', 'iteration', 'target', 'best_target', 'acq_params']
|
|
40
|
+
|
|
41
|
+
|
|
40
42
|
class JaxParameterTuning:
|
|
41
43
|
'''A general-purpose class for tuning a Jax planner.'''
|
|
42
44
|
|
|
@@ -53,7 +55,7 @@ class JaxParameterTuning:
|
|
|
53
55
|
num_workers: int=1,
|
|
54
56
|
poll_frequency: float=0.2,
|
|
55
57
|
gp_iters: int=25,
|
|
56
|
-
acquisition: Optional[
|
|
58
|
+
acquisition: Optional[AcquisitionFunction]=None,
|
|
57
59
|
gp_init_kwargs: Optional[Kwargs]=None,
|
|
58
60
|
gp_params: Optional[Kwargs]=None) -> None:
|
|
59
61
|
'''Creates a new instance for tuning hyper-parameters for Jax planners
|
|
@@ -113,10 +115,9 @@ class JaxParameterTuning:
|
|
|
113
115
|
self.gp_params = gp_params
|
|
114
116
|
|
|
115
117
|
# create acquisition function
|
|
116
|
-
self.acq_args = None
|
|
117
118
|
if acquisition is None:
|
|
118
119
|
num_samples = self.gp_iters * self.num_workers
|
|
119
|
-
acquisition
|
|
120
|
+
acquisition = JaxParameterTuning._annealing_acquisition(num_samples)
|
|
120
121
|
self.acquisition = acquisition
|
|
121
122
|
|
|
122
123
|
def summarize_hyperparameters(self) -> None:
|
|
@@ -133,23 +134,15 @@ class JaxParameterTuning:
|
|
|
133
134
|
f' planning_trials_per_iter ={self.eval_trials}\n'
|
|
134
135
|
f' planning_iters_per_trial ={self.train_epochs}\n'
|
|
135
136
|
f' planning_timeout_per_trial={self.timeout_training}\n'
|
|
136
|
-
f' acquisition_fn ={
|
|
137
|
-
if self.acq_args is not None:
|
|
138
|
-
print(f'using default acquisition function:\n'
|
|
139
|
-
f' utility_kind ={self.acq_args[0]}\n'
|
|
140
|
-
f' initial_kappa={self.acq_args[1]}\n'
|
|
141
|
-
f' kappa_decay ={self.acq_args[2]}')
|
|
137
|
+
f' acquisition_fn ={self.acquisition}')
|
|
142
138
|
|
|
143
139
|
@staticmethod
|
|
144
|
-
def
|
|
145
|
-
|
|
146
|
-
utility_fn = UtilityFunction(
|
|
147
|
-
kind='ucb',
|
|
140
|
+
def _annealing_acquisition(n_samples, n_delay_samples=0, kappa1=10.0, kappa2=1.0):
|
|
141
|
+
acq_fn = UpperConfidenceBound(
|
|
148
142
|
kappa=kappa1,
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
return utility_fn, utility_args
|
|
143
|
+
exploration_decay=(kappa2 / kappa1) ** (1.0 / (n_samples - n_delay_samples)),
|
|
144
|
+
exploration_decay_delay=n_delay_samples)
|
|
145
|
+
return acq_fn
|
|
153
146
|
|
|
154
147
|
def _pickleable_objective_with_kwargs(self):
|
|
155
148
|
raise NotImplementedError
|
|
@@ -160,7 +153,7 @@ class JaxParameterTuning:
|
|
|
160
153
|
pid = os.getpid()
|
|
161
154
|
return index, pid, params, target
|
|
162
155
|
|
|
163
|
-
def tune(self, key: jax.random.PRNGKey,
|
|
156
|
+
def tune(self, key: jax.random.PRNGKey,
|
|
164
157
|
filename: str,
|
|
165
158
|
save_plot: bool=False) -> Dict[str, Any]:
|
|
166
159
|
'''Tunes the hyper-parameters for Jax planner, returns the best found.'''
|
|
@@ -178,32 +171,28 @@ class JaxParameterTuning:
|
|
|
178
171
|
for (name, hparam) in self.hyperparams_dict.items()
|
|
179
172
|
}
|
|
180
173
|
optimizer = BayesianOptimization(
|
|
181
|
-
f=None,
|
|
174
|
+
f=None,
|
|
175
|
+
acquisition_function=self.acquisition,
|
|
182
176
|
pbounds=hyperparams_bounds,
|
|
183
177
|
allow_duplicate_points=True, # to avoid crash
|
|
184
178
|
random_state=np.random.RandomState(key),
|
|
185
179
|
**self.gp_init_kwargs
|
|
186
180
|
)
|
|
187
181
|
optimizer.set_gp_params(**self.gp_params)
|
|
188
|
-
utility = self.acquisition
|
|
189
182
|
|
|
190
183
|
# suggest initial parameters to evaluate
|
|
191
184
|
num_workers = self.num_workers
|
|
192
|
-
suggested,
|
|
185
|
+
suggested, acq_params = [], []
|
|
193
186
|
for _ in range(num_workers):
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
kappas.append(utility.kappa)
|
|
187
|
+
probe = optimizer.suggest()
|
|
188
|
+
suggested.append(probe)
|
|
189
|
+
acq_params.append(vars(optimizer.acquisition_function))
|
|
198
190
|
|
|
199
191
|
# clear and prepare output file
|
|
200
192
|
filename = self._filename(filename, 'csv')
|
|
201
193
|
with open(filename, 'w', newline='') as file:
|
|
202
194
|
writer = csv.writer(file)
|
|
203
|
-
writer.writerow(
|
|
204
|
-
['pid', 'worker', 'iteration', 'target', 'best_target', 'kappa'] + \
|
|
205
|
-
list(hyperparams_bounds.keys())
|
|
206
|
-
)
|
|
195
|
+
writer.writerow(COLUMNS + list(hyperparams_bounds.keys()))
|
|
207
196
|
|
|
208
197
|
# start multiprocess evaluation
|
|
209
198
|
worker_ids = list(range(num_workers))
|
|
@@ -219,8 +208,8 @@ class JaxParameterTuning:
|
|
|
219
208
|
|
|
220
209
|
# continue with next iteration
|
|
221
210
|
print('\n' + '*' * 25 +
|
|
222
|
-
'\n
|
|
223
|
-
f'starting iteration {it}' +
|
|
211
|
+
f'\n[{datetime.timedelta(seconds=elapsed)}] ' +
|
|
212
|
+
f'starting iteration {it + 1}' +
|
|
224
213
|
'\n' + '*' * 25)
|
|
225
214
|
key, *subkeys = jax.random.split(key, num=num_workers + 1)
|
|
226
215
|
rows = [None] * num_workers
|
|
@@ -256,10 +245,9 @@ class JaxParameterTuning:
|
|
|
256
245
|
optimizer.register(params, target)
|
|
257
246
|
|
|
258
247
|
# update acquisition function and suggest a new point
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
kappas[index] = utility.kappa
|
|
248
|
+
suggested[index] = optimizer.suggest()
|
|
249
|
+
old_acq_params = acq_params[index]
|
|
250
|
+
acq_params[index] = vars(optimizer.acquisition_function)
|
|
263
251
|
|
|
264
252
|
# transform suggestion back to natural space
|
|
265
253
|
rddl_params = {
|
|
@@ -272,8 +260,8 @@ class JaxParameterTuning:
|
|
|
272
260
|
best_params, best_target = rddl_params, target
|
|
273
261
|
|
|
274
262
|
# write progress to file in real time
|
|
275
|
-
|
|
276
|
-
|
|
263
|
+
info_i = [pid, index, it, target, best_target, old_acq_params]
|
|
264
|
+
rows[index] = info_i + list(rddl_params.values())
|
|
277
265
|
|
|
278
266
|
# write results of all processes in current iteration to file
|
|
279
267
|
with open(filename, 'a', newline='') as file:
|
|
@@ -308,16 +296,20 @@ class JaxParameterTuning:
|
|
|
308
296
|
raise_warning(f'failed to import packages matplotlib or sklearn, '
|
|
309
297
|
f'aborting plot of search space\n{e}', 'red')
|
|
310
298
|
else:
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
299
|
+
with open(filename, 'r') as file:
|
|
300
|
+
data_iter = csv.reader(file, delimiter=',')
|
|
301
|
+
data = [row for row in data_iter]
|
|
302
|
+
data = np.asarray(data, dtype=object)
|
|
303
|
+
hparam = data[1:, len(COLUMNS):].astype(np.float64)
|
|
304
|
+
target = data[1:, 3].astype(np.float64)
|
|
315
305
|
target = (target - np.min(target)) / (np.max(target) - np.min(target))
|
|
316
306
|
embedding = MDS(n_components=2, normalized_stress='auto')
|
|
317
|
-
|
|
318
|
-
sc = plt.scatter(
|
|
319
|
-
cmap='seismic', edgecolor='gray',
|
|
320
|
-
|
|
307
|
+
hparam_low = embedding.fit_transform(hparam)
|
|
308
|
+
sc = plt.scatter(hparam_low[:, 0], hparam_low[:, 1], c=target, s=5,
|
|
309
|
+
cmap='seismic', edgecolor='gray', linewidth=0)
|
|
310
|
+
ax = plt.gca()
|
|
311
|
+
for i in range(len(target)):
|
|
312
|
+
ax.annotate(str(i), (hparam_low[i, 0], hparam_low[i, 1]), fontsize=3)
|
|
321
313
|
plt.colorbar(sc)
|
|
322
314
|
plt.savefig(self._filename('gp_points', 'pdf'))
|
|
323
315
|
plt.clf()
|
|
@@ -342,9 +334,11 @@ def objective_slp(params, kwargs, key, index):
|
|
|
342
334
|
std, lr, w, wa = param_values
|
|
343
335
|
else:
|
|
344
336
|
std, lr, w = param_values
|
|
345
|
-
wa = None
|
|
337
|
+
wa = None
|
|
338
|
+
key, subkey = jax.random.split(key)
|
|
346
339
|
if kwargs['verbose']:
|
|
347
|
-
print(f'[{index}] key={
|
|
340
|
+
print(f'[{index}] key={subkey[0]}, '
|
|
341
|
+
f'std={std}, lr={lr}, w={w}, wa={wa}...', flush=True)
|
|
348
342
|
|
|
349
343
|
# initialize planning algorithm
|
|
350
344
|
planner = JaxBackpropPlanner(
|
|
@@ -358,7 +352,6 @@ def objective_slp(params, kwargs, key, index):
|
|
|
358
352
|
model_params = {name: w for name in planner.compiled.model_params}
|
|
359
353
|
|
|
360
354
|
# initialize policy
|
|
361
|
-
key, subkey = jax.random.split(key)
|
|
362
355
|
policy = JaxOfflineController(
|
|
363
356
|
planner=planner,
|
|
364
357
|
key=subkey,
|
|
@@ -384,7 +377,7 @@ def objective_slp(params, kwargs, key, index):
|
|
|
384
377
|
key, subkey = jax.random.split(key)
|
|
385
378
|
total_reward = policy.evaluate(env, seed=np.array(subkey)[0])['mean']
|
|
386
379
|
if kwargs['verbose']:
|
|
387
|
-
print(f' [{index}] trial {trial + 1} key={subkey}, '
|
|
380
|
+
print(f' [{index}] trial {trial + 1} key={subkey[0]}, '
|
|
388
381
|
f'reward={total_reward}', flush=True)
|
|
389
382
|
average_reward += total_reward / kwargs['eval_trials']
|
|
390
383
|
if kwargs['verbose']:
|
|
@@ -474,8 +467,10 @@ def objective_replan(params, kwargs, key, index):
|
|
|
474
467
|
else:
|
|
475
468
|
std, lr, w, T = param_values
|
|
476
469
|
wa = None
|
|
470
|
+
key, subkey = jax.random.split(key)
|
|
477
471
|
if kwargs['verbose']:
|
|
478
|
-
print(f'[{index}] key={
|
|
472
|
+
print(f'[{index}] key={subkey[0]}, '
|
|
473
|
+
f'std={std}, lr={lr}, w={w}, wa={wa}, T={T}...', flush=True)
|
|
479
474
|
|
|
480
475
|
# initialize planning algorithm
|
|
481
476
|
planner = JaxBackpropPlanner(
|
|
@@ -490,7 +485,6 @@ def objective_replan(params, kwargs, key, index):
|
|
|
490
485
|
model_params = {name: w for name in planner.compiled.model_params}
|
|
491
486
|
|
|
492
487
|
# initialize controller
|
|
493
|
-
key, subkey = jax.random.split(key)
|
|
494
488
|
policy = JaxOnlineController(
|
|
495
489
|
planner=planner,
|
|
496
490
|
key=subkey,
|
|
@@ -516,7 +510,7 @@ def objective_replan(params, kwargs, key, index):
|
|
|
516
510
|
key, subkey = jax.random.split(key)
|
|
517
511
|
total_reward = policy.evaluate(env, seed=np.array(subkey)[0])['mean']
|
|
518
512
|
if kwargs['verbose']:
|
|
519
|
-
print(f' [{index}] trial {trial + 1} key={subkey}, '
|
|
513
|
+
print(f' [{index}] trial {trial + 1} key={subkey[0]}, '
|
|
520
514
|
f'reward={total_reward}', flush=True)
|
|
521
515
|
average_reward += total_reward / kwargs['eval_trials']
|
|
522
516
|
if kwargs['verbose']:
|
|
@@ -602,9 +596,11 @@ def objective_drp(params, kwargs, key, index):
|
|
|
602
596
|
]
|
|
603
597
|
|
|
604
598
|
# unpack hyper-parameters
|
|
605
|
-
lr, w, layers, neurons = param_values
|
|
599
|
+
lr, w, layers, neurons = param_values
|
|
600
|
+
key, subkey = jax.random.split(key)
|
|
606
601
|
if kwargs['verbose']:
|
|
607
|
-
print(f'[{index}] key={
|
|
602
|
+
print(f'[{index}] key={subkey[0]}, '
|
|
603
|
+
f'lr={lr}, w={w}, layers={layers}, neurons={neurons}...', flush=True)
|
|
608
604
|
|
|
609
605
|
# initialize planning algorithm
|
|
610
606
|
planner = JaxBackpropPlanner(
|
|
@@ -618,7 +614,6 @@ def objective_drp(params, kwargs, key, index):
|
|
|
618
614
|
model_params = {name: w for name in planner.compiled.model_params}
|
|
619
615
|
|
|
620
616
|
# initialize policy
|
|
621
|
-
key, subkey = jax.random.split(key)
|
|
622
617
|
policy = JaxOfflineController(
|
|
623
618
|
planner=planner,
|
|
624
619
|
key=subkey,
|
|
@@ -644,7 +639,7 @@ def objective_drp(params, kwargs, key, index):
|
|
|
644
639
|
key, subkey = jax.random.split(key)
|
|
645
640
|
total_reward = policy.evaluate(env, seed=np.array(subkey)[0])['mean']
|
|
646
641
|
if kwargs['verbose']:
|
|
647
|
-
print(f' [{index}] trial {trial + 1} key={subkey}, '
|
|
642
|
+
print(f' [{index}] trial {trial + 1} key={subkey[0]}, '
|
|
648
643
|
f'reward={total_reward}', flush=True)
|
|
649
644
|
average_reward += total_reward / kwargs['eval_trials']
|
|
650
645
|
if kwargs['verbose']:
|
|
@@ -6,9 +6,9 @@ tnorm_kwargs={}
|
|
|
6
6
|
|
|
7
7
|
[Optimizer]
|
|
8
8
|
method='JaxStraightLinePlan'
|
|
9
|
-
method_kwargs={
|
|
9
|
+
method_kwargs={}
|
|
10
10
|
optimizer='rmsprop'
|
|
11
|
-
optimizer_kwargs={'learning_rate': 0.
|
|
11
|
+
optimizer_kwargs={'learning_rate': 0.1}
|
|
12
12
|
batch_size_train=32
|
|
13
13
|
batch_size_test=32
|
|
14
14
|
rollout_horizon=5
|
|
@@ -17,4 +17,5 @@ rollout_horizon=5
|
|
|
17
17
|
key=42
|
|
18
18
|
epochs=1000
|
|
19
19
|
train_seconds=1
|
|
20
|
-
policy_hyperparams={'cut-out': 10.0, 'put-out': 10.0}
|
|
20
|
+
policy_hyperparams={'cut-out': 10.0, 'put-out': 10.0}
|
|
21
|
+
print_summary=False
|
|
@@ -59,9 +59,7 @@ def main(domain, instance, method, trials=5, iters=20, workers=4):
|
|
|
59
59
|
gp_iters=iters)
|
|
60
60
|
|
|
61
61
|
# perform tuning and report best parameters
|
|
62
|
-
|
|
63
|
-
save_plot=True)
|
|
64
|
-
print(f'best parameters found: {best}')
|
|
62
|
+
tuning.tune(key=train_args['key'], filename=f'gp_{method}', save_plot=True)
|
|
65
63
|
|
|
66
64
|
|
|
67
65
|
if __name__ == "__main__":
|
|
@@ -0,0 +1,278 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: pyRDDLGym-jax
|
|
3
|
+
Version: 0.5
|
|
4
|
+
Summary: pyRDDLGym-jax: automatic differentiation for solving sequential planning problems in JAX.
|
|
5
|
+
Home-page: https://github.com/pyrddlgym-project/pyRDDLGym-jax
|
|
6
|
+
Author: Michael Gimelfarb, Ayal Taitler, Scott Sanner
|
|
7
|
+
Author-email: mike.gimelfarb@mail.utoronto.ca, ataitler@gmail.com, ssanner@mie.utoronto.ca
|
|
8
|
+
License: MIT License
|
|
9
|
+
Classifier: Development Status :: 3 - Alpha
|
|
10
|
+
Classifier: Intended Audience :: Science/Research
|
|
11
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
12
|
+
Classifier: Natural Language :: English
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
16
|
+
Requires-Python: >=3.9
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
License-File: LICENSE
|
|
19
|
+
Requires-Dist: pyRDDLGym >=2.0
|
|
20
|
+
Requires-Dist: tqdm >=4.66
|
|
21
|
+
Requires-Dist: jax >=0.4.12
|
|
22
|
+
Requires-Dist: optax >=0.1.9
|
|
23
|
+
Requires-Dist: dm-haiku >=0.0.10
|
|
24
|
+
Requires-Dist: tensorflow-probability >=0.21.0
|
|
25
|
+
Provides-Extra: extra
|
|
26
|
+
Requires-Dist: bayesian-optimization >=2.0.0 ; extra == 'extra'
|
|
27
|
+
Requires-Dist: rddlrepository >=2.0 ; extra == 'extra'
|
|
28
|
+
|
|
29
|
+
# pyRDDLGym-jax
|
|
30
|
+
|
|
31
|
+
Author: [Mike Gimelfarb](https://mike-gimelfarb.github.io)
|
|
32
|
+
|
|
33
|
+
This directory provides:
|
|
34
|
+
1. automated translation and compilation of RDDL description files into [JAX](https://github.com/google/jax), converting any RDDL domain to a differentiable simulator!
|
|
35
|
+
2. powerful, fast and scalable gradient-based planning algorithms, with extendible and flexible policy class representations, automatic model relaxations for working in discrete and hybrid domains, and much more!
|
|
36
|
+
|
|
37
|
+
> [!NOTE]
|
|
38
|
+
> While Jax planners can support some discrete state/action problems through model relaxations, on some discrete problems it can perform poorly (though there is an ongoing effort to remedy this!).
|
|
39
|
+
> If you find it is not making sufficient progress, check out the [PROST planner](https://github.com/pyrddlgym-project/pyRDDLGym-prost) (for discrete spaces) or the [deep reinforcement learning wrappers](https://github.com/pyrddlgym-project/pyRDDLGym-rl).
|
|
40
|
+
|
|
41
|
+
## Contents
|
|
42
|
+
|
|
43
|
+
- [Installation](#installation)
|
|
44
|
+
- [Running from the Command Line](#running-from-the-command-line)
|
|
45
|
+
- [Running from within Python](#running-from-within-python)
|
|
46
|
+
- [Configuring the Planner](#configuring-the-planner)
|
|
47
|
+
- [Simulation](#simulation)
|
|
48
|
+
- [Manual Gradient Calculation](#manual-gradient-calculation)
|
|
49
|
+
- [Citing pyRDDLGym-jax](#citing-pyrddlgym-jax)
|
|
50
|
+
|
|
51
|
+
## Installation
|
|
52
|
+
|
|
53
|
+
To use the compiler or planner without the automated hyper-parameter tuning, you will need the following packages installed:
|
|
54
|
+
- ``pyRDDLGym>=2.0``
|
|
55
|
+
- ``tqdm>=4.66``
|
|
56
|
+
- ``jax>=0.4.12``
|
|
57
|
+
- ``optax>=0.1.9``
|
|
58
|
+
- ``dm-haiku>=0.0.10``
|
|
59
|
+
- ``tensorflow-probability>=0.21.0``
|
|
60
|
+
|
|
61
|
+
Additionally, if you wish to run the examples, you need ``rddlrepository>=2``.
|
|
62
|
+
To run the automated tuning optimization, you will also need ``bayesian-optimization>=2.0.0``.
|
|
63
|
+
|
|
64
|
+
You can install pyRDDLGym-jax with all requirements using pip:
|
|
65
|
+
|
|
66
|
+
```shell
|
|
67
|
+
pip install pyRDDLGym-jax[extra]
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
## Running from the Command Line
|
|
71
|
+
|
|
72
|
+
A basic run script is provided to run the Jax Planner on any domain in ``rddlrepository`` from the install directory of pyRDDLGym-jax:
|
|
73
|
+
|
|
74
|
+
```shell
|
|
75
|
+
python -m pyRDDLGym_jax.examples.run_plan <domain> <instance> <method> <episodes>
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
where:
|
|
79
|
+
- ``domain`` is the domain identifier as specified in rddlrepository (i.e. Wildfire_MDP_ippc2014), or a path pointing to a valid ``domain.rddl`` file
|
|
80
|
+
- ``instance`` is the instance identifier (i.e. 1, 2, ... 10), or a path pointing to a valid ``instance.rddl`` file
|
|
81
|
+
- ``method`` is the planning method to use (i.e. drp, slp, replan)
|
|
82
|
+
- ``episodes`` is the (optional) number of episodes to evaluate the learned policy.
|
|
83
|
+
|
|
84
|
+
The ``method`` parameter supports three possible modes:
|
|
85
|
+
- ``slp`` is the basic straight line planner described [in this paper](https://proceedings.neurips.cc/paper_files/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
|
|
86
|
+
- ``drp`` is the deep reactive policy network described [in this paper](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
|
|
87
|
+
- ``replan`` is the same as ``slp`` except the plan is recalculated at every decision time step.
|
|
88
|
+
|
|
89
|
+
A basic run script is also provided to run the automatic hyper-parameter tuning:
|
|
90
|
+
|
|
91
|
+
```shell
|
|
92
|
+
python -m pyRDDLGym_jax.examples.run_tune <domain> <instance> <method> <trials> <iters> <workers>
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
where:
|
|
96
|
+
- ``domain`` is the domain identifier as specified in rddlrepository
|
|
97
|
+
- ``instance`` is the instance identifier
|
|
98
|
+
- ``method`` is the planning method to use (i.e. drp, slp, replan)
|
|
99
|
+
- ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
|
|
100
|
+
- ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
|
|
101
|
+
- ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``.
|
|
102
|
+
|
|
103
|
+
For example, the following will train the Jax Planner on the Quadcopter domain with 4 drones:
|
|
104
|
+
|
|
105
|
+
```shell
|
|
106
|
+
python -m pyRDDLGym_jax.examples.run_plan Quadcopter 1 slp
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
After several minutes of optimization, you should get a visualization as follows:
|
|
110
|
+
|
|
111
|
+
<p align="center">
|
|
112
|
+
<img src="Images/quadcopter.gif" width="400" height="400" margin=1/>
|
|
113
|
+
</p>
|
|
114
|
+
|
|
115
|
+
## Running from within Python
|
|
116
|
+
|
|
117
|
+
To run the Jax planner from within a Python application, refer to the following example:
|
|
118
|
+
|
|
119
|
+
```python
|
|
120
|
+
import pyRDDLGym
|
|
121
|
+
from pyRDDLGym_jax.core.planner import JaxBackpropPlanner, JaxOfflineController
|
|
122
|
+
|
|
123
|
+
# set up the environment (note the vectorized option must be True)
|
|
124
|
+
env = pyRDDLGym.make("domain", "instance", vectorized=True)
|
|
125
|
+
|
|
126
|
+
# create the planning algorithm
|
|
127
|
+
planner = JaxBackpropPlanner(rddl=env.model, **planner_args)
|
|
128
|
+
controller = JaxOfflineController(planner, **train_args)
|
|
129
|
+
|
|
130
|
+
# evaluate the planner
|
|
131
|
+
controller.evaluate(env, episodes=1, verbose=True, render=True)
|
|
132
|
+
env.close()
|
|
133
|
+
```
|
|
134
|
+
|
|
135
|
+
Here, we have used the straight-line controller, although you can configure the combination of planner and policy representation if you wish.
|
|
136
|
+
All controllers are instances of pyRDDLGym's ``BaseAgent`` class, so they provide the ``evaluate()`` function to streamline interaction with the environment.
|
|
137
|
+
The ``**planner_args`` and ``**train_args`` are keyword argument parameters to pass during initialization, but we strongly recommend creating and loading a config file as discussed in the next section.
|
|
138
|
+
|
|
139
|
+
## Configuring the Planner
|
|
140
|
+
|
|
141
|
+
The simplest way to configure the planner is to write and pass a configuration file with the necessary [hyper-parameters](https://pyrddlgym.readthedocs.io/en/latest/jax.html#configuring-pyrddlgym-jax).
|
|
142
|
+
The basic structure of a configuration file is provided below for a straight-line planner:
|
|
143
|
+
|
|
144
|
+
```ini
|
|
145
|
+
[Model]
|
|
146
|
+
logic='FuzzyLogic'
|
|
147
|
+
logic_kwargs={'weight': 20}
|
|
148
|
+
tnorm='ProductTNorm'
|
|
149
|
+
tnorm_kwargs={}
|
|
150
|
+
|
|
151
|
+
[Optimizer]
|
|
152
|
+
method='JaxStraightLinePlan'
|
|
153
|
+
method_kwargs={}
|
|
154
|
+
optimizer='rmsprop'
|
|
155
|
+
optimizer_kwargs={'learning_rate': 0.001}
|
|
156
|
+
batch_size_train=1
|
|
157
|
+
batch_size_test=1
|
|
158
|
+
|
|
159
|
+
[Training]
|
|
160
|
+
key=42
|
|
161
|
+
epochs=5000
|
|
162
|
+
train_seconds=30
|
|
163
|
+
```
|
|
164
|
+
|
|
165
|
+
The configuration file contains three sections:
|
|
166
|
+
- ``[Model]`` specifies the fuzzy logic operations used to relax discrete operations to differentiable approximations; the ``weight`` dictates the quality of the approximation,
|
|
167
|
+
and ``tnorm`` specifies the type of [fuzzy logic](https://en.wikipedia.org/wiki/T-norm_fuzzy_logics) for relacing logical operations in RDDL (e.g. ``ProductTNorm``, ``GodelTNorm``, ``LukasiewiczTNorm``)
|
|
168
|
+
- ``[Optimizer]`` generally specify the optimizer and plan settings; the ``method`` specifies the plan/policy representation (e.g. ``JaxStraightLinePlan``, ``JaxDeepReactivePolicy``), the gradient descent settings, learning rate, batch size, etc.
|
|
169
|
+
- ``[Training]`` specifies computation limits, such as total training time and number of iterations, and options for printing or visualizing information from the planner.
|
|
170
|
+
|
|
171
|
+
For a policy network approach, simply change the ``[Optimizer]`` settings like so:
|
|
172
|
+
|
|
173
|
+
```ini
|
|
174
|
+
...
|
|
175
|
+
[Optimizer]
|
|
176
|
+
method='JaxDeepReactivePolicy'
|
|
177
|
+
method_kwargs={'topology': [128, 64], 'activation': 'tanh'}
|
|
178
|
+
...
|
|
179
|
+
```
|
|
180
|
+
|
|
181
|
+
The configuration file must then be passed to the planner during initialization.
|
|
182
|
+
For example, the [previous script here](#running-from-within-python) can be modified to set parameters from a config file:
|
|
183
|
+
|
|
184
|
+
```python
|
|
185
|
+
from pyRDDLGym_jax.core.planner import load_config
|
|
186
|
+
|
|
187
|
+
# load the config file with planner settings
|
|
188
|
+
planner_args, _, train_args = load_config("/path/to/config.cfg")
|
|
189
|
+
|
|
190
|
+
# create the planning algorithm
|
|
191
|
+
planner = JaxBackpropPlanner(rddl=env.model, **planner_args)
|
|
192
|
+
controller = JaxOfflineController(planner, **train_args)
|
|
193
|
+
...
|
|
194
|
+
```
|
|
195
|
+
|
|
196
|
+
## Simulation
|
|
197
|
+
|
|
198
|
+
The JAX compiler can be used as a backend for simulating and evaluating RDDL environments:
|
|
199
|
+
|
|
200
|
+
```python
|
|
201
|
+
import pyRDDLGym
|
|
202
|
+
from pyRDDLGym.core.policy import RandomAgent
|
|
203
|
+
from pyRDDLGym_jax.core.simulator import JaxRDDLSimulator
|
|
204
|
+
|
|
205
|
+
# create the environment
|
|
206
|
+
env = pyRDDLGym.make("domain", "instance", backend=JaxRDDLSimulator)
|
|
207
|
+
|
|
208
|
+
# evaluate the random policy
|
|
209
|
+
agent = RandomAgent(action_space=env.action_space,
|
|
210
|
+
num_actions=env.max_allowed_actions)
|
|
211
|
+
agent.evaluate(env, verbose=True, render=True)
|
|
212
|
+
```
|
|
213
|
+
|
|
214
|
+
For some domains, the JAX backend could perform better than the numpy-based one, due to various compiler optimizations.
|
|
215
|
+
In any event, the simulation results using the JAX backend should (almost) always match the numpy backend.
|
|
216
|
+
|
|
217
|
+
## Manual Gradient Calculation
|
|
218
|
+
|
|
219
|
+
For custom applications, it is desirable to compute gradients of the model that can be optimized downstream.
|
|
220
|
+
Fortunately, we provide a very convenient function for compiling the transition/step function ``P(s, a, s')`` of the environment into JAX.
|
|
221
|
+
|
|
222
|
+
```python
|
|
223
|
+
import pyRDDLGym
|
|
224
|
+
from pyRDDLGym_jax.core.planner import JaxRDDLCompilerWithGrad
|
|
225
|
+
|
|
226
|
+
# set up the environment
|
|
227
|
+
env = pyRDDLGym.make("domain", "instance", vectorized=True)
|
|
228
|
+
|
|
229
|
+
# create the step function
|
|
230
|
+
compiled = JaxRDDLCompilerWithGrad(rddl=env.model)
|
|
231
|
+
compiled.compile()
|
|
232
|
+
step_fn = compiled.compile_transition()
|
|
233
|
+
```
|
|
234
|
+
|
|
235
|
+
This will return a JAX compiled (pure) function requiring the following inputs:
|
|
236
|
+
- ``key`` is the ``jax.random.PRNGKey`` key for reproducible randomness
|
|
237
|
+
- ``actions`` is the dictionary of action fluent tensors
|
|
238
|
+
- ``subs`` is the dictionary of state-fluent and non-fluent tensors
|
|
239
|
+
- ``model_params`` are the parameters of the differentiable relaxations, such as ``weight``
|
|
240
|
+
|
|
241
|
+
The function returns a dictionary containing a variety of variables, such as updated pvariables including next-state fluents (``pvar``), reward obtained (``reward``), error codes (``error``).
|
|
242
|
+
It is thus possible to apply any JAX transformation to the output of the function, such as computing gradient using ``jax.grad()`` or batched simulation using ``jax.vmap()``.
|
|
243
|
+
|
|
244
|
+
Compilation of entire rollouts is also possible by calling the ``compile_rollouts`` function.
|
|
245
|
+
An [example is provided to illustrate how you can define your own policy class and compute the return gradient manually](https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/pyRDDLGym_jax/examples/run_gradient.py).
|
|
246
|
+
|
|
247
|
+
## Citing pyRDDLGym-jax
|
|
248
|
+
|
|
249
|
+
The [following citation](https://ojs.aaai.org/index.php/ICAPS/article/view/31480) describes the main ideas of the framework. Please cite it if you found it useful:
|
|
250
|
+
|
|
251
|
+
```
|
|
252
|
+
@inproceedings{gimelfarb2024jaxplan,
|
|
253
|
+
title={JaxPlan and GurobiPlan: Optimization Baselines for Replanning in Discrete and Mixed Discrete and Continuous Probabilistic Domains},
|
|
254
|
+
author={Michael Gimelfarb and Ayal Taitler and Scott Sanner},
|
|
255
|
+
booktitle={34th International Conference on Automated Planning and Scheduling},
|
|
256
|
+
year={2024},
|
|
257
|
+
url={https://openreview.net/forum?id=7IKtmUpLEH}
|
|
258
|
+
}
|
|
259
|
+
```
|
|
260
|
+
|
|
261
|
+
The utility optimization is discussed in [this paper](https://ojs.aaai.org/index.php/AAAI/article/view/21226):
|
|
262
|
+
|
|
263
|
+
```
|
|
264
|
+
@inproceedings{patton2022distributional,
|
|
265
|
+
title={A distributional framework for risk-sensitive end-to-end planning in continuous mdps},
|
|
266
|
+
author={Patton, Noah and Jeong, Jihwan and Gimelfarb, Mike and Sanner, Scott},
|
|
267
|
+
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
|
268
|
+
volume={36},
|
|
269
|
+
number={9},
|
|
270
|
+
pages={9894--9901},
|
|
271
|
+
year={2022}
|
|
272
|
+
}
|
|
273
|
+
```
|
|
274
|
+
|
|
275
|
+
Some of the implementation details derive from the following literature, which you may wish to also cite in your research papers:
|
|
276
|
+
- [Deep reactive policies for planning in stochastic nonlinear domains, AAAI 2019](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
|
|
277
|
+
- [Scalable planning with tensorflow for hybrid nonlinear domains, NeurIPS 2017](https://proceedings.neurips.cc/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
|
|
278
|
+
|