pyGSTi 0.9.12__cp310-cp310-win_amd64.whl → 0.9.13__cp310-cp310-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyGSTi-0.9.13.dist-info/METADATA +197 -0
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/RECORD +211 -220
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/WHEEL +1 -1
- pygsti/_version.py +2 -2
- pygsti/algorithms/contract.py +1 -1
- pygsti/algorithms/core.py +62 -35
- pygsti/algorithms/fiducialpairreduction.py +95 -110
- pygsti/algorithms/fiducialselection.py +17 -8
- pygsti/algorithms/gaugeopt.py +2 -2
- pygsti/algorithms/germselection.py +87 -77
- pygsti/algorithms/mirroring.py +0 -388
- pygsti/algorithms/randomcircuit.py +165 -1333
- pygsti/algorithms/rbfit.py +0 -234
- pygsti/baseobjs/basis.py +94 -396
- pygsti/baseobjs/errorgenbasis.py +0 -132
- pygsti/baseobjs/errorgenspace.py +0 -10
- pygsti/baseobjs/label.py +52 -168
- pygsti/baseobjs/opcalc/fastopcalc.cp310-win_amd64.pyd +0 -0
- pygsti/baseobjs/opcalc/fastopcalc.pyx +2 -2
- pygsti/baseobjs/polynomial.py +13 -595
- pygsti/baseobjs/protectedarray.py +72 -132
- pygsti/baseobjs/statespace.py +1 -0
- pygsti/circuits/__init__.py +1 -1
- pygsti/circuits/circuit.py +753 -504
- pygsti/circuits/circuitconstruction.py +0 -4
- pygsti/circuits/circuitlist.py +47 -5
- pygsti/circuits/circuitparser/__init__.py +8 -8
- pygsti/circuits/circuitparser/fastcircuitparser.cp310-win_amd64.pyd +0 -0
- pygsti/circuits/circuitstructure.py +3 -3
- pygsti/circuits/cloudcircuitconstruction.py +27 -14
- pygsti/data/datacomparator.py +4 -9
- pygsti/data/dataset.py +51 -46
- pygsti/data/hypothesistest.py +0 -7
- pygsti/drivers/bootstrap.py +0 -49
- pygsti/drivers/longsequence.py +46 -10
- pygsti/evotypes/basereps_cython.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/chp/opreps.py +0 -61
- pygsti/evotypes/chp/statereps.py +0 -32
- pygsti/evotypes/densitymx/effectcreps.cpp +9 -10
- pygsti/evotypes/densitymx/effectreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/effectreps.pyx +1 -1
- pygsti/evotypes/densitymx/opreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/opreps.pyx +2 -2
- pygsti/evotypes/densitymx/statereps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/statereps.pyx +1 -1
- pygsti/evotypes/densitymx_slow/effectreps.py +7 -23
- pygsti/evotypes/densitymx_slow/opreps.py +16 -23
- pygsti/evotypes/densitymx_slow/statereps.py +10 -3
- pygsti/evotypes/evotype.py +39 -2
- pygsti/evotypes/stabilizer/effectreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/effectreps.pyx +0 -4
- pygsti/evotypes/stabilizer/opreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/opreps.pyx +0 -4
- pygsti/evotypes/stabilizer/statereps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/statereps.pyx +1 -5
- pygsti/evotypes/stabilizer/termreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/termreps.pyx +0 -7
- pygsti/evotypes/stabilizer_slow/effectreps.py +0 -22
- pygsti/evotypes/stabilizer_slow/opreps.py +0 -4
- pygsti/evotypes/stabilizer_slow/statereps.py +0 -4
- pygsti/evotypes/statevec/effectreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/effectreps.pyx +1 -1
- pygsti/evotypes/statevec/opreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/opreps.pyx +2 -2
- pygsti/evotypes/statevec/statereps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/statereps.pyx +1 -1
- pygsti/evotypes/statevec/termreps.cp310-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/termreps.pyx +0 -7
- pygsti/evotypes/statevec_slow/effectreps.py +0 -3
- pygsti/evotypes/statevec_slow/opreps.py +0 -5
- pygsti/extras/__init__.py +0 -1
- pygsti/extras/drift/signal.py +1 -1
- pygsti/extras/drift/stabilityanalyzer.py +3 -1
- pygsti/extras/interpygate/__init__.py +12 -0
- pygsti/extras/interpygate/core.py +0 -36
- pygsti/extras/interpygate/process_tomography.py +44 -10
- pygsti/extras/rpe/rpeconstruction.py +0 -2
- pygsti/forwardsims/__init__.py +1 -0
- pygsti/forwardsims/forwardsim.py +50 -93
- pygsti/forwardsims/mapforwardsim.py +78 -20
- pygsti/forwardsims/mapforwardsim_calc_densitymx.cp310-win_amd64.pyd +0 -0
- pygsti/forwardsims/mapforwardsim_calc_densitymx.pyx +65 -66
- pygsti/forwardsims/mapforwardsim_calc_generic.py +91 -13
- pygsti/forwardsims/matrixforwardsim.py +72 -17
- pygsti/forwardsims/termforwardsim.py +9 -111
- pygsti/forwardsims/termforwardsim_calc_stabilizer.cp310-win_amd64.pyd +0 -0
- pygsti/forwardsims/termforwardsim_calc_statevec.cp310-win_amd64.pyd +0 -0
- pygsti/forwardsims/termforwardsim_calc_statevec.pyx +0 -651
- pygsti/forwardsims/torchfwdsim.py +265 -0
- pygsti/forwardsims/weakforwardsim.py +2 -2
- pygsti/io/__init__.py +1 -2
- pygsti/io/mongodb.py +0 -2
- pygsti/io/stdinput.py +6 -22
- pygsti/layouts/copalayout.py +10 -12
- pygsti/layouts/distlayout.py +0 -40
- pygsti/layouts/maplayout.py +103 -25
- pygsti/layouts/matrixlayout.py +99 -60
- pygsti/layouts/prefixtable.py +1534 -52
- pygsti/layouts/termlayout.py +1 -1
- pygsti/modelmembers/instruments/instrument.py +3 -3
- pygsti/modelmembers/instruments/tpinstrument.py +2 -2
- pygsti/modelmembers/modelmember.py +0 -17
- pygsti/modelmembers/operations/__init__.py +3 -4
- pygsti/modelmembers/operations/affineshiftop.py +206 -0
- pygsti/modelmembers/operations/composederrorgen.py +1 -1
- pygsti/modelmembers/operations/composedop.py +1 -24
- pygsti/modelmembers/operations/denseop.py +5 -5
- pygsti/modelmembers/operations/eigpdenseop.py +2 -2
- pygsti/modelmembers/operations/embeddederrorgen.py +1 -1
- pygsti/modelmembers/operations/embeddedop.py +0 -1
- pygsti/modelmembers/operations/experrorgenop.py +5 -2
- pygsti/modelmembers/operations/fullarbitraryop.py +1 -0
- pygsti/modelmembers/operations/fullcptpop.py +2 -2
- pygsti/modelmembers/operations/fulltpop.py +28 -6
- pygsti/modelmembers/operations/fullunitaryop.py +5 -4
- pygsti/modelmembers/operations/lindbladcoefficients.py +93 -78
- pygsti/modelmembers/operations/lindbladerrorgen.py +268 -441
- pygsti/modelmembers/operations/linearop.py +7 -27
- pygsti/modelmembers/operations/opfactory.py +1 -1
- pygsti/modelmembers/operations/repeatedop.py +1 -24
- pygsti/modelmembers/operations/staticstdop.py +1 -1
- pygsti/modelmembers/povms/__init__.py +3 -3
- pygsti/modelmembers/povms/basepovm.py +7 -36
- pygsti/modelmembers/povms/complementeffect.py +4 -9
- pygsti/modelmembers/povms/composedeffect.py +0 -320
- pygsti/modelmembers/povms/computationaleffect.py +1 -1
- pygsti/modelmembers/povms/computationalpovm.py +3 -1
- pygsti/modelmembers/povms/effect.py +3 -5
- pygsti/modelmembers/povms/marginalizedpovm.py +3 -81
- pygsti/modelmembers/povms/tppovm.py +74 -2
- pygsti/modelmembers/states/__init__.py +2 -5
- pygsti/modelmembers/states/composedstate.py +0 -317
- pygsti/modelmembers/states/computationalstate.py +3 -3
- pygsti/modelmembers/states/cptpstate.py +4 -4
- pygsti/modelmembers/states/densestate.py +10 -8
- pygsti/modelmembers/states/fullpurestate.py +0 -24
- pygsti/modelmembers/states/purestate.py +1 -1
- pygsti/modelmembers/states/state.py +5 -6
- pygsti/modelmembers/states/tpstate.py +28 -10
- pygsti/modelmembers/term.py +3 -6
- pygsti/modelmembers/torchable.py +50 -0
- pygsti/modelpacks/_modelpack.py +1 -1
- pygsti/modelpacks/smq1Q_ZN.py +3 -1
- pygsti/modelpacks/smq2Q_XXYYII.py +2 -1
- pygsti/modelpacks/smq2Q_XY.py +3 -3
- pygsti/modelpacks/smq2Q_XYI.py +2 -2
- pygsti/modelpacks/smq2Q_XYICNOT.py +3 -3
- pygsti/modelpacks/smq2Q_XYICPHASE.py +3 -3
- pygsti/modelpacks/smq2Q_XYXX.py +1 -1
- pygsti/modelpacks/smq2Q_XYZICNOT.py +3 -3
- pygsti/modelpacks/smq2Q_XYZZ.py +1 -1
- pygsti/modelpacks/stdtarget.py +0 -121
- pygsti/models/cloudnoisemodel.py +1 -2
- pygsti/models/explicitcalc.py +3 -3
- pygsti/models/explicitmodel.py +3 -13
- pygsti/models/fogistore.py +5 -3
- pygsti/models/localnoisemodel.py +1 -2
- pygsti/models/memberdict.py +0 -12
- pygsti/models/model.py +801 -68
- pygsti/models/modelconstruction.py +4 -4
- pygsti/models/modelnoise.py +2 -2
- pygsti/models/modelparaminterposer.py +1 -1
- pygsti/models/oplessmodel.py +1 -1
- pygsti/models/qutrit.py +15 -14
- pygsti/objectivefns/objectivefns.py +75 -140
- pygsti/objectivefns/wildcardbudget.py +2 -7
- pygsti/optimize/__init__.py +1 -0
- pygsti/optimize/arraysinterface.py +28 -0
- pygsti/optimize/customcg.py +0 -12
- pygsti/optimize/customlm.py +129 -323
- pygsti/optimize/customsolve.py +2 -2
- pygsti/optimize/optimize.py +0 -84
- pygsti/optimize/simplerlm.py +841 -0
- pygsti/optimize/wildcardopt.py +19 -598
- pygsti/protocols/confidenceregionfactory.py +28 -14
- pygsti/protocols/estimate.py +31 -14
- pygsti/protocols/gst.py +238 -142
- pygsti/protocols/modeltest.py +19 -12
- pygsti/protocols/protocol.py +9 -37
- pygsti/protocols/rb.py +450 -79
- pygsti/protocols/treenode.py +8 -2
- pygsti/protocols/vb.py +108 -206
- pygsti/protocols/vbdataframe.py +1 -1
- pygsti/report/factory.py +0 -15
- pygsti/report/fogidiagram.py +1 -17
- pygsti/report/modelfunction.py +12 -3
- pygsti/report/mpl_colormaps.py +1 -1
- pygsti/report/plothelpers.py +11 -3
- pygsti/report/report.py +16 -0
- pygsti/report/reportables.py +41 -37
- pygsti/report/templates/offline/pygsti_dashboard.css +6 -0
- pygsti/report/templates/offline/pygsti_dashboard.js +12 -0
- pygsti/report/workspace.py +2 -14
- pygsti/report/workspaceplots.py +328 -505
- pygsti/tools/basistools.py +9 -36
- pygsti/tools/edesigntools.py +124 -96
- pygsti/tools/fastcalc.cp310-win_amd64.pyd +0 -0
- pygsti/tools/fastcalc.pyx +35 -81
- pygsti/tools/internalgates.py +151 -15
- pygsti/tools/jamiolkowski.py +5 -5
- pygsti/tools/lindbladtools.py +19 -11
- pygsti/tools/listtools.py +0 -114
- pygsti/tools/matrixmod2.py +1 -1
- pygsti/tools/matrixtools.py +173 -339
- pygsti/tools/nameddict.py +1 -1
- pygsti/tools/optools.py +154 -88
- pygsti/tools/pdftools.py +0 -25
- pygsti/tools/rbtheory.py +3 -320
- pygsti/tools/slicetools.py +64 -12
- pyGSTi-0.9.12.dist-info/METADATA +0 -157
- pygsti/algorithms/directx.py +0 -711
- pygsti/evotypes/qibo/__init__.py +0 -33
- pygsti/evotypes/qibo/effectreps.py +0 -78
- pygsti/evotypes/qibo/opreps.py +0 -376
- pygsti/evotypes/qibo/povmreps.py +0 -98
- pygsti/evotypes/qibo/statereps.py +0 -174
- pygsti/extras/rb/__init__.py +0 -13
- pygsti/extras/rb/benchmarker.py +0 -957
- pygsti/extras/rb/dataset.py +0 -378
- pygsti/extras/rb/io.py +0 -814
- pygsti/extras/rb/simulate.py +0 -1020
- pygsti/io/legacyio.py +0 -385
- pygsti/modelmembers/povms/denseeffect.py +0 -142
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/LICENSE +0 -0
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/top_level.txt +0 -0
Binary file
|
@@ -107,10 +107,3 @@ cdef class TermRep(_basereps_cython.TermRep):
|
|
107
107
|
return TermRep(self.coeff.copy(), self.magnitude, self.logmagnitude,
|
108
108
|
self.pre_state, self.post_state, self.pre_effect, self.post_effect,
|
109
109
|
self.pre_ops, self.post_ops)
|
110
|
-
|
111
|
-
#Not needed - and this implementation is quite right as it will need to change
|
112
|
-
# the ordering of the pre/post ops also.
|
113
|
-
#def conjugate(self):
|
114
|
-
# return TermRep(self.coeff.copy(), self.magnitude, self.logmagnitude,
|
115
|
-
# self.post_state, self.pre_state, self.post_effect, self.pre_effect,
|
116
|
-
# self.post_ops, self.pre_ops)
|
@@ -23,10 +23,6 @@ class EffectRep(_basereps.EffectRep):
|
|
23
23
|
def nqubits(self):
|
24
24
|
return self.state_space.num_qubits
|
25
25
|
|
26
|
-
#@property
|
27
|
-
#def dim(self):
|
28
|
-
# return 2**self.nqubits # assume "unitary evolution"-type mode
|
29
|
-
|
30
26
|
def probability(self, state):
|
31
27
|
return state.sframe.measurement_probability(self.zvals, check=True) # use check for now?
|
32
28
|
|
@@ -37,10 +33,6 @@ class EffectRep(_basereps.EffectRep):
|
|
37
33
|
return _mt.zvals_to_dense(self.zvals, superket=bool(on_space not in ('minimal', 'Hilbert')))
|
38
34
|
|
39
35
|
|
40
|
-
#class EffectRepConjugatedState(EffectRep):
|
41
|
-
# pass # TODO - this should be possible
|
42
|
-
|
43
|
-
|
44
36
|
class EffectRepComputational(EffectRep):
|
45
37
|
|
46
38
|
def __init__(self, zvals, basis, state_space):
|
@@ -49,17 +41,6 @@ class EffectRepComputational(EffectRep):
|
|
49
41
|
assert(self.state_space.num_qubits == len(self.zvals))
|
50
42
|
super(EffectRepComputational, self).__init__(state_space)
|
51
43
|
|
52
|
-
#@property
|
53
|
-
#def outcomes(self):
|
54
|
-
# """
|
55
|
-
# The 0/1 outcomes identifying this effect within its StabilizerZPOVM
|
56
|
-
#
|
57
|
-
# Returns
|
58
|
-
# -------
|
59
|
-
# numpy.ndarray
|
60
|
-
# """
|
61
|
-
# return self.zvals
|
62
|
-
|
63
44
|
def __str__(self):
|
64
45
|
nQubits = len(self.zvals)
|
65
46
|
s = "Stabilizer effect vector for %d qubits with outcome %s" % (nQubits, str(self.zvals))
|
@@ -80,9 +61,6 @@ class EffectRepComposed(EffectRep):
|
|
80
61
|
|
81
62
|
super(EffectRepComposed, self).__init__(state_space)
|
82
63
|
|
83
|
-
#def __reduce__(self):
|
84
|
-
# return (EffectRepComposed, (self.op_rep, self.effect_rep, self.op_id, self.state_space))
|
85
|
-
|
86
64
|
def probability(self, state):
|
87
65
|
state = self.op_rep.acton(state) # *not* acton_adjoint
|
88
66
|
return self.effect_rep.probability(state)
|
@@ -34,10 +34,6 @@ class OpRep(_basereps.OpRep):
|
|
34
34
|
def nqubits(self):
|
35
35
|
return self.state_space.num_qubits
|
36
36
|
|
37
|
-
#@property
|
38
|
-
#def dim(self):
|
39
|
-
# return 2**(self.nqubits) # assume "unitary evolution"-type mode
|
40
|
-
|
41
37
|
|
42
38
|
class OpRepClifford(OpRep):
|
43
39
|
def __init__(self, unitarymx, symplecticrep, basis, state_space):
|
@@ -42,10 +42,6 @@ class StateRep(_basereps.StateRep):
|
|
42
42
|
def nqubits(self):
|
43
43
|
return self.sframe.n
|
44
44
|
|
45
|
-
#@property
|
46
|
-
#def dim(self):
|
47
|
-
# return 2**self.nqubits # assume "unitary evolution"-type mode
|
48
|
-
|
49
45
|
def actionable_staterep(self):
|
50
46
|
# return a state rep that can be acted on by op reps or mapped to
|
51
47
|
# a probability/amplitude by POVM effect reps.
|
Binary file
|
@@ -111,7 +111,7 @@ cdef class EffectRepTensorProduct(EffectRep):
|
|
111
111
|
cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] factor_dims = \
|
112
112
|
_np.ascontiguousarray(_np.array([fct.state_space.udim for fct in povm_factors], _np.int64))
|
113
113
|
|
114
|
-
cdef INT dim = _np.
|
114
|
+
cdef INT dim = _np.prod(factor_dims)
|
115
115
|
cdef INT nfactors = len(self.povm_factors)
|
116
116
|
self.povm_factors = povm_factors
|
117
117
|
self.effect_labels = effect_labels
|
Binary file
|
@@ -246,7 +246,7 @@ cdef class OpRepEmbedded(OpRep):
|
|
246
246
|
# final map just acts as identity w.r.t.
|
247
247
|
labelIndices = [tensorProdBlkLabels.index(label) for label in target_labels]
|
248
248
|
cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] action_inds = _np.array(labelIndices, _np.int64)
|
249
|
-
assert(_np.
|
249
|
+
assert(_np.prod([num_basis_els[i] for i in action_inds]) == embedded_rep.dim), \
|
250
250
|
"Embedded operation has dimension (%d) inconsistent with the given target labels (%s)" % (
|
251
251
|
embedded_rep.dim, str(target_labels))
|
252
252
|
|
@@ -256,7 +256,7 @@ cdef class OpRepEmbedded(OpRep):
|
|
256
256
|
cdef INT ncomponents_in_active_block = len(state_space.tensor_product_block_labels(active_block_index))
|
257
257
|
cdef INT embedded_dim = embedded_rep.dim
|
258
258
|
cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] blocksizes = \
|
259
|
-
_np.array([_np.
|
259
|
+
_np.array([_np.prod(state_space.tensor_product_block_udimensions(k))
|
260
260
|
for k in range(nblocks)], _np.int64)
|
261
261
|
cdef INT i, j
|
262
262
|
|
Binary file
|
@@ -150,7 +150,7 @@ cdef class StateRepTensorProduct(StateRep):
|
|
150
150
|
|
151
151
|
def __init__(self, factor_state_reps, state_space):
|
152
152
|
self.factor_reps = factor_state_reps
|
153
|
-
dim = _np.
|
153
|
+
dim = _np.prod([fct.dim for fct in self.factor_reps])
|
154
154
|
self._cinit_base(_np.zeros(dim, complex), state_space, None) # TODO: compute a tensorprod basis?
|
155
155
|
self.reps_have_changed()
|
156
156
|
|
Binary file
|
@@ -112,13 +112,6 @@ cdef class TermRep(_basereps_cython.TermRep):
|
|
112
112
|
self.pre_state, self.post_state, self.pre_effect, self.post_effect,
|
113
113
|
self.pre_ops, self.post_ops)
|
114
114
|
|
115
|
-
#Not needed - and this implementation is quite right as it will need to change
|
116
|
-
# the ordering of the pre/post ops also.
|
117
|
-
#def conjugate(self):
|
118
|
-
# return TermRep(self.coeff.copy(), self.magnitude, self.logmagnitude,
|
119
|
-
# self.post_state, self.pre_state, self.post_effect, self.pre_effect,
|
120
|
-
# self.post_ops, self.pre_ops)
|
121
|
-
|
122
115
|
|
123
116
|
#Note: to use direct term reps (numerical coeffs) we'll need to update
|
124
117
|
# what the members are called and add methods as was done for TermRep.
|
@@ -180,9 +180,6 @@ class EffectRepComposed(EffectRep):
|
|
180
180
|
|
181
181
|
super(EffectRepComposed, self).__init__(effect_rep.state_space)
|
182
182
|
|
183
|
-
#def __reduce__(self):
|
184
|
-
# return (EffectRepComposed, (self.op_rep, self.effect_rep, self.op_id, self.state_space))
|
185
|
-
|
186
183
|
def probability(self, state):
|
187
184
|
state = self.op_rep.acton(state) # *not* acton_adjoint
|
188
185
|
return self.effect_rep.probability(state)
|
@@ -107,11 +107,6 @@ class OpRepStandard(OpRepDenseUnitary):
|
|
107
107
|
super(OpRepStandard, self).__init__(U, basis, state_space)
|
108
108
|
|
109
109
|
|
110
|
-
#class OpRepStochastic(OpRepDense):
|
111
|
-
# - maybe we could add this, but it wouldn't be a "dense" op here,
|
112
|
-
# perhaps we need to change API?
|
113
|
-
|
114
|
-
|
115
110
|
class OpRepComposed(OpRep):
|
116
111
|
# exactly the same as densitymx case
|
117
112
|
def __init__(self, factor_op_reps, state_space):
|
pygsti/extras/__init__.py
CHANGED
pygsti/extras/drift/signal.py
CHANGED
@@ -10,7 +10,7 @@
|
|
10
10
|
|
11
11
|
import numpy as _np
|
12
12
|
import numpy.random as _rnd
|
13
|
-
from
|
13
|
+
from numpy import convolve as _convolve
|
14
14
|
from scipy.fftpack import dct as _dct
|
15
15
|
from scipy.fftpack import fft as _fft
|
16
16
|
from scipy.fftpack import idct as _idct
|
@@ -1235,9 +1235,11 @@ class StabilityAnalyzer(object):
|
|
1235
1235
|
|
1236
1236
|
# If we're not testing a single spectrum we need to flatten the >1D array.
|
1237
1237
|
if len(_np.shape(spectra)) > 1:
|
1238
|
+
# Use flatten (rather than ravel) to ensure a copy is made.
|
1238
1239
|
powerlist = spectra[indices].flatten()
|
1239
1240
|
# If we're testing a single spectrum, we can just copy the 1D array.
|
1240
|
-
else:
|
1241
|
+
else:
|
1242
|
+
powerlist = spectra[indices].copy()
|
1241
1243
|
|
1242
1244
|
# The indices that will go with the elements in the flattened spectra.
|
1243
1245
|
powerindices = [tup for tup in _itertools.product(*iterBenjHoch)]
|
@@ -10,3 +10,15 @@
|
|
10
10
|
|
11
11
|
from .core import PhysicalProcess, InterpolatedDenseOp, InterpolatedOpFactory
|
12
12
|
from .process_tomography import vec, unvec, run_process_tomography
|
13
|
+
|
14
|
+
# Note from Riley on September, 2024:
|
15
|
+
#
|
16
|
+
# vec is deprecated, and shouldn't be called anywhere in the codebase.
|
17
|
+
#
|
18
|
+
# unvec is deprecated and replaced with unvec_square; the latter function
|
19
|
+
# isn't imported here because we don't want people to access it just from
|
20
|
+
# the pygsti.extras.interpygate namespace.
|
21
|
+
#
|
22
|
+
# Ideally we'd remove vec and unvec from the pygsti.extras.interpygate namespace
|
23
|
+
# and only have them available in pygsti.extras.interpygate.process_tomography.
|
24
|
+
#
|
@@ -241,15 +241,6 @@ class InterpolatedOpFactory(_OpFactory):
|
|
241
241
|
return InterpolatedDenseOp(target_op, self.base_interpolator, self.aux_interpolator, self.to_vector(),
|
242
242
|
_np.array(args), self._argument_indices)
|
243
243
|
|
244
|
-
#def write(self, dirname):
|
245
|
-
# dirname = _pathlib.Path(dirname)
|
246
|
-
# with open(str(dirname / "targetop.pkl"), 'wb') as f:
|
247
|
-
# _pickle.dump(self.target_op, f)
|
248
|
-
# _np.save(dirname / "paramvec.np", self._paramvec_with_time)
|
249
|
-
# self.base_interpolator.write(dirname / "base.interp")
|
250
|
-
# if self.aux_interpolator is not None:
|
251
|
-
# self.aux_interptolator.write(dirname / "aux.interp")
|
252
|
-
|
253
244
|
@property
|
254
245
|
def num_params(self):
|
255
246
|
return len(self._paramvec)
|
@@ -267,24 +258,6 @@ class InterpolatedOpFactory(_OpFactory):
|
|
267
258
|
|
268
259
|
class InterpolatedDenseOp(_DenseOperator):
|
269
260
|
|
270
|
-
#@classmethod
|
271
|
-
#def from_dir(cls, dirname):
|
272
|
-
# dirname = _pathlib.Path(dirname)
|
273
|
-
# with open(str(dirname / "targetop.pkl"), 'rb') as f:
|
274
|
-
# target_op = _pickle.load(f)
|
275
|
-
# pt = _np.load(dirname / "paramvec.np")
|
276
|
-
# base_interp = InterpolatedQuantity.from_file(dirname / "base.interp")
|
277
|
-
# aux_interp = InterpolatedQuantity.from_file(dirname / "aux.interp") \
|
278
|
-
# if (dirname / "aux.interp").exists() else None
|
279
|
-
#
|
280
|
-
# if base_interp.times is not None:
|
281
|
-
# tm = pt[-1]
|
282
|
-
# pt = pt[0:-1]
|
283
|
-
# else:
|
284
|
-
# tm = None
|
285
|
-
#
|
286
|
-
# return cls(target_op, base_interp, aux_interp, pt, tm)
|
287
|
-
|
288
261
|
@classmethod
|
289
262
|
def create_by_interpolating_physical_process(cls, target_op, physical_process, parameter_ranges=None,
|
290
263
|
parameter_points=None, comm=None,
|
@@ -391,15 +364,6 @@ class InterpolatedDenseOp(_DenseOperator):
|
|
391
364
|
# initialize object
|
392
365
|
self.from_vector(self._paramvec)
|
393
366
|
|
394
|
-
#def write(self, dirname):
|
395
|
-
# dirname = _pathlib.Path(dirname)
|
396
|
-
# with open(str(dirname / "targetop.pkl"), 'wb') as f:
|
397
|
-
# _pickle.dump(self.target_op, f)
|
398
|
-
# _np.save(dirname / "paramvec.np", self._paramvec_with_time)
|
399
|
-
# self.base_interpolator.write(dirname / "base.interp")
|
400
|
-
# if self.aux_interpolator is not None:
|
401
|
-
# self.aux_interptolator.write(dirname / "aux.interp")
|
402
|
-
|
403
367
|
@property
|
404
368
|
def num_params(self):
|
405
369
|
return len(self._paramvec)
|
@@ -7,6 +7,7 @@ import numpy as _np
|
|
7
7
|
import numpy.linalg as _lin
|
8
8
|
|
9
9
|
from pygsti.tools.basistools import change_basis
|
10
|
+
from pygsti.tools.legacytools import deprecate
|
10
11
|
|
11
12
|
|
12
13
|
#Helper functions
|
@@ -15,8 +16,11 @@ def multi_kron(*a):
|
|
15
16
|
return reduce(_np.kron, a)
|
16
17
|
|
17
18
|
|
19
|
+
@deprecate("Calls to this function should be replaced with in-lined code: matrix.reshape((matrix.size, 1), 'F')")
|
18
20
|
def vec(matrix):
|
19
|
-
"""
|
21
|
+
"""
|
22
|
+
Returns an explicit column-vector representation of a square matrix, obtained by reading
|
23
|
+
from the square matrix in column-major order.
|
20
24
|
|
21
25
|
Args:
|
22
26
|
matrix (list,numpy.ndarray): NxN matrix
|
@@ -30,11 +34,12 @@ def vec(matrix):
|
|
30
34
|
"""
|
31
35
|
matrix = _np.array(matrix)
|
32
36
|
if matrix.shape == (len(matrix), len(matrix)):
|
33
|
-
return
|
37
|
+
return matrix.reshape(shape=(matrix.size, 1), order='F')
|
34
38
|
else:
|
35
39
|
raise ValueError('The input matrix must be square.')
|
36
40
|
|
37
41
|
|
42
|
+
@deprecate("Calls to this function should be replaced by unvec_square(vectorized, 'F')")
|
38
43
|
def unvec(vectorized):
|
39
44
|
"""A function that vectorizes a process in the basis of matrix units, sorted first
|
40
45
|
by column, then row.
|
@@ -49,13 +54,42 @@ def unvec(vectorized):
|
|
49
54
|
ValueError: If the length of the input is not a perfect square
|
50
55
|
|
51
56
|
"""
|
52
|
-
vectorized =
|
53
|
-
|
54
|
-
|
55
|
-
|
57
|
+
return unvec_square(vectorized, order='F')
|
58
|
+
|
59
|
+
|
60
|
+
def unvec_square(vectorized, order):
|
61
|
+
"""
|
62
|
+
Takes a vector whose length is a perfect square, and returns a square matrix
|
63
|
+
representation by reading from the vectors entries to define the matrix in
|
64
|
+
column-major order (order='F') or row-major order (order='C').
|
65
|
+
|
66
|
+
Args:
|
67
|
+
vectorized: array-like, where np.array(vectorized).size is a perfect square.
|
68
|
+
order: 'F' or 'C'
|
69
|
+
|
70
|
+
Returns:
|
71
|
+
numpy.ndarray: NxN dimensional array
|
72
|
+
|
73
|
+
Raises:
|
74
|
+
ValueError: If the length of the input is not a perfect square.
|
75
|
+
|
76
|
+
"""
|
77
|
+
assert order == 'F' or order == 'C'
|
78
|
+
if not isinstance(vectorized, _np.ndarray):
|
79
|
+
vectorized = _np.array(vectorized)
|
80
|
+
|
81
|
+
if vectorized.ndim == 2:
|
82
|
+
assert min(vectorized.shape) == 1
|
83
|
+
vectorized = vectorized.ravel()
|
84
|
+
elif vectorized.ndim > 2:
|
85
|
+
raise ValueError('vectorized.ndim must be <= 2.')
|
86
|
+
|
87
|
+
n = int(_np.sqrt(max(vectorized.shape)))
|
88
|
+
if len(vectorized) == n ** 2:
|
89
|
+
return vectorized.reshape((n, n), order=order)
|
56
90
|
else:
|
57
|
-
|
58
|
-
|
91
|
+
msg = 'The input vector length must be a perfect square, but this input has length %d.' % len(vectorized)
|
92
|
+
raise ValueError(msg)
|
59
93
|
|
60
94
|
|
61
95
|
def split(n, a):
|
@@ -129,7 +163,7 @@ def run_process_tomography(state_to_density_matrix_fn, n_qubits=1, comm=None,
|
|
129
163
|
states = _itertools.product(one_qubit_states, repeat=n_qubits)
|
130
164
|
states = [multi_kron(*state) for state in states]
|
131
165
|
in_density_matrices = [_np.outer(state, state.conj()) for state in states]
|
132
|
-
in_states = _np.column_stack(list([
|
166
|
+
in_states = _np.column_stack(list([rho.ravel(order='F') for rho in in_density_matrices]))
|
133
167
|
my_states = split(size, states)[rank]
|
134
168
|
if verbose:
|
135
169
|
print("Process %d of %d evaluating %d input states." % (rank, size, len(my_states)))
|
@@ -150,7 +184,7 @@ def run_process_tomography(state_to_density_matrix_fn, n_qubits=1, comm=None,
|
|
150
184
|
out_density_matrices = _np.array([y for x in gathered_out_density_matrices for y in x])
|
151
185
|
# Sort the list by time
|
152
186
|
out_density_matrices = _np.transpose(out_density_matrices, [1, 0, 2, 3])
|
153
|
-
out_states = [_np.column_stack(list([
|
187
|
+
out_states = [_np.column_stack(list([rho.ravel(order='F') for rho in density_matrices_at_time]))
|
154
188
|
for density_matrices_at_time in out_density_matrices]
|
155
189
|
process_matrices = [_np.dot(out_states_at_time, _lin.inv(in_states)) for out_states_at_time in out_states]
|
156
190
|
process_matrices = [change_basis(process_matrix_at_time, 'col', basis)
|
@@ -113,8 +113,6 @@ def create_parameterized_rpe_model(alpha_true, epsilon_true, aux_rot, spam_depol
|
|
113
113
|
|
114
114
|
return outputModel
|
115
115
|
|
116
|
-
#def make_rpe_alpha_str_lists(k_list,angleStr,rpeconfig_inst):
|
117
|
-
|
118
116
|
|
119
117
|
def create_rpe_angle_circuit_lists(k_list, angle_name, rpeconfig_inst):
|
120
118
|
"""
|
pygsti/forwardsims/__init__.py
CHANGED
@@ -12,6 +12,7 @@ pyGSTi Forward Simulators Python Package
|
|
12
12
|
|
13
13
|
from .forwardsim import ForwardSimulator
|
14
14
|
from .mapforwardsim import SimpleMapForwardSimulator, MapForwardSimulator
|
15
|
+
from .torchfwdsim import TorchForwardSimulator
|
15
16
|
from .matrixforwardsim import SimpleMatrixForwardSimulator, MatrixForwardSimulator
|
16
17
|
from .termforwardsim import TermForwardSimulator
|
17
18
|
from .weakforwardsim import WeakForwardSimulator
|
pygsti/forwardsims/forwardsim.py
CHANGED
@@ -9,7 +9,7 @@ Defines the ForwardSimulator calculator class
|
|
9
9
|
# in compliance with the License. You may obtain a copy of the License at
|
10
10
|
# http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
|
11
11
|
#***************************************************************************************************
|
12
|
-
|
12
|
+
from __future__ import annotations
|
13
13
|
import collections as _collections
|
14
14
|
import warnings as _warnings
|
15
15
|
|
@@ -21,6 +21,7 @@ from pygsti.baseobjs import outcomelabeldict as _ld
|
|
21
21
|
from pygsti.baseobjs.resourceallocation import ResourceAllocation as _ResourceAllocation
|
22
22
|
from pygsti.baseobjs.nicelyserializable import NicelySerializable as _NicelySerializable
|
23
23
|
from pygsti.tools import slicetools as _slct
|
24
|
+
from typing import Union, Callable, Literal
|
24
25
|
|
25
26
|
|
26
27
|
class ForwardSimulator(_NicelySerializable):
|
@@ -44,22 +45,38 @@ class ForwardSimulator(_NicelySerializable):
|
|
44
45
|
The model this forward simulator will use to compute circuit outcome probabilities.
|
45
46
|
"""
|
46
47
|
|
48
|
+
Castable = Union[
|
49
|
+
'ForwardSimulator',
|
50
|
+
Callable[[], 'ForwardSimulator'],
|
51
|
+
Literal['map'],
|
52
|
+
Literal['matrix'],
|
53
|
+
Literal['auto']
|
54
|
+
]
|
55
|
+
# ^ Define a type alias we can reference elsewhere in our code.
|
56
|
+
|
47
57
|
@classmethod
|
48
|
-
def cast(cls, obj, num_qubits=None):
|
58
|
+
def cast(cls, obj : ForwardSimulator.Castable, num_qubits=None):
|
49
59
|
""" num_qubits only used if `obj == 'auto'` """
|
50
60
|
from .matrixforwardsim import MatrixForwardSimulator as _MatrixFSim
|
51
61
|
from .mapforwardsim import MapForwardSimulator as _MapFSim
|
52
62
|
|
53
63
|
if isinstance(obj, ForwardSimulator):
|
54
64
|
return obj
|
55
|
-
elif obj
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
65
|
+
elif isinstance(obj, str):
|
66
|
+
if obj == "auto" or obj == "map":
|
67
|
+
return _MapFSim()
|
68
|
+
elif obj == "matrix":
|
69
|
+
return _MatrixFSim()
|
70
|
+
else:
|
71
|
+
raise ValueError(f'Unrecognized string argument, {obj}')
|
72
|
+
elif isinstance(obj, Callable):
|
73
|
+
out_obj = obj()
|
74
|
+
if isinstance(out_obj, ForwardSimulator):
|
75
|
+
return out_obj
|
76
|
+
else:
|
77
|
+
raise ValueError(f'Argument {obj} cannot be cast to a ForwardSimulator.')
|
61
78
|
else:
|
62
|
-
raise ValueError(
|
79
|
+
raise ValueError(f'Argument {obj} cannot be cast to a ForwardSimulator.')
|
63
80
|
|
64
81
|
@classmethod
|
65
82
|
def _array_types_for_method(cls, method_name):
|
@@ -128,57 +145,6 @@ class ForwardSimulator(_NicelySerializable):
|
|
128
145
|
`evotype` will be `None` when the current model is None"""
|
129
146
|
pass
|
130
147
|
|
131
|
-
#def to_vector(self):
|
132
|
-
# """
|
133
|
-
# Returns the parameter vector of the associated Model.
|
134
|
-
#
|
135
|
-
# Returns
|
136
|
-
# -------
|
137
|
-
# numpy array
|
138
|
-
# The vectorized model parameters.
|
139
|
-
# """
|
140
|
-
# return self.paramvec
|
141
|
-
#
|
142
|
-
#def from_vector(self, v, close=False, nodirty=False):
|
143
|
-
# """
|
144
|
-
# The inverse of to_vector.
|
145
|
-
#
|
146
|
-
# Initializes the Model-like members of this
|
147
|
-
# calculator based on `v`. Used for computing finite-difference derivatives.
|
148
|
-
#
|
149
|
-
# Parameters
|
150
|
-
# ----------
|
151
|
-
# v : numpy.ndarray
|
152
|
-
# The parameter vector.
|
153
|
-
#
|
154
|
-
# close : bool, optional
|
155
|
-
# Set to `True` if `v` is close to the current parameter vector.
|
156
|
-
# This can make some operations more efficient.
|
157
|
-
#
|
158
|
-
# nodirty : bool, optional
|
159
|
-
# If True, the framework for marking and detecting when operations
|
160
|
-
# have changed and a Model's parameter-vector needs to be updated
|
161
|
-
# is disabled. Disabling this will increases the speed of the call.
|
162
|
-
#
|
163
|
-
# Returns
|
164
|
-
# -------
|
165
|
-
# None
|
166
|
-
# """
|
167
|
-
# #Note: this *will* initialize the parent Model's objects too,
|
168
|
-
# # since only references to preps, effects, and gates are held
|
169
|
-
# # by the calculator class. ORDER is important, as elements of
|
170
|
-
# # POVMs and Instruments rely on a fixed from_vector ordering
|
171
|
-
# # of their simplified effects/gates.
|
172
|
-
# self.paramvec = v.copy() # now self.paramvec is *not* the same as the Model's paramvec
|
173
|
-
# self.sos.from_vector(v, close, nodirty) # so don't always want ", nodirty=True)" - we
|
174
|
-
# # need to set dirty flags so *parent* will re-init it's paramvec...
|
175
|
-
#
|
176
|
-
# #Re-init reps for computation
|
177
|
-
# #self.operationreps = { i:self.operations[lbl].torep() for lbl,i in self.operation_lookup.items() }
|
178
|
-
# #self.operationreps = { lbl:g.torep() for lbl,g in gates.items() }
|
179
|
-
# #self.prepreps = { lbl:p.torep('prep') for lbl,p in preps.items() }
|
180
|
-
# #self.effectreps = { lbl:e.torep('effect') for lbl,e in effects.items() }
|
181
|
-
|
182
148
|
def _compute_circuit_outcome_probabilities(self, array_to_fill, circuit, outcomes, resource_alloc, time=None):
|
183
149
|
raise NotImplementedError("Derived classes should implement this!")
|
184
150
|
|
@@ -304,7 +270,8 @@ class ForwardSimulator(_NicelySerializable):
|
|
304
270
|
# ---------------------------------------------------------------------------
|
305
271
|
|
306
272
|
def create_layout(self, circuits, dataset=None, resource_alloc=None,
|
307
|
-
array_types=(), derivative_dimensions=None, verbosity=0
|
273
|
+
array_types=(), derivative_dimensions=None, verbosity=0,
|
274
|
+
layout_creation_circuit_cache = None):
|
308
275
|
"""
|
309
276
|
Constructs an circuit-outcome-probability-array (COPA) layout for `circuits` and `dataset`.
|
310
277
|
|
@@ -337,49 +304,39 @@ class ForwardSimulator(_NicelySerializable):
|
|
337
304
|
|
338
305
|
derivative_dimensions : tuple, optional
|
339
306
|
A tuple containing, optionally, the parameter-space dimension used when taking first
|
340
|
-
and second derivatives with respect to the cirucit outcome probabilities. This
|
307
|
+
and second derivatives with respect to the cirucit outcome probabilities. This should
|
341
308
|
have minimally 1 or 2 elements when `array_types` contains `'ep'` or `'epp'` types,
|
342
|
-
respectively.
|
309
|
+
respectively. If `array_types` contains either of these strings and derivative_dimensions
|
310
|
+
is None on input then we automatically set derivative_dimensions based on self.model.
|
343
311
|
|
344
312
|
verbosity : int or VerbosityPrinter
|
345
313
|
Determines how much output to send to stdout. 0 means no output, higher
|
346
314
|
integers mean more output.
|
315
|
+
|
316
|
+
|
347
317
|
|
348
318
|
Returns
|
349
319
|
-------
|
350
320
|
CircuitOutcomeProbabilityArrayLayout
|
351
321
|
"""
|
322
|
+
if derivative_dimensions is None:
|
323
|
+
if 'epp' in array_types:
|
324
|
+
derivative_dimensions = (self.model.num_params, self.model.num_params)
|
325
|
+
elif 'ep' in array_types:
|
326
|
+
derivative_dimensions = (self.model.num_params,)
|
327
|
+
else:
|
328
|
+
derivative_dimensions = tuple()
|
352
329
|
return _CircuitOutcomeProbabilityArrayLayout.create_from(circuits, self.model, dataset, derivative_dimensions,
|
353
330
|
resource_alloc=resource_alloc)
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
#
|
364
|
-
# Parameters
|
365
|
-
# ----------
|
366
|
-
# eval_tree : EvalTree
|
367
|
-
# The evaluation tree used to define a list of circuits and hold (cache)
|
368
|
-
# any computed quantities.
|
369
|
-
#
|
370
|
-
# comm : mpi4py.MPI.Comm, optional
|
371
|
-
# When not None, an MPI communicator for distributing the computation
|
372
|
-
# across multiple processors. Distribution is performed over
|
373
|
-
# subtrees of `eval_tree` (if it is split).
|
374
|
-
#
|
375
|
-
# mem_limit : int
|
376
|
-
# Rough memory limit in bytes.
|
377
|
-
#
|
378
|
-
# Returns
|
379
|
-
# -------
|
380
|
-
# None
|
381
|
-
# """
|
382
|
-
# pass # default is to have no pre-computed quantities (but not an error to call this fn)
|
331
|
+
|
332
|
+
@staticmethod
|
333
|
+
def create_copa_layout_circuit_cache(circuits, model, dataset=None):
|
334
|
+
"""
|
335
|
+
Helper function for pre-computing/pre-processing circuits structures
|
336
|
+
used in matrix layout creation.
|
337
|
+
"""
|
338
|
+
msg = "Not currently implemented for this forward simulator class."
|
339
|
+
raise NotImplementedError(msg)
|
383
340
|
|
384
341
|
def bulk_probs(self, circuits, clip_to=None, resource_alloc=None, smartc=None):
|
385
342
|
"""
|
@@ -642,7 +599,7 @@ class ForwardSimulator(_NicelySerializable):
|
|
642
599
|
iFinal = iParamToFinal[i]
|
643
600
|
vec = orig_vec.copy(); vec[i] += eps
|
644
601
|
self.model.from_vector(vec, close=True)
|
645
|
-
self._bulk_fill_probs_block(probs2, layout
|
602
|
+
self._bulk_fill_probs_block(probs2, layout)
|
646
603
|
array_to_fill[:, iFinal] = (probs2 - probs) / eps
|
647
604
|
self.model.from_vector(orig_vec, close=True)
|
648
605
|
|