pyGSTi 0.9.12.1__cp39-cp39-win32.whl → 0.9.13__cp39-cp39-win32.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (221) hide show
  1. pyGSTi-0.9.13.dist-info/METADATA +197 -0
  2. {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/RECORD +207 -217
  3. {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/WHEEL +1 -1
  4. pygsti/_version.py +2 -2
  5. pygsti/algorithms/contract.py +1 -1
  6. pygsti/algorithms/core.py +42 -28
  7. pygsti/algorithms/fiducialselection.py +17 -8
  8. pygsti/algorithms/gaugeopt.py +2 -2
  9. pygsti/algorithms/germselection.py +87 -77
  10. pygsti/algorithms/mirroring.py +0 -388
  11. pygsti/algorithms/randomcircuit.py +165 -1333
  12. pygsti/algorithms/rbfit.py +0 -234
  13. pygsti/baseobjs/basis.py +94 -396
  14. pygsti/baseobjs/errorgenbasis.py +0 -132
  15. pygsti/baseobjs/errorgenspace.py +0 -10
  16. pygsti/baseobjs/label.py +52 -168
  17. pygsti/baseobjs/opcalc/fastopcalc.cp39-win32.pyd +0 -0
  18. pygsti/baseobjs/opcalc/fastopcalc.pyx +2 -2
  19. pygsti/baseobjs/polynomial.py +13 -595
  20. pygsti/baseobjs/statespace.py +1 -0
  21. pygsti/circuits/__init__.py +1 -1
  22. pygsti/circuits/circuit.py +682 -505
  23. pygsti/circuits/circuitconstruction.py +0 -4
  24. pygsti/circuits/circuitlist.py +47 -5
  25. pygsti/circuits/circuitparser/__init__.py +8 -8
  26. pygsti/circuits/circuitparser/fastcircuitparser.cp39-win32.pyd +0 -0
  27. pygsti/circuits/circuitstructure.py +3 -3
  28. pygsti/circuits/cloudcircuitconstruction.py +1 -1
  29. pygsti/data/datacomparator.py +2 -7
  30. pygsti/data/dataset.py +46 -44
  31. pygsti/data/hypothesistest.py +0 -7
  32. pygsti/drivers/bootstrap.py +0 -49
  33. pygsti/drivers/longsequence.py +2 -1
  34. pygsti/evotypes/basereps_cython.cp39-win32.pyd +0 -0
  35. pygsti/evotypes/chp/opreps.py +0 -61
  36. pygsti/evotypes/chp/statereps.py +0 -32
  37. pygsti/evotypes/densitymx/effectcreps.cpp +9 -10
  38. pygsti/evotypes/densitymx/effectreps.cp39-win32.pyd +0 -0
  39. pygsti/evotypes/densitymx/effectreps.pyx +1 -1
  40. pygsti/evotypes/densitymx/opreps.cp39-win32.pyd +0 -0
  41. pygsti/evotypes/densitymx/opreps.pyx +2 -2
  42. pygsti/evotypes/densitymx/statereps.cp39-win32.pyd +0 -0
  43. pygsti/evotypes/densitymx/statereps.pyx +1 -1
  44. pygsti/evotypes/densitymx_slow/effectreps.py +7 -23
  45. pygsti/evotypes/densitymx_slow/opreps.py +16 -23
  46. pygsti/evotypes/densitymx_slow/statereps.py +10 -3
  47. pygsti/evotypes/evotype.py +39 -2
  48. pygsti/evotypes/stabilizer/effectreps.cp39-win32.pyd +0 -0
  49. pygsti/evotypes/stabilizer/effectreps.pyx +0 -4
  50. pygsti/evotypes/stabilizer/opreps.cp39-win32.pyd +0 -0
  51. pygsti/evotypes/stabilizer/opreps.pyx +0 -4
  52. pygsti/evotypes/stabilizer/statereps.cp39-win32.pyd +0 -0
  53. pygsti/evotypes/stabilizer/statereps.pyx +1 -5
  54. pygsti/evotypes/stabilizer/termreps.cp39-win32.pyd +0 -0
  55. pygsti/evotypes/stabilizer/termreps.pyx +0 -7
  56. pygsti/evotypes/stabilizer_slow/effectreps.py +0 -22
  57. pygsti/evotypes/stabilizer_slow/opreps.py +0 -4
  58. pygsti/evotypes/stabilizer_slow/statereps.py +0 -4
  59. pygsti/evotypes/statevec/effectreps.cp39-win32.pyd +0 -0
  60. pygsti/evotypes/statevec/effectreps.pyx +1 -1
  61. pygsti/evotypes/statevec/opreps.cp39-win32.pyd +0 -0
  62. pygsti/evotypes/statevec/opreps.pyx +2 -2
  63. pygsti/evotypes/statevec/statereps.cp39-win32.pyd +0 -0
  64. pygsti/evotypes/statevec/statereps.pyx +1 -1
  65. pygsti/evotypes/statevec/termreps.cp39-win32.pyd +0 -0
  66. pygsti/evotypes/statevec/termreps.pyx +0 -7
  67. pygsti/evotypes/statevec_slow/effectreps.py +0 -3
  68. pygsti/evotypes/statevec_slow/opreps.py +0 -5
  69. pygsti/extras/__init__.py +0 -1
  70. pygsti/extras/drift/stabilityanalyzer.py +3 -1
  71. pygsti/extras/interpygate/__init__.py +12 -0
  72. pygsti/extras/interpygate/core.py +0 -36
  73. pygsti/extras/interpygate/process_tomography.py +44 -10
  74. pygsti/extras/rpe/rpeconstruction.py +0 -2
  75. pygsti/forwardsims/__init__.py +1 -0
  76. pygsti/forwardsims/forwardsim.py +14 -55
  77. pygsti/forwardsims/mapforwardsim.py +69 -18
  78. pygsti/forwardsims/mapforwardsim_calc_densitymx.cp39-win32.pyd +0 -0
  79. pygsti/forwardsims/mapforwardsim_calc_densitymx.pyx +65 -66
  80. pygsti/forwardsims/mapforwardsim_calc_generic.py +91 -13
  81. pygsti/forwardsims/matrixforwardsim.py +63 -15
  82. pygsti/forwardsims/termforwardsim.py +8 -110
  83. pygsti/forwardsims/termforwardsim_calc_stabilizer.cp39-win32.pyd +0 -0
  84. pygsti/forwardsims/termforwardsim_calc_statevec.cp39-win32.pyd +0 -0
  85. pygsti/forwardsims/termforwardsim_calc_statevec.pyx +0 -651
  86. pygsti/forwardsims/torchfwdsim.py +265 -0
  87. pygsti/forwardsims/weakforwardsim.py +2 -2
  88. pygsti/io/__init__.py +1 -2
  89. pygsti/io/mongodb.py +0 -2
  90. pygsti/io/stdinput.py +6 -22
  91. pygsti/layouts/copalayout.py +10 -12
  92. pygsti/layouts/distlayout.py +0 -40
  93. pygsti/layouts/maplayout.py +103 -25
  94. pygsti/layouts/matrixlayout.py +99 -60
  95. pygsti/layouts/prefixtable.py +1534 -52
  96. pygsti/layouts/termlayout.py +1 -1
  97. pygsti/modelmembers/instruments/instrument.py +3 -3
  98. pygsti/modelmembers/instruments/tpinstrument.py +2 -2
  99. pygsti/modelmembers/modelmember.py +0 -17
  100. pygsti/modelmembers/operations/__init__.py +2 -4
  101. pygsti/modelmembers/operations/affineshiftop.py +1 -0
  102. pygsti/modelmembers/operations/composederrorgen.py +1 -1
  103. pygsti/modelmembers/operations/composedop.py +1 -24
  104. pygsti/modelmembers/operations/denseop.py +5 -5
  105. pygsti/modelmembers/operations/eigpdenseop.py +2 -2
  106. pygsti/modelmembers/operations/embeddederrorgen.py +1 -1
  107. pygsti/modelmembers/operations/embeddedop.py +0 -1
  108. pygsti/modelmembers/operations/experrorgenop.py +2 -2
  109. pygsti/modelmembers/operations/fullarbitraryop.py +1 -0
  110. pygsti/modelmembers/operations/fullcptpop.py +2 -2
  111. pygsti/modelmembers/operations/fulltpop.py +28 -6
  112. pygsti/modelmembers/operations/fullunitaryop.py +5 -4
  113. pygsti/modelmembers/operations/lindbladcoefficients.py +93 -78
  114. pygsti/modelmembers/operations/lindbladerrorgen.py +268 -441
  115. pygsti/modelmembers/operations/linearop.py +7 -27
  116. pygsti/modelmembers/operations/opfactory.py +1 -1
  117. pygsti/modelmembers/operations/repeatedop.py +1 -24
  118. pygsti/modelmembers/operations/staticstdop.py +1 -1
  119. pygsti/modelmembers/povms/__init__.py +3 -3
  120. pygsti/modelmembers/povms/basepovm.py +7 -36
  121. pygsti/modelmembers/povms/complementeffect.py +4 -9
  122. pygsti/modelmembers/povms/composedeffect.py +0 -320
  123. pygsti/modelmembers/povms/computationaleffect.py +1 -1
  124. pygsti/modelmembers/povms/computationalpovm.py +3 -1
  125. pygsti/modelmembers/povms/effect.py +3 -5
  126. pygsti/modelmembers/povms/marginalizedpovm.py +0 -79
  127. pygsti/modelmembers/povms/tppovm.py +74 -2
  128. pygsti/modelmembers/states/__init__.py +2 -5
  129. pygsti/modelmembers/states/composedstate.py +0 -317
  130. pygsti/modelmembers/states/computationalstate.py +3 -3
  131. pygsti/modelmembers/states/cptpstate.py +4 -4
  132. pygsti/modelmembers/states/densestate.py +6 -4
  133. pygsti/modelmembers/states/fullpurestate.py +0 -24
  134. pygsti/modelmembers/states/purestate.py +1 -1
  135. pygsti/modelmembers/states/state.py +5 -6
  136. pygsti/modelmembers/states/tpstate.py +28 -10
  137. pygsti/modelmembers/term.py +3 -6
  138. pygsti/modelmembers/torchable.py +50 -0
  139. pygsti/modelpacks/_modelpack.py +1 -1
  140. pygsti/modelpacks/smq1Q_ZN.py +3 -1
  141. pygsti/modelpacks/smq2Q_XXYYII.py +2 -1
  142. pygsti/modelpacks/smq2Q_XY.py +3 -3
  143. pygsti/modelpacks/smq2Q_XYI.py +2 -2
  144. pygsti/modelpacks/smq2Q_XYICNOT.py +3 -3
  145. pygsti/modelpacks/smq2Q_XYICPHASE.py +3 -3
  146. pygsti/modelpacks/smq2Q_XYXX.py +1 -1
  147. pygsti/modelpacks/smq2Q_XYZICNOT.py +3 -3
  148. pygsti/modelpacks/smq2Q_XYZZ.py +1 -1
  149. pygsti/modelpacks/stdtarget.py +0 -121
  150. pygsti/models/cloudnoisemodel.py +1 -2
  151. pygsti/models/explicitcalc.py +3 -3
  152. pygsti/models/explicitmodel.py +3 -13
  153. pygsti/models/fogistore.py +5 -3
  154. pygsti/models/localnoisemodel.py +1 -2
  155. pygsti/models/memberdict.py +0 -12
  156. pygsti/models/model.py +800 -65
  157. pygsti/models/modelconstruction.py +4 -4
  158. pygsti/models/modelnoise.py +2 -2
  159. pygsti/models/modelparaminterposer.py +1 -1
  160. pygsti/models/oplessmodel.py +1 -1
  161. pygsti/models/qutrit.py +15 -14
  162. pygsti/objectivefns/objectivefns.py +73 -138
  163. pygsti/objectivefns/wildcardbudget.py +2 -7
  164. pygsti/optimize/__init__.py +1 -0
  165. pygsti/optimize/arraysinterface.py +28 -0
  166. pygsti/optimize/customcg.py +0 -12
  167. pygsti/optimize/customlm.py +129 -323
  168. pygsti/optimize/customsolve.py +2 -2
  169. pygsti/optimize/optimize.py +0 -84
  170. pygsti/optimize/simplerlm.py +841 -0
  171. pygsti/optimize/wildcardopt.py +19 -598
  172. pygsti/protocols/confidenceregionfactory.py +28 -14
  173. pygsti/protocols/estimate.py +31 -14
  174. pygsti/protocols/gst.py +142 -68
  175. pygsti/protocols/modeltest.py +6 -10
  176. pygsti/protocols/protocol.py +9 -37
  177. pygsti/protocols/rb.py +450 -79
  178. pygsti/protocols/treenode.py +8 -2
  179. pygsti/protocols/vb.py +108 -206
  180. pygsti/protocols/vbdataframe.py +1 -1
  181. pygsti/report/factory.py +0 -15
  182. pygsti/report/fogidiagram.py +1 -17
  183. pygsti/report/modelfunction.py +12 -3
  184. pygsti/report/mpl_colormaps.py +1 -1
  185. pygsti/report/plothelpers.py +8 -2
  186. pygsti/report/reportables.py +41 -37
  187. pygsti/report/templates/offline/pygsti_dashboard.css +6 -0
  188. pygsti/report/templates/offline/pygsti_dashboard.js +12 -0
  189. pygsti/report/workspace.py +2 -14
  190. pygsti/report/workspaceplots.py +326 -504
  191. pygsti/tools/basistools.py +9 -36
  192. pygsti/tools/edesigntools.py +124 -96
  193. pygsti/tools/fastcalc.cp39-win32.pyd +0 -0
  194. pygsti/tools/fastcalc.pyx +35 -81
  195. pygsti/tools/internalgates.py +151 -15
  196. pygsti/tools/jamiolkowski.py +5 -5
  197. pygsti/tools/lindbladtools.py +19 -11
  198. pygsti/tools/listtools.py +0 -114
  199. pygsti/tools/matrixmod2.py +1 -1
  200. pygsti/tools/matrixtools.py +173 -339
  201. pygsti/tools/nameddict.py +1 -1
  202. pygsti/tools/optools.py +154 -88
  203. pygsti/tools/pdftools.py +0 -25
  204. pygsti/tools/rbtheory.py +3 -320
  205. pygsti/tools/slicetools.py +64 -12
  206. pyGSTi-0.9.12.1.dist-info/METADATA +0 -155
  207. pygsti/algorithms/directx.py +0 -711
  208. pygsti/evotypes/qibo/__init__.py +0 -33
  209. pygsti/evotypes/qibo/effectreps.py +0 -78
  210. pygsti/evotypes/qibo/opreps.py +0 -376
  211. pygsti/evotypes/qibo/povmreps.py +0 -98
  212. pygsti/evotypes/qibo/statereps.py +0 -174
  213. pygsti/extras/rb/__init__.py +0 -13
  214. pygsti/extras/rb/benchmarker.py +0 -957
  215. pygsti/extras/rb/dataset.py +0 -378
  216. pygsti/extras/rb/io.py +0 -814
  217. pygsti/extras/rb/simulate.py +0 -1020
  218. pygsti/io/legacyio.py +0 -385
  219. pygsti/modelmembers/povms/denseeffect.py +0 -142
  220. {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/LICENSE +0 -0
  221. {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/top_level.txt +0 -0
@@ -183,10 +183,6 @@ def repeat_with_max_length(x, max_length, assert_at_least_one_rep=False):
183
183
  """
184
184
  return repeat(x, repeat_count_with_max_length(x, max_length, assert_at_least_one_rep), assert_at_least_one_rep)
185
185
 
186
- #Useful for anything?
187
- #def repeat_empty(x,max_length,assert_at_least_one_rep=False):
188
- # return ()
189
-
190
186
 
191
187
  def repeat_and_truncate(x, n, assert_at_least_one_rep=False):
192
188
  """
@@ -158,11 +158,7 @@ class CircuitList(_NicelySerializable):
158
158
  -------
159
159
  CircuitList
160
160
  """
161
- if isinstance(circuits_to_keep, set):
162
- new_circuits = list(filter(lambda c: c in circuits_to_keep, self._circuits))
163
- else:
164
- current_circuits = set(self._circuits)
165
- new_circuits = list(filter(lambda c: c in current_circuits, circuits_to_keep))
161
+ new_circuits = list(filter(lambda c: c in set(circuits_to_keep), self._circuits))
166
162
  return CircuitList(new_circuits, self.op_label_aliases) # don't transfer weights or name
167
163
 
168
164
  def truncate_to_dataset(self, dataset):
@@ -205,3 +201,49 @@ class CircuitList(_NicelySerializable):
205
201
  self.__dict__.update(state_dict)
206
202
  if 'uuid' not in state_dict: # backward compatibility
207
203
  self.uuid = _uuid.uuid4() # create a new uuid
204
+
205
+ def elementvec_to_array(self, elementvec, layout, mergeop="sum"):
206
+ """
207
+ Form an array of values corresponding to this CircuitList from an element vector.
208
+
209
+ An element vector holds individual-outcome elements (e.g. the bulk probabilities
210
+ computed by a model).
211
+
212
+ Parameters
213
+ ----------
214
+ elementvec : numpy array
215
+ An array containting the values to use when constructing a
216
+ matrix of values for this CircuitList. This array may contain more
217
+ values than are needed by this CircuitList. Indices into this array
218
+ are given by `elindices_lookup`.
219
+
220
+ layout : CircuitOutcomeProbabilityArrayLayout
221
+ The layout of `elementvec`, giving the mapping between its elements and
222
+ circuit outcomes.
223
+
224
+ mergeop : "sum" or format string, optional
225
+ Dictates how to combine the `elementvec` components corresponding to a single
226
+ plaquette entry (circuit). If "sum", the returned array contains summed
227
+ values. If a format string, e.g. `"%.2f"`, then the so-formatted components
228
+ are joined together with separating commas, and the resulting array contains
229
+ string (object-type) entries.
230
+
231
+ Returns
232
+ -------
233
+ numpy array
234
+ """
235
+
236
+ if mergeop == "sum":
237
+ ret = _np.nan * _np.ones(len(self), 'd')
238
+ for i,ckt in enumerate(self._circuits):
239
+ ret[i] = sum(elementvec[layout.indices(ckt)])
240
+ elif '%' in mergeop:
241
+ fmt = mergeop
242
+ ret = _np.nan * _np.ones(len(self), dtype=_np.object_)
243
+ for i,ckt in enumerate(self._circuits):
244
+ ret[i] = ", ".join(["NaN" if _np.isnan(x) else
245
+ (fmt % x) for x in elementvec[layout.indices(ckt)]])
246
+ else:
247
+ raise ValueError("Invalid `mergeop` arg: %s" % str(mergeop))
248
+
249
+ return ret
@@ -116,7 +116,7 @@ class CircuitLexer:
116
116
 
117
117
  @staticmethod
118
118
  def t_GATE(t): # noqa
119
- """
119
+ r"""
120
120
  ``'G[a-z0-9_]+(;[a-zQ0-9_\./]+)*(:[a-zQ0-9_]+)*(![0-9\.]+)?'``
121
121
  """
122
122
 
@@ -128,7 +128,7 @@ class CircuitLexer:
128
128
 
129
129
  @staticmethod
130
130
  def t_INSTRMT(t): # noqa
131
- """
131
+ r"""
132
132
  ``'I[a-z0-9_]+(![0-9\.]+)?'``
133
133
  """
134
134
  #Note: don't need to convert parts[1],etc, to integers (if possible) as Label automatically does this
@@ -138,7 +138,7 @@ class CircuitLexer:
138
138
 
139
139
  @staticmethod
140
140
  def t_PREP(t): # noqa
141
- """
141
+ r"""
142
142
  ``'rho[a-z0-9_]+(![0-9\.]+)?'``
143
143
  """
144
144
  #Note: don't need to convert parts[1],etc, to integers (if possible) as Label automatically does this
@@ -148,7 +148,7 @@ class CircuitLexer:
148
148
 
149
149
  @staticmethod
150
150
  def t_POVM(t): # noqa
151
- """
151
+ r"""
152
152
  ``'M[a-z0-9_]+(![0-9\.]+)?'``
153
153
  """
154
154
  #Note: don't need to convert parts[1],etc, to integers (if possible) as Label automatically does this
@@ -158,14 +158,14 @@ class CircuitLexer:
158
158
 
159
159
  @staticmethod
160
160
  def t_STRINGIND(t): # noqa
161
- """
161
+ r"""
162
162
  ``'S(?=\s*\<)'``
163
163
  """
164
164
  return t
165
165
 
166
166
  @staticmethod
167
167
  def t_REFLBL(t): # noqa
168
- """
168
+ r"""
169
169
  ``'<\s*[a-zA-Z0-9_]+\s*>'``
170
170
  """
171
171
  t.value = t.value[1:-1].strip()
@@ -184,7 +184,7 @@ class CircuitLexer:
184
184
 
185
185
  @staticmethod
186
186
  def t_NOP(t): # noqa
187
- """
187
+ r"""
188
188
  ``'\{\}'``
189
189
  """
190
190
  t.value = tuple()
@@ -192,7 +192,7 @@ class CircuitLexer:
192
192
 
193
193
  @staticmethod
194
194
  def t_INTEGER(t): # noqa
195
- """
195
+ r"""
196
196
  ``'\d+'``
197
197
  """
198
198
  t.value = int(t.value)
@@ -117,9 +117,9 @@ class CircuitPlaquette(_NicelySerializable):
117
117
  def __len__(self):
118
118
  return len(self.elements)
119
119
 
120
- def elementvec_to_matrix(self, elementvec, layout, mergeop="sum"):
120
+ def elementvec_to_array(self, elementvec, layout, mergeop="sum"):
121
121
  """
122
- Form a matrix of values corresponding to this plaquette from an element vector.
122
+ Form a array of values corresponding to this plaquette from an element vector.
123
123
 
124
124
  An element vector holds individual-outcome elements (e.g. the bulk probabilities
125
125
  computed by a model).
@@ -644,7 +644,7 @@ class PlaquetteGridCircuitStructure(_CircuitList):
644
644
  else:
645
645
  op_label_aliases = weights_dict = name = None
646
646
 
647
- return cls({}, [], [], circuits_or_structure,
647
+ return cls({}, [], [], '', '', circuits_or_structure,
648
648
  op_label_aliases, weights_dict, name)
649
649
 
650
650
  def __init__(self, plaquettes, x_values, y_values, xlabel, ylabel, additional_circuits=None, op_label_aliases=None,
@@ -2164,7 +2164,7 @@ def _get_kcoverage_template_k2(n):
2164
2164
  def invert(bstr):
2165
2165
  return [(0 if x else 1) for x in bstr]
2166
2166
 
2167
- half = [bitstr(n, k) for k in range(int(_np.ceil(_np.math.log(n, 2))))]
2167
+ half = [bitstr(n, k) for k in range(int(_np.ceil(_np.log2(n))))]
2168
2168
  other_half = [invert(bstr) for bstr in half]
2169
2169
  return half + other_half
2170
2170
 
@@ -49,11 +49,6 @@ def _loglikelihood(p_list, n_list):
49
49
  output += _xlogy(n_list[i], pVal)
50
50
  return output
51
51
 
52
- # Only used by the rectify data function, which is commented out,
53
- # so this is also commented out.
54
- # def loglikelihoodRatioObj(alpha,n_list_list,dof):
55
- # return _np.abs(dof - _loglikelihood_ratio(alpha*n_list_list))
56
-
57
52
 
58
53
  def _loglikelihood_ratio(n_list_list):
59
54
  """
@@ -75,11 +70,11 @@ def _loglikelihood_ratio(n_list_list):
75
70
  The log-likehood ratio for this model comparison.
76
71
  """
77
72
  nListC = _np.sum(n_list_list, axis=0)
78
- pListC = nListC / _np.float_(_np.sum(nListC))
73
+ pListC = nListC / _np.float64(_np.sum(nListC))
79
74
  lC = _loglikelihood(pListC, nListC)
80
75
  li_list = []
81
76
  for nList in n_list_list:
82
- pList = _np.array(nList) / _np.float_(_np.sum(nList))
77
+ pList = _np.array(nList) / _np.float64(_np.sum(nList))
83
78
  li_list.append(_loglikelihood(pList, nList))
84
79
  lS = _np.sum(li_list)
85
80
  return -2 * (lC - lS)
pygsti/data/dataset.py CHANGED
@@ -11,6 +11,7 @@ Defines the DataSet class and supporting classes and functions
11
11
  #***************************************************************************************************
12
12
 
13
13
  import bisect as _bisect
14
+ from collections.abc import Iterable as _Iterable
14
15
  import copy as _copy
15
16
  import itertools as _itertools
16
17
  import numbers as _numbers
@@ -295,34 +296,10 @@ class _DataSetRow(object):
295
296
  last_time = None
296
297
  seriesDict = {self.dataset.olIndex[ol]: [] for ol in self.dataset.outcome_labels}
297
298
 
298
- #REMOVED: (though this gives slightly different behavior)
299
- #for outcome_label in self.outcomes:
300
- # if outcome_label not in seriesDict.keys():
301
- # seriesDict[outcome_label] = []
302
-
303
299
  if self.reps is None:
304
300
  reps = _np.ones(len(self.time), _np.int64)
305
301
  else: reps = self.reps
306
302
 
307
- # An alternate implementation that appears to be (surprisingly?) slower...
308
- ##Get time bin locations
309
- #time_bins_borders = []
310
- #last_time = None
311
- #for i, t in enumerate(self.time):
312
- # if t != last_time:
313
- # time_bins_borders.append(i)
314
- # last_time = t
315
- #time_bins_borders.append(len(self.time))
316
- #nTimes = len(time_bins_borders) - 1
317
- #
318
- #seriesDict = {self.dataset.olIndex[ol]: _np.zeros(nTimes, _np.int64) for ol in self.dataset.outcome_labels}
319
- #
320
- #for i in range(nTimes):
321
- # slc = slice(time_bins_borders[i],time_bins_borders[i+1])
322
- # times.append( self.time[slc.start] )
323
- # for oli, rep in zip(self.oli[slc], reps[slc]):
324
- # seriesDict[oli][i] += rep
325
-
326
303
  for t, oli, rep in zip(self.time, self.oli, reps):
327
304
 
328
305
  if t != last_time:
@@ -585,26 +562,28 @@ class _DataSetRow(object):
585
562
  tslc = _np.where(_np.isclose(self.time, timestamp))[0]
586
563
  else: tslc = slice(None)
587
564
 
565
+ oli_tslc = self.oli[tslc]
588
566
  nOutcomes = len(self.dataset.olIndex)
589
- nIndices = len(self.oli[tslc])
567
+ nIndices = len(oli_tslc)
568
+
590
569
  if nOutcomes <= nIndices or all_outcomes:
591
570
  if self.reps is None:
592
571
  for ol, i in self.dataset.olIndex.items():
593
- cnt = float(_np.count_nonzero(_np.equal(self.oli[tslc], i)))
594
- if all_outcomes or cnt > 0:
572
+ cnt = float(_np.count_nonzero(_np.equal(oli_tslc, i)))
573
+ if cnt > 0 or all_outcomes:
595
574
  cntDict.setitem_unsafe(ol, cnt)
596
575
  else:
597
576
  for ol, i in self.dataset.olIndex.items():
598
- inds = _np.nonzero(_np.equal(self.oli[tslc], i))[0]
599
- if all_outcomes or len(inds) > 0:
577
+ inds = oli_tslc[oli_tslc == i]
578
+ if len(inds) > 0 or all_outcomes:
600
579
  cntDict.setitem_unsafe(ol, float(sum(self.reps[tslc][inds])))
601
580
  else:
602
581
  if self.reps is None:
603
- for ol_index in self.oli[tslc]:
582
+ for ol_index in oli_tslc:
604
583
  ol = self.dataset.ol[ol_index]
605
584
  cntDict.setitem_unsafe(ol, 1.0 + cntDict.getitem_unsafe(ol, 0.0))
606
585
  else:
607
- for ol_index, reps in zip(self.oli[tslc], self.reps[tslc]):
586
+ for ol_index, reps in zip(oli_tslc, self.reps[tslc]):
608
587
  ol = self.dataset.ol[ol_index]
609
588
  cntDict.setitem_unsafe(ol, reps + cntDict.getitem_unsafe(ol, 0.0))
610
589
 
@@ -615,7 +594,8 @@ class _DataSetRow(object):
615
594
  """
616
595
  Dictionary of per-outcome counts.
617
596
  """
618
- if self._cntcache: return self._cntcache # if not None *and* len > 0
597
+ if self._cntcache:
598
+ return self._cntcache # if not None *and* len > 0
619
599
  ret = self._get_counts()
620
600
  if self._cntcache is not None: # == and empty dict {}
621
601
  self._cntcache.update(ret)
@@ -1031,12 +1011,13 @@ class DataSet(_MongoSerializable):
1031
1011
  self.olIndex = outcome_label_indices
1032
1012
  self.olIndex_max = max(self.olIndex.values()) if len(self.olIndex) > 0 else -1
1033
1013
  elif outcome_labels is not None:
1034
- if isinstance(outcome_labels, _np.int64):
1035
- nqubits = outcome_labels
1036
- tup_outcomeLabels = [("".join(x),) for x in _itertools.product(*([('0', '1')] * nqubits))]
1037
- else:
1014
+ if isinstance(outcome_labels, _Iterable):
1038
1015
  tup_outcomeLabels = [_ld.OutcomeLabelDict.to_outcome(ol)
1039
1016
  for ol in outcome_labels] # strings -> tuple outcome labels
1017
+ else: # Given an int which signifies how many qubits
1018
+ nqubits = outcome_labels
1019
+ tup_outcomeLabels = [("".join(x),) for x in _itertools.product(*([('0', '1')] * nqubits))]
1020
+
1040
1021
  self.olIndex = _OrderedDict([(ol, i) for (i, ol) in enumerate(tup_outcomeLabels)])
1041
1022
  self.olIndex_max = len(tup_outcomeLabels) - 1
1042
1023
  else:
@@ -1197,10 +1178,10 @@ class DataSet(_MongoSerializable):
1197
1178
  circuit = _cir.Circuit.cast(circuit)
1198
1179
 
1199
1180
  #Note: cirIndex value is either an int (non-static) or a slice (static)
1200
- repData = self.repData[self.cirIndex[circuit]] \
1201
- if (self.repData is not None) else None
1202
- return _DataSetRow(self, self.oliData[self.cirIndex[circuit]],
1203
- self.timeData[self.cirIndex[circuit]], repData,
1181
+ cirIndex = self.cirIndex[circuit]
1182
+ repData = self.repData[cirIndex] if (self.repData is not None) else None
1183
+ return _DataSetRow(self, self.oliData[cirIndex],
1184
+ self.timeData[cirIndex], repData,
1204
1185
  self.cnt_cache[circuit] if self.bStatic else None,
1205
1186
  self.auxInfo[circuit])
1206
1187
 
@@ -1413,17 +1394,19 @@ class DataSet(_MongoSerializable):
1413
1394
  # if "keepseparate" mode, set occurrence id existing circuits to next available (positive) integer.
1414
1395
  if self.collisionAction == "keepseparate":
1415
1396
  if circuit in self.cirIndex:
1416
- tagged_circuit = circuit.copy()
1397
+ tagged_circuit = circuit.copy(editable=True)
1417
1398
  i = 1; tagged_circuit.occurrence = i
1418
1399
  while tagged_circuit in self.cirIndex:
1419
1400
  i += 1; tagged_circuit.occurrence = i
1401
+ tagged_circuit.done_editing()
1420
1402
  #add data for a new (duplicate) circuit
1421
1403
  circuit = tagged_circuit
1422
1404
 
1423
1405
  # in other modes ("overwrite" and "aggregate"), strip off occurrence so duplicates are acted on appropriately
1424
1406
  elif circuit.occurrence is not None:
1425
- stripped_circuit = circuit.copy()
1407
+ stripped_circuit = circuit.copy(editable=True)
1426
1408
  stripped_circuit.occurrence = None
1409
+ stripped_circuit.done_editing()
1427
1410
  circuit = stripped_circuit
1428
1411
 
1429
1412
  return circuit
@@ -1601,7 +1584,7 @@ class DataSet(_MongoSerializable):
1601
1584
  self._add_raw_arrays(circuit, outcome_index_array, time_array, count_array,
1602
1585
  overwriteExisting, record_zero_counts, aux)
1603
1586
 
1604
- def add_cirq_trial_result(self, circuit, trial_result, key):
1587
+ def add_cirq_trial_result(self, circuit, trial_result, key, convert_int_to_binary = True, num_qubits = None):
1605
1588
  """
1606
1589
  Add a single circuit's counts --- stored in a Cirq TrialResult --- to this DataSet
1607
1590
 
@@ -1617,6 +1600,16 @@ class DataSet(_MongoSerializable):
1617
1600
  key : str
1618
1601
  The string key of the measurement. Set by cirq.measure.
1619
1602
 
1603
+ convert_int_to_binary : bool, optional (defaut True)
1604
+ By default the keys in the cirq Results object are the integers representing
1605
+ the bitstrings of the measurements on a set of qubits, in big-endian convention.
1606
+ If True this converts back to a binary string before adding the counts as a
1607
+ entry into the pygsti dataset.
1608
+
1609
+ num_qubits : int, optional (default None)
1610
+ Number of qubits used in the conversion from integers to binary when convert_int_to_binary
1611
+ is True. If None, then the number of line_labels on the input circuit is used.
1612
+
1620
1613
  Returns
1621
1614
  -------
1622
1615
  None
@@ -1629,8 +1622,17 @@ class DataSet(_MongoSerializable):
1629
1622
 
1630
1623
  # TrialResult.histogram returns a collections.Counter object, which is a subclass of dict.
1631
1624
  histogram_counter = trial_result.histogram(key=key)
1625
+
1626
+ if num_qubits is None:
1627
+ num_qubits = len(circuit.line_labels)
1628
+
1632
1629
  # The keys in histogram_counter are integers, but pyGSTi likes dictionary keys to be strings.
1633
- count_dict = {str(key): value for key, value in histogram_counter.items()}
1630
+ count_dict = {}
1631
+ for key, value in histogram_counter.items():
1632
+ if convert_int_to_binary:
1633
+ count_dict[_np.binary_repr(key, width= num_qubits)] = value
1634
+ else:
1635
+ count_dict[str(key)] = value
1634
1636
  self.add_count_dict(circuit, count_dict)
1635
1637
 
1636
1638
  def add_raw_series_data(self, circuit, outcome_label_list, time_stamp_list,
@@ -253,13 +253,6 @@ class HypothesisTest(object):
253
253
  self.passing_graph[hind, :] = _np.ones(len(self.hypotheses), float) / (len(self.hypotheses) - 1)
254
254
  self.passing_graph[hind, hind] = 0.
255
255
 
256
- # def _check_permissible(self):
257
- # """
258
- # Todo
259
- # """
260
- # # Todo : test that the graph is acceptable.
261
- # return True
262
-
263
256
  def add_pvalues(self, pvalues):
264
257
  """
265
258
  Insert the p-values for the hypotheses.
@@ -492,52 +492,3 @@ def _to_rms_model(gs_list, target_gs):
492
492
  output_gs = target_gs.copy()
493
493
  output_gs.from_vector(_np.mean(gsVecArray))
494
494
  return output_gs
495
-
496
- #Unused?
497
- #def gateset_jtracedist(mdl,target_model,mx_basis="gm"):
498
- # output = _np.zeros(3,dtype=float)
499
- # for i, gate in enumerate(target_model.operations.keys()):
500
- # output[i] = _tools.jtracedist(mdl.operations[gate],target_model.operations[gate],mx_basis=mx_basis)
501
- ## print output
502
- # return output
503
- #
504
- #def gateset_entanglement_fidelity(mdl,target_model):
505
- # output = _np.zeros(3,dtype=float)
506
- # for i, gate in enumerate(target_model.operations.keys()):
507
- # output[i] = _tools.entanglement_fidelity(mdl.operations[gate],target_model.operations[gate])
508
- # return output
509
- #
510
- #def gateset_decomp_angle(mdl):
511
- # output = _np.zeros(3,dtype=float)
512
- # for i, gate in enumerate(mdl.operations.keys()):
513
- # output[i] = _tools.decompose_gate_matrix(mdl.operations[gate]).get('pi rotations',0)
514
- # return output
515
- #
516
- #def gateset_decomp_decay_diag(mdl):
517
- # output = _np.zeros(3,dtype=float)
518
- # for i, gate in enumerate(mdl.operations.keys()):
519
- # output[i] = _tools.decompose_gate_matrix(mdl.operations[gate]).get('decay of diagonal rotation terms',0)
520
- # return output
521
- #
522
- #def gateset_decomp_decay_offdiag(mdl):
523
- # output = _np.zeros(3,dtype=float)
524
- # for i, gate in enumerate(mdl.operations.keys()):
525
- # output[i] = _tools.decompose_gate_matrix(mdl.operations[gate]).get('decay of off diagonal rotation terms',0)
526
- # return output
527
- #
528
- ##def gateset_fidelity(mdl,target_model,mx_basis="gm"):
529
- ## output = _np.zeros(3,dtype=float)
530
- ## for i, gate in enumerate(target_model.operations.keys()):
531
- ## output[i] = _tools.fidelity(mdl.operations[gate],target_model.operations[gate])
532
- ## return output
533
- #
534
- #def gateset_diamonddist(mdl,target_model,mx_basis="gm"):
535
- # output = _np.zeros(3,dtype=float)
536
- # for i, gate in enumerate(target_model.operations.keys()):
537
- # output[i] = _tools.diamonddist(mdl.operations[gate],target_model.operations[gate],mx_basis=mx_basis)
538
- # return output
539
- #
540
- #def spamrameter(mdl):
541
- # firstRho = list(mdl.preps.keys())[0]
542
- # firstE = list(mdl.effects.keys())[0]
543
- # return _np.dot(mdl.preps[firstRho].T,mdl.effects[firstE])[0,0]
@@ -178,6 +178,7 @@ def run_model_test(model_filename_or_object,
178
178
  if isinstance(pspec_or_model, _Model):
179
179
  target_model= pspec_or_model
180
180
  elif isinstance(pspec_or_model, _ProcessorSpec):
181
+
181
182
  target_model= create_explicit_model(pspec_or_model,
182
183
  basis= _load_model(model_filename_or_object).basis)
183
184
 
@@ -930,7 +931,7 @@ def _get_optimizer(advanced_options, model_being_optimized):
930
931
  from pygsti.forwardsims.matrixforwardsim import MatrixForwardSimulator as _MatrixFSim
931
932
  advanced_options = advanced_options or {}
932
933
  default_fditer = 1 if isinstance(model_being_optimized.sim, _MatrixFSim) else 0
933
- optimizer = {'maxiter': advanced_options.get('max_iterations', 100000),
934
+ optimizer = {'maxiter': advanced_options.get('max_iterations', 100),
934
935
  'tol': advanced_options.get('tolerance', 1e-6),
935
936
  'fditer': advanced_options.get('finitediff_iterations', default_fditer)}
936
937
  optimizer.update(advanced_options.get('extra_lm_opts', {}))
@@ -49,11 +49,6 @@ class OpRep(_basereps.OpRep):
49
49
  def _chp_ops(self, seed_or_state=None):
50
50
  return self.base_chp_ops
51
51
 
52
- #def chp_str(self, seed_or_state=None):
53
- # op_str = '\n'.join(self.chp_ops(seed_or_state=seed_or_state))
54
- # if len(op_str) > 0: op_str += '\n'
55
- # return op_str
56
-
57
52
  def to_dense(self, on_space):
58
53
  try:
59
54
  str_ops = str(self._chp_ops())
@@ -217,63 +212,7 @@ class OpRepStochastic(OpRepRandomUnitary):
217
212
 
218
213
  super(OpRepStochastic, self).__init__(basis, _np.array(rates, 'd'), reps, seed_or_state, state_space)
219
214
 
220
- #OLD
221
- #self.basis = basis
222
- #assert (basis.name == 'pp'), "Only Pauli basis is allowed for 'chp' evotype"
223
- #
224
- #if isinstance(seed_or_state, _RandomState):
225
- # self.rand_state = seed_or_state
226
- #else:
227
- # self.rand_state = _RandomState(seed_or_state)
228
- #
229
- ##TODO: need to fix this: `basis` above functions as basis to make superoperators out of, but here we have
230
- ## a CHP stochastic op which is given a basis for the space - e.g. a dim=2 vector space for 1 qubit, so
231
- ## we need to distinguish/specify the basis better for this... and what about rate_poly_dicts (see svterm)
232
- #nqubits = state_space.num_qubits
233
- #assert(self.basis.dim == 4**nqubits), "Must have an integral number of qubits"
234
- #
235
- #std_chp_ops = _itgs.standard_gatenames_chp_conversions()
236
- #
237
- ## For CHP, need to make a Composed + EmbeddedOp for the super operators
238
- ## For lower overhead, make this directly using the rep instead of with objects
239
- #self.stochastic_superop_reps = []
240
- #for label in self.basis.labels[1:]:
241
- # combined_chp_ops = []
242
- #
243
- # for i, pauli in enumerate(label):
244
- # name = 'Gi' if pauli == "I" else 'G%spi' % pauli.lower()
245
- # chp_op = std_chp_ops[name]
246
- # chp_op_targeted = [op.replace('0', str(i)) for op in chp_op]
247
- # combined_chp_ops.extend(chp_op_targeted)
248
- #
249
- # sub_rep = OpRep(combined_chp_ops, state_space)
250
- # self.stochastic_superop_reps.append(sub_rep)
251
- #self.rates = initial_rates
252
- #super(OpRepStochastic, self).__init__([], state_space) # don't store any chp_ops in base
253
-
254
215
  def update_rates(self, rates):
255
216
  unitary_rates = [1 - sum(rates)] + list(rates)
256
217
  self.rates[:] = rates
257
218
  self.update_unitary_rates(unitary_rates)
258
-
259
- #TODO REMOVE - covered by OpRepRandomUnitary
260
- #def chp_ops(self, seed_or_state=None):
261
- # # Optionally override RNG for this call
262
- # if seed_or_state is not None:
263
- # if isinstance(seed_or_state, _np.random.RandomState):
264
- # rand_state = seed_or_state
265
- # else:
266
- # rand_state = _np.random.RandomState(seed_or_state)
267
- # else:
268
- # rand_state = self.rand_state
269
- #
270
- # rates = self.rates
271
- # all_rates = [*rates, 1.0 - sum(rates)] # Include identity so that probabilities are 1
272
- # index = rand_state.choice(self.basis.size, p=all_rates)
273
- #
274
- # # If final entry, no operation selected
275
- # if index == self.basis.size - 1:
276
- # return []
277
- #
278
- # rep = self.stochastic_superop_reps[index]
279
- # return rep._chp_ops()
@@ -40,16 +40,6 @@ class StateRep(_basereps.StateRep):
40
40
  def num_qubits(self):
41
41
  return self.state_space.num_qubits
42
42
 
43
- #REMOVE
44
- #def chp_ops(self, seed_or_state=None):
45
- # return self.base_chp_ops
46
-
47
- #REMOVE
48
- #def chp_str(self, seed_or_state=None):
49
- # op_str = '\n'.join(self.chp_ops(seed_or_state=seed_or_state))
50
- # if len(op_str) > 0: op_str += '\n'
51
- # return op_str
52
-
53
43
  def copy(self):
54
44
  return StateRep(self.chp_ops, self.state_space)
55
45
 
@@ -87,25 +77,3 @@ class StateRepComposed(StateRep):
87
77
  def actionable_staterep(self):
88
78
  state_rep = self.state_rep.actionable_staterep()
89
79
  return self.op_rep.acton(state_rep)
90
-
91
- #REMOVE
92
- # def chp_ops(self, seed_or_state=None):
93
- # return self.state_rep.chp_ops(seed_or_state=seed_or_state) \
94
- # + self.op_rep.chp_ops(seed_or_state=seed_or_state)
95
-
96
- # TODO: Untested, only support computational and composed for now
97
- #class StateRepTensorProduct(StateRep):
98
- # def __init__(self, factor_state_reps, state_space):
99
- # self.factor_reps = factor_state_reps
100
- # super(StateRepTensorProduct, self).__init__([], state_space)
101
- # self.reps_have_changed()
102
- #
103
- # def reps_have_changed(self):
104
- # chp_ops = []
105
- # current_iqubit = 0
106
- # for factor in self.factor_reps:
107
- # local_to_tp_index = {str(iloc): str(itp) for iloc, itp in
108
- # enumerate(range(current_iqubit, current_iqubit + factor.num_qubits))}
109
- # chp_ops.extend([_update_chp_op(op, local_to_tp_index) for op in self.chp_ops])
110
- # current_iqubit += factor.num_qubits
111
- # self.chp_ops = chp_ops
@@ -147,7 +147,7 @@ namespace CReps_densitymx {
147
147
  finalIndx += ((finds >> k) & 1) * 3 * base;
148
148
  base = base >> 2; // /= 4 so base == 4**(N-1-k)
149
149
  }
150
-
150
+
151
151
  //Apply result
152
152
  if(parity(finds & _zvals_int))
153
153
  ret -= _abs_elval * state->_dataptr[finalIndx]; // minus sign
@@ -157,15 +157,14 @@ namespace CReps_densitymx {
157
157
  return ret;
158
158
  }
159
159
 
160
- INT EffectCRep_Computational::parity(INT x) {
161
- // int64-bit specific
162
- x = (x & 0x00000000FFFFFFFF)^(x >> 32);
163
- x = (x & 0x000000000000FFFF)^(x >> 16);
164
- x = (x & 0x00000000000000FF)^(x >> 8);
165
- x = (x & 0x000000000000000F)^(x >> 4);
166
- x = (x & 0x0000000000000003)^(x >> 2);
167
- x = (x & 0x0000000000000001)^(x >> 1);
168
- return x & 1; // return the last bit (0 or 1)
160
+ inline INT EffectCRep_Computational::parity(INT x) {
161
+ x ^= (x >> 32);
162
+ x ^= (x >> 16);
163
+ x ^= (x >> 8);
164
+ x ^= (x >> 4);
165
+ x ^= (x >> 2);
166
+ x ^= (x >> 1);
167
+ return x & 1; // Return the last bit
169
168
  }
170
169
 
171
170
 
@@ -108,7 +108,7 @@ cdef class EffectRepTensorProduct(EffectRep):
108
108
  cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] factor_dims = \
109
109
  _np.ascontiguousarray(_np.array([fct.state_space.dim for fct in povm_factors], _np.int64))
110
110
 
111
- cdef INT dim = _np.product(factor_dims)
111
+ cdef INT dim = _np.prod(factor_dims)
112
112
  cdef INT nfactors = len(povm_factors)
113
113
  self.povm_factors = povm_factors
114
114
  self.effect_labels = effect_labels
@@ -540,7 +540,7 @@ def _compute_embedding_quantities_cachekey(state_space, target_labels, embedded_
540
540
  # final map just acts as identity w.r.t.
541
541
  labelIndices = [tensorProdBlkLabels.index(label) for label in target_labels]
542
542
  cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] action_inds = _np.array(labelIndices, _np.int64)
543
- assert(_np.product([num_basis_els[i] for i in action_inds]) == embedded_rep_dim), \
543
+ assert(_np.prod([num_basis_els[i] for i in action_inds]) == embedded_rep_dim), \
544
544
  "Embedded operation has dimension (%d) inconsistent with the given target labels (%s)" % (
545
545
  embedded_rep_dim, str(target_labels))
546
546
 
@@ -550,7 +550,7 @@ def _compute_embedding_quantities_cachekey(state_space, target_labels, embedded_
550
550
  cdef INT ncomponents_in_active_block = len(state_space.tensor_product_block_labels(active_block_index))
551
551
  cdef INT embedded_dim = embedded_rep_dim
552
552
  cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] blocksizes = \
553
- _np.array([_np.product(state_space.tensor_product_block_dimensions(k))
553
+ _np.array([_np.prod(state_space.tensor_product_block_dimensions(k))
554
554
  for k in range(nblocks)], _np.int64)
555
555
  cdef INT i, j
556
556