pyRDDLGym-jax 0.2__py3-none-any.whl → 0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyRDDLGym_jax/__init__.py +1 -0
- pyRDDLGym_jax/core/compiler.py +1 -2
- pyRDDLGym_jax/core/planner.py +359 -155
- pyRDDLGym_jax/core/tuning.py +6 -3
- pyRDDLGym_jax/examples/configs/HVAC_ippc2023_drp.cfg +3 -3
- pyRDDLGym_jax/examples/configs/MarsRover_ippc2023_drp.cfg +1 -0
- pyRDDLGym_jax/examples/configs/Pendulum_gym_slp.cfg +1 -1
- pyRDDLGym_jax/examples/configs/default_drp.cfg +1 -1
- pyRDDLGym_jax/examples/configs/default_slp.cfg +1 -1
- pyRDDLGym_jax/examples/run_gym.py +2 -5
- pyRDDLGym_jax/examples/run_plan.py +6 -8
- pyRDDLGym_jax/examples/run_scipy.py +61 -0
- pyRDDLGym_jax/examples/run_tune.py +5 -6
- {pyRDDLGym_jax-0.2.dist-info → pyRDDLGym_jax-0.3.dist-info}/METADATA +1 -1
- {pyRDDLGym_jax-0.2.dist-info → pyRDDLGym_jax-0.3.dist-info}/RECORD +18 -20
- pyRDDLGym_jax/examples/configs/Pong_slp.cfg +0 -18
- pyRDDLGym_jax/examples/configs/SupplyChain_slp.cfg +0 -18
- pyRDDLGym_jax/examples/configs/Traffic_slp.cfg +0 -20
- {pyRDDLGym_jax-0.2.dist-info → pyRDDLGym_jax-0.3.dist-info}/LICENSE +0 -0
- {pyRDDLGym_jax-0.2.dist-info → pyRDDLGym_jax-0.3.dist-info}/WHEEL +0 -0
- {pyRDDLGym_jax-0.2.dist-info → pyRDDLGym_jax-0.3.dist-info}/top_level.txt +0 -0
pyRDDLGym_jax/core/tuning.py
CHANGED
|
@@ -368,7 +368,8 @@ def objective_slp(params, kwargs, key, index):
|
|
|
368
368
|
train_seconds=kwargs['timeout_training'],
|
|
369
369
|
model_params=model_params,
|
|
370
370
|
policy_hyperparams=policy_hparams,
|
|
371
|
-
|
|
371
|
+
print_summary=False,
|
|
372
|
+
print_progress=False,
|
|
372
373
|
tqdm_position=index)
|
|
373
374
|
|
|
374
375
|
# initialize env for evaluation (need fresh copy to avoid concurrency)
|
|
@@ -499,7 +500,8 @@ def objective_replan(params, kwargs, key, index):
|
|
|
499
500
|
train_seconds=kwargs['timeout_training'],
|
|
500
501
|
model_params=model_params,
|
|
501
502
|
policy_hyperparams=policy_hparams,
|
|
502
|
-
|
|
503
|
+
print_summary=False,
|
|
504
|
+
print_progress=False,
|
|
503
505
|
tqdm_position=index)
|
|
504
506
|
|
|
505
507
|
# initialize env for evaluation (need fresh copy to avoid concurrency)
|
|
@@ -626,7 +628,8 @@ def objective_drp(params, kwargs, key, index):
|
|
|
626
628
|
train_seconds=kwargs['timeout_training'],
|
|
627
629
|
model_params=model_params,
|
|
628
630
|
policy_hyperparams=policy_hparams,
|
|
629
|
-
|
|
631
|
+
print_summary=False,
|
|
632
|
+
print_progress=False,
|
|
630
633
|
tqdm_position=index)
|
|
631
634
|
|
|
632
635
|
# initialize env for evaluation (need fresh copy to avoid concurrency)
|
|
@@ -6,7 +6,7 @@ tnorm_kwargs={}
|
|
|
6
6
|
|
|
7
7
|
[Optimizer]
|
|
8
8
|
method='JaxDeepReactivePolicy'
|
|
9
|
-
method_kwargs={'topology': [
|
|
9
|
+
method_kwargs={'topology': [64, 64]}
|
|
10
10
|
optimizer='rmsprop'
|
|
11
11
|
optimizer_kwargs={'learning_rate': 0.001}
|
|
12
12
|
batch_size_train=1
|
|
@@ -14,5 +14,5 @@ batch_size_test=1
|
|
|
14
14
|
|
|
15
15
|
[Training]
|
|
16
16
|
key=42
|
|
17
|
-
epochs=
|
|
18
|
-
train_seconds=
|
|
17
|
+
epochs=6000
|
|
18
|
+
train_seconds=60
|
|
@@ -23,16 +23,13 @@ from pyRDDLGym_jax.core.simulator import JaxRDDLSimulator
|
|
|
23
23
|
def main(domain, instance, episodes=1, seed=42):
|
|
24
24
|
|
|
25
25
|
# create the environment
|
|
26
|
-
env = pyRDDLGym.make(domain, instance,
|
|
27
|
-
backend=JaxRDDLSimulator)
|
|
26
|
+
env = pyRDDLGym.make(domain, instance, backend=JaxRDDLSimulator)
|
|
28
27
|
|
|
29
|
-
#
|
|
28
|
+
# evaluate a random policy
|
|
30
29
|
agent = RandomAgent(action_space=env.action_space,
|
|
31
30
|
num_actions=env.max_allowed_actions,
|
|
32
31
|
seed=seed)
|
|
33
32
|
agent.evaluate(env, episodes=episodes, verbose=True, render=True, seed=seed)
|
|
34
|
-
|
|
35
|
-
# important when logging to save all traces
|
|
36
33
|
env.close()
|
|
37
34
|
|
|
38
35
|
|
|
@@ -13,6 +13,7 @@ where:
|
|
|
13
13
|
<domain> is the name of a domain located in the /Examples directory
|
|
14
14
|
<instance> is the instance number
|
|
15
15
|
<method> is either slp, drp, or replan
|
|
16
|
+
<episodes> is the optional number of evaluation rollouts
|
|
16
17
|
'''
|
|
17
18
|
import os
|
|
18
19
|
import sys
|
|
@@ -28,29 +29,26 @@ from pyRDDLGym_jax.core.planner import (
|
|
|
28
29
|
def main(domain, instance, method, episodes=1):
|
|
29
30
|
|
|
30
31
|
# set up the environment
|
|
31
|
-
env = pyRDDLGym.make(domain, instance, vectorized=True
|
|
32
|
+
env = pyRDDLGym.make(domain, instance, vectorized=True)
|
|
32
33
|
|
|
33
34
|
# load the config file with planner settings
|
|
34
35
|
abs_path = os.path.dirname(os.path.abspath(__file__))
|
|
35
36
|
config_path = os.path.join(abs_path, 'configs', f'{domain}_{method}.cfg')
|
|
36
37
|
if not os.path.isfile(config_path):
|
|
37
|
-
raise_warning(f'Config file {
|
|
38
|
-
f'using
|
|
39
|
-
'red')
|
|
38
|
+
raise_warning(f'Config file {config_path} was not found, '
|
|
39
|
+
f'using default_{method}.cfg.', 'red')
|
|
40
40
|
config_path = os.path.join(abs_path, 'configs', f'default_{method}.cfg')
|
|
41
41
|
planner_args, _, train_args = load_config(config_path)
|
|
42
42
|
|
|
43
43
|
# create the planning algorithm
|
|
44
44
|
planner = JaxBackpropPlanner(rddl=env.model, **planner_args)
|
|
45
45
|
|
|
46
|
-
#
|
|
46
|
+
# evaluate the controller
|
|
47
47
|
if method == 'replan':
|
|
48
48
|
controller = JaxOnlineController(planner, **train_args)
|
|
49
49
|
else:
|
|
50
|
-
controller = JaxOfflineController(planner, **train_args)
|
|
51
|
-
|
|
50
|
+
controller = JaxOfflineController(planner, **train_args)
|
|
52
51
|
controller.evaluate(env, episodes=episodes, verbose=True, render=True)
|
|
53
|
-
|
|
54
52
|
env.close()
|
|
55
53
|
|
|
56
54
|
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
'''In this example, the user has the choice to run the Jax planner using an
|
|
2
|
+
optimizer from scipy.minimize.
|
|
3
|
+
|
|
4
|
+
The syntax for running this example is:
|
|
5
|
+
|
|
6
|
+
python run_scipy.py <domain> <instance> <method> [<episodes>]
|
|
7
|
+
|
|
8
|
+
where:
|
|
9
|
+
<domain> is the name of a domain located in the /Examples directory
|
|
10
|
+
<instance> is the instance number
|
|
11
|
+
<method> is the name of a method provided to scipy.optimize.minimize()
|
|
12
|
+
<episodes> is the optional number of evaluation rollouts
|
|
13
|
+
'''
|
|
14
|
+
import os
|
|
15
|
+
import sys
|
|
16
|
+
import jax
|
|
17
|
+
from scipy.optimize import minimize
|
|
18
|
+
|
|
19
|
+
import pyRDDLGym
|
|
20
|
+
from pyRDDLGym.core.debug.exception import raise_warning
|
|
21
|
+
|
|
22
|
+
from pyRDDLGym_jax.core.planner import load_config, JaxBackpropPlanner, JaxOfflineController
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def main(domain, instance, method, episodes=1):
|
|
26
|
+
|
|
27
|
+
# set up the environment
|
|
28
|
+
env = pyRDDLGym.make(domain, instance, vectorized=True)
|
|
29
|
+
|
|
30
|
+
# load the config file with planner settings
|
|
31
|
+
abs_path = os.path.dirname(os.path.abspath(__file__))
|
|
32
|
+
config_path = os.path.join(abs_path, 'configs', f'{domain}_slp.cfg')
|
|
33
|
+
if not os.path.isfile(config_path):
|
|
34
|
+
raise_warning(f'Config file {config_path} was not found, '
|
|
35
|
+
f'using default_slp.cfg.', 'red')
|
|
36
|
+
config_path = os.path.join(abs_path, 'configs', 'default_slp.cfg')
|
|
37
|
+
planner_args, _, train_args = load_config(config_path)
|
|
38
|
+
|
|
39
|
+
# create the planning algorithm
|
|
40
|
+
planner = JaxBackpropPlanner(rddl=env.model, **planner_args)
|
|
41
|
+
|
|
42
|
+
# find the optimal plan
|
|
43
|
+
loss_fn, grad_fn, guess, unravel_fn = planner.as_optimization_problem()
|
|
44
|
+
opt = minimize(loss_fn, jac=grad_fn, x0=guess, method=method, options={'disp': True})
|
|
45
|
+
params = unravel_fn(opt.x)
|
|
46
|
+
|
|
47
|
+
# evaluate the optimal plan
|
|
48
|
+
controller = JaxOfflineController(planner, params=params, **train_args)
|
|
49
|
+
controller.evaluate(env, episodes=episodes, verbose=True, render=True)
|
|
50
|
+
env.close()
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
if __name__ == "__main__":
|
|
54
|
+
args = sys.argv[1:]
|
|
55
|
+
if len(args) < 3:
|
|
56
|
+
print('python run_scipy.py <domain> <instance> <method> [<episodes>]')
|
|
57
|
+
exit(1)
|
|
58
|
+
kwargs = {'domain': args[0], 'instance': args[1], 'method': args[2]}
|
|
59
|
+
if len(args) >= 4: kwargs['episodes'] = int(args[3])
|
|
60
|
+
main(**kwargs)
|
|
61
|
+
|
|
@@ -31,15 +31,14 @@ from pyRDDLGym_jax.core.planner import load_config
|
|
|
31
31
|
def main(domain, instance, method, trials=5, iters=20, workers=4):
|
|
32
32
|
|
|
33
33
|
# set up the environment
|
|
34
|
-
env = pyRDDLGym.make(domain, instance, vectorized=True
|
|
34
|
+
env = pyRDDLGym.make(domain, instance, vectorized=True)
|
|
35
35
|
|
|
36
36
|
# load the config file with planner settings
|
|
37
37
|
abs_path = os.path.dirname(os.path.abspath(__file__))
|
|
38
38
|
config_path = os.path.join(abs_path, 'configs', f'{domain}_{method}.cfg')
|
|
39
39
|
if not os.path.isfile(config_path):
|
|
40
|
-
raise_warning(f'Config file {
|
|
41
|
-
f'using
|
|
42
|
-
'red')
|
|
40
|
+
raise_warning(f'Config file {config_path} was not found, '
|
|
41
|
+
f'using default_{method}.cfg.', 'red')
|
|
43
42
|
config_path = os.path.join(abs_path, 'configs', f'default_{method}.cfg')
|
|
44
43
|
planner_args, plan_args, train_args = load_config(config_path)
|
|
45
44
|
|
|
@@ -49,8 +48,7 @@ def main(domain, instance, method, trials=5, iters=20, workers=4):
|
|
|
49
48
|
elif method == 'drp':
|
|
50
49
|
tuning_class = JaxParameterTuningDRP
|
|
51
50
|
elif method == 'replan':
|
|
52
|
-
tuning_class = JaxParameterTuningSLPReplan
|
|
53
|
-
|
|
51
|
+
tuning_class = JaxParameterTuningSLPReplan
|
|
54
52
|
tuning = tuning_class(env=env,
|
|
55
53
|
train_epochs=train_args['epochs'],
|
|
56
54
|
timeout_training=train_args['train_seconds'],
|
|
@@ -60,6 +58,7 @@ def main(domain, instance, method, trials=5, iters=20, workers=4):
|
|
|
60
58
|
num_workers=workers,
|
|
61
59
|
gp_iters=iters)
|
|
62
60
|
|
|
61
|
+
# perform tuning and report best parameters
|
|
63
62
|
best = tuning.tune(key=train_args['key'], filename=f'gp_{method}',
|
|
64
63
|
save_plot=True)
|
|
65
64
|
print(f'best parameters found: {best}')
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: pyRDDLGym-jax
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.3
|
|
4
4
|
Summary: pyRDDLGym-jax: JAX compilation of RDDL description files, and a differentiable planner in JAX.
|
|
5
5
|
Home-page: https://github.com/pyrddlgym-project/pyRDDLGym-jax
|
|
6
6
|
Author: Michael Gimelfarb, Ayal Taitler, Scott Sanner
|
|
@@ -1,26 +1,26 @@
|
|
|
1
|
-
pyRDDLGym_jax/__init__.py,sha256=
|
|
1
|
+
pyRDDLGym_jax/__init__.py,sha256=Cl7DWkrPP64Ofc2ILXnudFOdnCuKs2p0Pm7ykZOOPh4,19
|
|
2
2
|
pyRDDLGym_jax/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
pyRDDLGym_jax/core/compiler.py,sha256=
|
|
3
|
+
pyRDDLGym_jax/core/compiler.py,sha256=m7p0CHOU4Wma0cKMu_WQwfoieIQ2pXD68hZ8BFJ970A,89103
|
|
4
4
|
pyRDDLGym_jax/core/logic.py,sha256=zujSHiR5KhTO81E5Zn8Gy_xSzVzfDskFCGvZygFRdMI,21930
|
|
5
|
-
pyRDDLGym_jax/core/planner.py,sha256=
|
|
5
|
+
pyRDDLGym_jax/core/planner.py,sha256=1BtU1G3rihRZaMfNu0VtbSl1LXEXu6pT75EkF6-WVnM,101827
|
|
6
6
|
pyRDDLGym_jax/core/simulator.py,sha256=fp6bep3XwwBWED0w7_4qhiwDjkSka6B2prwdNcPRCMc,8329
|
|
7
|
-
pyRDDLGym_jax/core/tuning.py,sha256=
|
|
7
|
+
pyRDDLGym_jax/core/tuning.py,sha256=Dv0YyOgGnej-zdVymWdkVg0MZjm2lNRfr7gySzFOeow,29589
|
|
8
8
|
pyRDDLGym_jax/examples/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
pyRDDLGym_jax/examples/run_gradient.py,sha256=KhXvijRDZ4V7N8NOI2WV8ePGpPna5_vnET61YwS7Tco,2919
|
|
10
|
-
pyRDDLGym_jax/examples/run_gym.py,sha256=
|
|
11
|
-
pyRDDLGym_jax/examples/run_plan.py,sha256=
|
|
12
|
-
pyRDDLGym_jax/examples/
|
|
10
|
+
pyRDDLGym_jax/examples/run_gym.py,sha256=rXvNWkxe4jHllvbvU_EOMji_2-2k5d4tbBKhpMm_Gaw,1526
|
|
11
|
+
pyRDDLGym_jax/examples/run_plan.py,sha256=OENf8s-SrMlh7CYXNhanQiau35b4atLBJMNjgP88DCg,2463
|
|
12
|
+
pyRDDLGym_jax/examples/run_scipy.py,sha256=wvcpWCvdjvYHntO95a7JYfY2fuCMUTKnqjJikW0PnL4,2291
|
|
13
|
+
pyRDDLGym_jax/examples/run_tune.py,sha256=-M4KoBpg5lshQ4mmU0cnLs2i7-ldSIr_OcxHK7YA6bw,3273
|
|
13
14
|
pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_drp.cfg,sha256=pbkz6ccgk5dHXp7cfYbZNFyJobpGyxUZleCy4fvlmaU,336
|
|
14
15
|
pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_replan.cfg,sha256=OswO9YD4Xh1pw3R3LkUBb67WLtj5XlE3qnMQ5CKwPsM,332
|
|
15
16
|
pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_slp.cfg,sha256=FxZ4xcg2j2PzeH-wUseRR280juQN5bJjoyt6PtI1W7c,329
|
|
16
|
-
pyRDDLGym_jax/examples/configs/HVAC_ippc2023_drp.cfg,sha256=
|
|
17
|
+
pyRDDLGym_jax/examples/configs/HVAC_ippc2023_drp.cfg,sha256=FTGFwRAGyeRrbDMh_FV8iv8ZHrlj3Htju4pfPNmKIcw,336
|
|
17
18
|
pyRDDLGym_jax/examples/configs/HVAC_ippc2023_slp.cfg,sha256=wjtz86_Gz0RfQu3bbrz56PTXL8JMernINx7AtJuZCPs,314
|
|
18
|
-
pyRDDLGym_jax/examples/configs/MarsRover_ippc2023_drp.cfg,sha256=
|
|
19
|
+
pyRDDLGym_jax/examples/configs/MarsRover_ippc2023_drp.cfg,sha256=C_0BFyhGXbtF7N4vyeua2XkORbkj10HELC1GpzM0Uh4,415
|
|
19
20
|
pyRDDLGym_jax/examples/configs/MarsRover_ippc2023_slp.cfg,sha256=Yb4tFzUOj4epCCsofXAZo70lm5C2KzPIzI5PQHsa_Vk,429
|
|
20
21
|
pyRDDLGym_jax/examples/configs/MountainCar_Continuous_gym_slp.cfg,sha256=e7j-1Z66o7F-KZDSf2e8TQRWwkXOPRwrRFkIavK8G7g,327
|
|
21
22
|
pyRDDLGym_jax/examples/configs/MountainCar_ippc2023_slp.cfg,sha256=Z6CxaOxHv4oF6nW7SfSn_HshlQGDlNCPGASTnDTdL7Q,327
|
|
22
|
-
pyRDDLGym_jax/examples/configs/Pendulum_gym_slp.cfg,sha256=
|
|
23
|
-
pyRDDLGym_jax/examples/configs/Pong_slp.cfg,sha256=S45mBj5hTEshdeJ4rdRaty6YliggtEMkLQV6IYxEkyU,315
|
|
23
|
+
pyRDDLGym_jax/examples/configs/Pendulum_gym_slp.cfg,sha256=Uy1mrX-AZMS-KBAhWXJ3c_QAhd4bRSWttDoFGYQ08lQ,315
|
|
24
24
|
pyRDDLGym_jax/examples/configs/PowerGen_Continuous_drp.cfg,sha256=SM5_U4RwvvucHVAOdMG4vqH0Eg43f3WX9ZlV6aFPgTw,341
|
|
25
25
|
pyRDDLGym_jax/examples/configs/PowerGen_Continuous_replan.cfg,sha256=lcqQ7P7X4qAbMlpkKKuYGn2luSZH-yFB7oi-eHj9Qng,332
|
|
26
26
|
pyRDDLGym_jax/examples/configs/PowerGen_Continuous_slp.cfg,sha256=kG1-02ScmwsEwX7QIAZTD7si90Mb06b79G5oqcMQ9Hg,316
|
|
@@ -29,18 +29,16 @@ pyRDDLGym_jax/examples/configs/Quadcopter_slp.cfg,sha256=9QNl58PyoJYhmwvrhzUxlLE
|
|
|
29
29
|
pyRDDLGym_jax/examples/configs/Reservoir_Continuous_drp.cfg,sha256=rrubYvC1q7Ff0ADV0GXtLw-rD9E4m7qfR66qxdYNTD8,339
|
|
30
30
|
pyRDDLGym_jax/examples/configs/Reservoir_Continuous_replan.cfg,sha256=DAb-J2KwvJXViRRSHZe8aJwZiPljC28HtrKJPieeUCY,331
|
|
31
31
|
pyRDDLGym_jax/examples/configs/Reservoir_Continuous_slp.cfg,sha256=QwKzCAFaErrTCHaJwDPLOxPHpNGNuAKMUoZjLLnMrNc,314
|
|
32
|
-
pyRDDLGym_jax/examples/configs/SupplyChain_slp.cfg,sha256=vU_m6KjfNfaPuYosFdAWeYiV1zQGd6eNA17Yn5QB_BI,319
|
|
33
|
-
pyRDDLGym_jax/examples/configs/Traffic_slp.cfg,sha256=03scuHAl6032YhyYy0w5MLMbTibhdbUZFHLhH2WWaPI,370
|
|
34
32
|
pyRDDLGym_jax/examples/configs/UAV_Continuous_slp.cfg,sha256=QiJCJYOrdXXZfOTuPleGswREFxjGlqQSA0rw00YJWWI,318
|
|
35
33
|
pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_drp.cfg,sha256=PGkgll7h5vhSF13JScKoQ-vpWaAGNJ_PUEhK7jEjNx4,340
|
|
36
34
|
pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_replan.cfg,sha256=kEDAwsJQ_t9WPzPhIxfS0hRtgOhtFdJFfmPtTTJuwUE,454
|
|
37
35
|
pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_slp.cfg,sha256=w2wipsA8PE5OBkYVIKajjtCOtiHqmMeY3XQVPAApwFk,371
|
|
38
36
|
pyRDDLGym_jax/examples/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
39
|
-
pyRDDLGym_jax/examples/configs/default_drp.cfg,sha256=
|
|
37
|
+
pyRDDLGym_jax/examples/configs/default_drp.cfg,sha256=S2-5hPZtgAwUAFpiCAgSi-cnGhYHSDzMGMmatwhbM78,344
|
|
40
38
|
pyRDDLGym_jax/examples/configs/default_replan.cfg,sha256=VWWPhOYBRq4cWwtrChw5pPqRmlX_nHbMvwciHd9hoLc,357
|
|
41
|
-
pyRDDLGym_jax/examples/configs/default_slp.cfg,sha256=
|
|
42
|
-
pyRDDLGym_jax-0.
|
|
43
|
-
pyRDDLGym_jax-0.
|
|
44
|
-
pyRDDLGym_jax-0.
|
|
45
|
-
pyRDDLGym_jax-0.
|
|
46
|
-
pyRDDLGym_jax-0.
|
|
39
|
+
pyRDDLGym_jax/examples/configs/default_slp.cfg,sha256=TG3mtHUnCA7J2Gm9SczENpqAymTnzCE9dj1Z_R-FnVk,340
|
|
40
|
+
pyRDDLGym_jax-0.3.dist-info/LICENSE,sha256=Y0Gi6H6mLOKN-oIKGZulQkoTJyPZeAaeuZu7FXH-meg,1095
|
|
41
|
+
pyRDDLGym_jax-0.3.dist-info/METADATA,sha256=e_1MlMdQoqQHW-KA2OSIZzIAQyfe-jDtMOxkIyhmLmI,1085
|
|
42
|
+
pyRDDLGym_jax-0.3.dist-info/WHEEL,sha256=y4mX-SOX4fYIkonsAGA5N0Oy-8_gI4FXw5HNI1xqvWg,91
|
|
43
|
+
pyRDDLGym_jax-0.3.dist-info/top_level.txt,sha256=n_oWkP_BoZK0VofvPKKmBZ3NPk86WFNvLhi1BktCbVQ,14
|
|
44
|
+
pyRDDLGym_jax-0.3.dist-info/RECORD,,
|
|
@@ -1,18 +0,0 @@
|
|
|
1
|
-
[Model]
|
|
2
|
-
logic='FuzzyLogic'
|
|
3
|
-
logic_kwargs={'weight': 1.0}
|
|
4
|
-
tnorm='ProductTNorm'
|
|
5
|
-
tnorm_kwargs={}
|
|
6
|
-
|
|
7
|
-
[Optimizer]
|
|
8
|
-
method='JaxStraightLinePlan'
|
|
9
|
-
method_kwargs={}
|
|
10
|
-
optimizer='rmsprop'
|
|
11
|
-
optimizer_kwargs={'learning_rate': 0.001}
|
|
12
|
-
batch_size_train=1
|
|
13
|
-
batch_size_test=1
|
|
14
|
-
|
|
15
|
-
[Training]
|
|
16
|
-
key=42
|
|
17
|
-
epochs=2000
|
|
18
|
-
train_seconds=30
|
|
@@ -1,18 +0,0 @@
|
|
|
1
|
-
[Model]
|
|
2
|
-
logic='FuzzyLogic'
|
|
3
|
-
logic_kwargs={'weight': 10.0}
|
|
4
|
-
tnorm='ProductTNorm'
|
|
5
|
-
tnorm_kwargs={}
|
|
6
|
-
|
|
7
|
-
[Optimizer]
|
|
8
|
-
method='JaxStraightLinePlan'
|
|
9
|
-
method_kwargs={}
|
|
10
|
-
optimizer='rmsprop'
|
|
11
|
-
optimizer_kwargs={'learning_rate': 0.005}
|
|
12
|
-
batch_size_train=8
|
|
13
|
-
batch_size_test=8
|
|
14
|
-
|
|
15
|
-
[Training]
|
|
16
|
-
key=42
|
|
17
|
-
epochs=10000
|
|
18
|
-
train_seconds=90
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
[Model]
|
|
2
|
-
logic='FuzzyLogic'
|
|
3
|
-
logic_kwargs={'weight': 1000}
|
|
4
|
-
tnorm='ProductTNorm'
|
|
5
|
-
tnorm_kwargs={}
|
|
6
|
-
|
|
7
|
-
[Optimizer]
|
|
8
|
-
method='JaxStraightLinePlan'
|
|
9
|
-
method_kwargs={}
|
|
10
|
-
optimizer='rmsprop'
|
|
11
|
-
optimizer_kwargs={'learning_rate': 0.001}
|
|
12
|
-
batch_size_train=16
|
|
13
|
-
batch_size_test=16
|
|
14
|
-
clip_grad=1.0
|
|
15
|
-
|
|
16
|
-
[Training]
|
|
17
|
-
key=42
|
|
18
|
-
epochs=200
|
|
19
|
-
train_seconds=30
|
|
20
|
-
policy_hyperparams={'advance': 10.0}
|
|
File without changes
|
|
File without changes
|
|
File without changes
|