pyGSTi 0.9.12.1__cp38-cp38-win_amd64.whl → 0.9.13__cp38-cp38-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyGSTi-0.9.13.dist-info/METADATA +185 -0
- {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/RECORD +207 -217
- {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/WHEEL +1 -1
- pygsti/_version.py +2 -2
- pygsti/algorithms/contract.py +1 -1
- pygsti/algorithms/core.py +42 -28
- pygsti/algorithms/fiducialselection.py +17 -8
- pygsti/algorithms/gaugeopt.py +2 -2
- pygsti/algorithms/germselection.py +87 -77
- pygsti/algorithms/mirroring.py +0 -388
- pygsti/algorithms/randomcircuit.py +165 -1333
- pygsti/algorithms/rbfit.py +0 -234
- pygsti/baseobjs/basis.py +94 -396
- pygsti/baseobjs/errorgenbasis.py +0 -132
- pygsti/baseobjs/errorgenspace.py +0 -10
- pygsti/baseobjs/label.py +52 -168
- pygsti/baseobjs/opcalc/fastopcalc.cp38-win_amd64.pyd +0 -0
- pygsti/baseobjs/opcalc/fastopcalc.pyx +2 -2
- pygsti/baseobjs/polynomial.py +13 -595
- pygsti/baseobjs/statespace.py +1 -0
- pygsti/circuits/__init__.py +1 -1
- pygsti/circuits/circuit.py +682 -505
- pygsti/circuits/circuitconstruction.py +0 -4
- pygsti/circuits/circuitlist.py +47 -5
- pygsti/circuits/circuitparser/__init__.py +8 -8
- pygsti/circuits/circuitparser/fastcircuitparser.cp38-win_amd64.pyd +0 -0
- pygsti/circuits/circuitstructure.py +3 -3
- pygsti/circuits/cloudcircuitconstruction.py +1 -1
- pygsti/data/datacomparator.py +2 -7
- pygsti/data/dataset.py +46 -44
- pygsti/data/hypothesistest.py +0 -7
- pygsti/drivers/bootstrap.py +0 -49
- pygsti/drivers/longsequence.py +2 -1
- pygsti/evotypes/basereps_cython.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/chp/opreps.py +0 -61
- pygsti/evotypes/chp/statereps.py +0 -32
- pygsti/evotypes/densitymx/effectcreps.cpp +9 -10
- pygsti/evotypes/densitymx/effectreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/effectreps.pyx +1 -1
- pygsti/evotypes/densitymx/opreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/opreps.pyx +2 -2
- pygsti/evotypes/densitymx/statereps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/statereps.pyx +1 -1
- pygsti/evotypes/densitymx_slow/effectreps.py +7 -23
- pygsti/evotypes/densitymx_slow/opreps.py +16 -23
- pygsti/evotypes/densitymx_slow/statereps.py +10 -3
- pygsti/evotypes/evotype.py +39 -2
- pygsti/evotypes/stabilizer/effectreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/effectreps.pyx +0 -4
- pygsti/evotypes/stabilizer/opreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/opreps.pyx +0 -4
- pygsti/evotypes/stabilizer/statereps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/statereps.pyx +1 -5
- pygsti/evotypes/stabilizer/termreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/termreps.pyx +0 -7
- pygsti/evotypes/stabilizer_slow/effectreps.py +0 -22
- pygsti/evotypes/stabilizer_slow/opreps.py +0 -4
- pygsti/evotypes/stabilizer_slow/statereps.py +0 -4
- pygsti/evotypes/statevec/effectreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/effectreps.pyx +1 -1
- pygsti/evotypes/statevec/opreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/opreps.pyx +2 -2
- pygsti/evotypes/statevec/statereps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/statereps.pyx +1 -1
- pygsti/evotypes/statevec/termreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/termreps.pyx +0 -7
- pygsti/evotypes/statevec_slow/effectreps.py +0 -3
- pygsti/evotypes/statevec_slow/opreps.py +0 -5
- pygsti/extras/__init__.py +0 -1
- pygsti/extras/drift/stabilityanalyzer.py +3 -1
- pygsti/extras/interpygate/__init__.py +12 -0
- pygsti/extras/interpygate/core.py +0 -36
- pygsti/extras/interpygate/process_tomography.py +44 -10
- pygsti/extras/rpe/rpeconstruction.py +0 -2
- pygsti/forwardsims/__init__.py +1 -0
- pygsti/forwardsims/forwardsim.py +14 -55
- pygsti/forwardsims/mapforwardsim.py +69 -18
- pygsti/forwardsims/mapforwardsim_calc_densitymx.cp38-win_amd64.pyd +0 -0
- pygsti/forwardsims/mapforwardsim_calc_densitymx.pyx +65 -66
- pygsti/forwardsims/mapforwardsim_calc_generic.py +91 -13
- pygsti/forwardsims/matrixforwardsim.py +63 -15
- pygsti/forwardsims/termforwardsim.py +8 -110
- pygsti/forwardsims/termforwardsim_calc_stabilizer.cp38-win_amd64.pyd +0 -0
- pygsti/forwardsims/termforwardsim_calc_statevec.cp38-win_amd64.pyd +0 -0
- pygsti/forwardsims/termforwardsim_calc_statevec.pyx +0 -651
- pygsti/forwardsims/torchfwdsim.py +265 -0
- pygsti/forwardsims/weakforwardsim.py +2 -2
- pygsti/io/__init__.py +1 -2
- pygsti/io/mongodb.py +0 -2
- pygsti/io/stdinput.py +6 -22
- pygsti/layouts/copalayout.py +10 -12
- pygsti/layouts/distlayout.py +0 -40
- pygsti/layouts/maplayout.py +103 -25
- pygsti/layouts/matrixlayout.py +99 -60
- pygsti/layouts/prefixtable.py +1534 -52
- pygsti/layouts/termlayout.py +1 -1
- pygsti/modelmembers/instruments/instrument.py +3 -3
- pygsti/modelmembers/instruments/tpinstrument.py +2 -2
- pygsti/modelmembers/modelmember.py +0 -17
- pygsti/modelmembers/operations/__init__.py +2 -4
- pygsti/modelmembers/operations/affineshiftop.py +1 -0
- pygsti/modelmembers/operations/composederrorgen.py +1 -1
- pygsti/modelmembers/operations/composedop.py +1 -24
- pygsti/modelmembers/operations/denseop.py +5 -5
- pygsti/modelmembers/operations/eigpdenseop.py +2 -2
- pygsti/modelmembers/operations/embeddederrorgen.py +1 -1
- pygsti/modelmembers/operations/embeddedop.py +0 -1
- pygsti/modelmembers/operations/experrorgenop.py +2 -2
- pygsti/modelmembers/operations/fullarbitraryop.py +1 -0
- pygsti/modelmembers/operations/fullcptpop.py +2 -2
- pygsti/modelmembers/operations/fulltpop.py +28 -6
- pygsti/modelmembers/operations/fullunitaryop.py +5 -4
- pygsti/modelmembers/operations/lindbladcoefficients.py +93 -78
- pygsti/modelmembers/operations/lindbladerrorgen.py +268 -441
- pygsti/modelmembers/operations/linearop.py +7 -27
- pygsti/modelmembers/operations/opfactory.py +1 -1
- pygsti/modelmembers/operations/repeatedop.py +1 -24
- pygsti/modelmembers/operations/staticstdop.py +1 -1
- pygsti/modelmembers/povms/__init__.py +3 -3
- pygsti/modelmembers/povms/basepovm.py +7 -36
- pygsti/modelmembers/povms/complementeffect.py +4 -9
- pygsti/modelmembers/povms/composedeffect.py +0 -320
- pygsti/modelmembers/povms/computationaleffect.py +1 -1
- pygsti/modelmembers/povms/computationalpovm.py +3 -1
- pygsti/modelmembers/povms/effect.py +3 -5
- pygsti/modelmembers/povms/marginalizedpovm.py +0 -79
- pygsti/modelmembers/povms/tppovm.py +74 -2
- pygsti/modelmembers/states/__init__.py +2 -5
- pygsti/modelmembers/states/composedstate.py +0 -317
- pygsti/modelmembers/states/computationalstate.py +3 -3
- pygsti/modelmembers/states/cptpstate.py +4 -4
- pygsti/modelmembers/states/densestate.py +6 -4
- pygsti/modelmembers/states/fullpurestate.py +0 -24
- pygsti/modelmembers/states/purestate.py +1 -1
- pygsti/modelmembers/states/state.py +5 -6
- pygsti/modelmembers/states/tpstate.py +28 -10
- pygsti/modelmembers/term.py +3 -6
- pygsti/modelmembers/torchable.py +50 -0
- pygsti/modelpacks/_modelpack.py +1 -1
- pygsti/modelpacks/smq1Q_ZN.py +3 -1
- pygsti/modelpacks/smq2Q_XXYYII.py +2 -1
- pygsti/modelpacks/smq2Q_XY.py +3 -3
- pygsti/modelpacks/smq2Q_XYI.py +2 -2
- pygsti/modelpacks/smq2Q_XYICNOT.py +3 -3
- pygsti/modelpacks/smq2Q_XYICPHASE.py +3 -3
- pygsti/modelpacks/smq2Q_XYXX.py +1 -1
- pygsti/modelpacks/smq2Q_XYZICNOT.py +3 -3
- pygsti/modelpacks/smq2Q_XYZZ.py +1 -1
- pygsti/modelpacks/stdtarget.py +0 -121
- pygsti/models/cloudnoisemodel.py +1 -2
- pygsti/models/explicitcalc.py +3 -3
- pygsti/models/explicitmodel.py +3 -13
- pygsti/models/fogistore.py +5 -3
- pygsti/models/localnoisemodel.py +1 -2
- pygsti/models/memberdict.py +0 -12
- pygsti/models/model.py +800 -65
- pygsti/models/modelconstruction.py +4 -4
- pygsti/models/modelnoise.py +2 -2
- pygsti/models/modelparaminterposer.py +1 -1
- pygsti/models/oplessmodel.py +1 -1
- pygsti/models/qutrit.py +15 -14
- pygsti/objectivefns/objectivefns.py +73 -138
- pygsti/objectivefns/wildcardbudget.py +2 -7
- pygsti/optimize/__init__.py +1 -0
- pygsti/optimize/arraysinterface.py +28 -0
- pygsti/optimize/customcg.py +0 -12
- pygsti/optimize/customlm.py +129 -323
- pygsti/optimize/customsolve.py +2 -2
- pygsti/optimize/optimize.py +0 -84
- pygsti/optimize/simplerlm.py +841 -0
- pygsti/optimize/wildcardopt.py +19 -598
- pygsti/protocols/confidenceregionfactory.py +28 -14
- pygsti/protocols/estimate.py +31 -14
- pygsti/protocols/gst.py +142 -68
- pygsti/protocols/modeltest.py +6 -10
- pygsti/protocols/protocol.py +9 -37
- pygsti/protocols/rb.py +450 -79
- pygsti/protocols/treenode.py +8 -2
- pygsti/protocols/vb.py +108 -206
- pygsti/protocols/vbdataframe.py +1 -1
- pygsti/report/factory.py +0 -15
- pygsti/report/fogidiagram.py +1 -17
- pygsti/report/modelfunction.py +12 -3
- pygsti/report/mpl_colormaps.py +1 -1
- pygsti/report/plothelpers.py +8 -2
- pygsti/report/reportables.py +41 -37
- pygsti/report/templates/offline/pygsti_dashboard.css +6 -0
- pygsti/report/templates/offline/pygsti_dashboard.js +12 -0
- pygsti/report/workspace.py +2 -14
- pygsti/report/workspaceplots.py +326 -504
- pygsti/tools/basistools.py +9 -36
- pygsti/tools/edesigntools.py +124 -96
- pygsti/tools/fastcalc.cp38-win_amd64.pyd +0 -0
- pygsti/tools/fastcalc.pyx +35 -81
- pygsti/tools/internalgates.py +151 -15
- pygsti/tools/jamiolkowski.py +5 -5
- pygsti/tools/lindbladtools.py +19 -11
- pygsti/tools/listtools.py +0 -114
- pygsti/tools/matrixmod2.py +1 -1
- pygsti/tools/matrixtools.py +173 -339
- pygsti/tools/nameddict.py +1 -1
- pygsti/tools/optools.py +154 -88
- pygsti/tools/pdftools.py +0 -25
- pygsti/tools/rbtheory.py +3 -320
- pygsti/tools/slicetools.py +64 -12
- pyGSTi-0.9.12.1.dist-info/METADATA +0 -155
- pygsti/algorithms/directx.py +0 -711
- pygsti/evotypes/qibo/__init__.py +0 -33
- pygsti/evotypes/qibo/effectreps.py +0 -78
- pygsti/evotypes/qibo/opreps.py +0 -376
- pygsti/evotypes/qibo/povmreps.py +0 -98
- pygsti/evotypes/qibo/statereps.py +0 -174
- pygsti/extras/rb/__init__.py +0 -13
- pygsti/extras/rb/benchmarker.py +0 -957
- pygsti/extras/rb/dataset.py +0 -378
- pygsti/extras/rb/io.py +0 -814
- pygsti/extras/rb/simulate.py +0 -1020
- pygsti/io/legacyio.py +0 -385
- pygsti/modelmembers/povms/denseeffect.py +0 -142
- {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/LICENSE +0 -0
- {pyGSTi-0.9.12.1.dist-info → pyGSTi-0.9.13.dist-info}/top_level.txt +0 -0
pygsti/report/workspaceplots.py
CHANGED
@@ -23,13 +23,14 @@ from pygsti.objectivefns.objectivefns import ModelDatasetCircuitsStore as _Model
|
|
23
23
|
from pygsti.report import colormaps as _colormaps
|
24
24
|
from pygsti.report import plothelpers as _ph
|
25
25
|
from pygsti.report.figure import ReportFigure
|
26
|
-
from pygsti.report.workspace import WorkspacePlot
|
26
|
+
from pygsti.report.workspace import WorkspacePlot, NotApplicable
|
27
27
|
from pygsti import algorithms as _alg
|
28
28
|
from pygsti import baseobjs as _baseobjs
|
29
29
|
from pygsti.objectivefns import objectivefns as _objfns
|
30
30
|
from pygsti.circuits.circuit import Circuit as _Circuit
|
31
31
|
from pygsti.circuits.circuitstructure import PlaquetteGridCircuitStructure as _PlaquetteGridCircuitStructure, \
|
32
32
|
GermFiducialPairPlaquette as _GermFiducialPairPlaquette
|
33
|
+
from pygsti.circuits.circuitlist import CircuitList as _CircuitList
|
33
34
|
from pygsti.data import DataSet as _DataSet
|
34
35
|
|
35
36
|
#Plotly v3 changes heirarchy of graph objects
|
@@ -379,9 +380,9 @@ def _summable_color_boxplot(sub_mxs, xlabels, ylabels, xlabel, ylabel,
|
|
379
380
|
|
380
381
|
def sum_up_mx(mx):
|
381
382
|
""" Sum up `mx` in a NAN-ignoring way """
|
382
|
-
flat_mx = mx.
|
383
|
-
if any(
|
384
|
-
if all(
|
383
|
+
flat_mx = mx.ravel()
|
384
|
+
if _np.any(_np.isnan(flat_mx)):
|
385
|
+
if _np.all(_np.isnan(flat_mx)):
|
385
386
|
return _np.nan
|
386
387
|
# replace NaNs with zeros for purpose of summing (when there's at least one non-NaN)
|
387
388
|
return sum(_np.nan_to_num(flat_mx))
|
@@ -529,6 +530,40 @@ def _create_hover_info_fn(circuit_structure, xvals, yvals, sum_up, addl_hover_su
|
|
529
530
|
txt += "<br>%s: %s" % (lbl, str(addl_subMxs[iy][ix][iiy][iix]))
|
530
531
|
return txt
|
531
532
|
return hover_label_fn
|
533
|
+
|
534
|
+
def _create_hover_info_fn_circuit_list(circuit_structure, sum_up, addl_hover_submxs):
|
535
|
+
|
536
|
+
if sum_up:
|
537
|
+
pass
|
538
|
+
else:
|
539
|
+
if isinstance(circuit_structure, _CircuitList):
|
540
|
+
def hover_label_fn(val, i):
|
541
|
+
""" Standard hover labels """
|
542
|
+
#Note: in this case, we need to "flip" the iiy index because
|
543
|
+
# the matrices being plotted are flipped within _summable_color_boxplot(...)
|
544
|
+
if _np.isnan(val): return ""
|
545
|
+
ckt = circuit_structure[i].copy(editable=True)
|
546
|
+
ckt.factorize_repetitions_inplace()
|
547
|
+
txt = ckt.layerstr # note: *row* index = iiy
|
548
|
+
txt += ("<br>value: %g" % val)
|
549
|
+
for lbl, addl_subMxs in addl_hover_submxs.items():
|
550
|
+
txt += "<br>%s: %s" % (lbl, str(addl_subMxs[i]))
|
551
|
+
return txt
|
552
|
+
|
553
|
+
elif isinstance(circuit_structure, list) and all([isinstance(el, _CircuitList) for el in circuit_structure]):
|
554
|
+
def hover_label_fn(val, i, j):
|
555
|
+
""" Standard hover labels """
|
556
|
+
#Note: in this case, we need to "flip" the iiy index because
|
557
|
+
# the matrices being plotted are flipped within _summable_color_boxplot(...)
|
558
|
+
if _np.isnan(val): return ""
|
559
|
+
ckt = circuit_structure[i][j].copy(editable=True)
|
560
|
+
ckt.factorize_repetitions_inplace()
|
561
|
+
txt = ckt.layerstr # note: *row* index = iiy
|
562
|
+
txt += ("<br>value: %g" % val)
|
563
|
+
for lbl, addl_subMxs in addl_hover_submxs.items():
|
564
|
+
txt += "<br>%s: %s" % (lbl, str(addl_subMxs[i][j]))
|
565
|
+
return txt
|
566
|
+
return hover_label_fn
|
532
567
|
|
533
568
|
|
534
569
|
def _circuit_color_boxplot(circuit_structure, sub_mxs, colormap,
|
@@ -662,42 +697,78 @@ def _circuit_color_scatterplot(circuit_structure, sub_mxs, colormap,
|
|
662
697
|
plotly.Figure
|
663
698
|
"""
|
664
699
|
g = circuit_structure
|
665
|
-
xvals = g.used_xs
|
666
|
-
yvals = g.used_ys
|
667
700
|
|
668
701
|
if addl_hover_submxs is None:
|
669
702
|
addl_hover_submxs = {}
|
670
703
|
|
671
704
|
if hover_info:
|
672
|
-
|
673
|
-
|
705
|
+
if isinstance(g, _PlaquetteGridCircuitStructure):
|
706
|
+
hover_info = _create_hover_info_fn(circuit_structure, g.used_xs, g.used_ys, sum_up, addl_hover_submxs)
|
707
|
+
elif isinstance(g, _CircuitList) or (isinstance(g, list) and all([isinstance(el, _CircuitList) for el in g])):
|
708
|
+
hover_info = _create_hover_info_fn_circuit_list(circuit_structure, sum_up, addl_hover_submxs)
|
709
|
+
|
674
710
|
xs = []; ys = []; texts = []
|
675
711
|
gstrs = set() # to eliminate duplicate strings
|
676
|
-
|
677
|
-
|
678
|
-
|
679
|
-
|
680
|
-
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
712
|
+
|
713
|
+
if isinstance(g, _PlaquetteGridCircuitStructure):
|
714
|
+
for ix, x in enumerate(g.used_xs):
|
715
|
+
for iy, y in enumerate(g.used_ys):
|
716
|
+
plaq = g.plaquette(x, y, empty_if_missing=True)
|
717
|
+
if sum_up:
|
718
|
+
if plaq.base not in gstrs:
|
719
|
+
tot = sum([sub_mxs[iy][ix][iiy][iix] for iiy, iix, _ in plaq])
|
720
|
+
xs.append(len(plaq.base)) # x-coord is len of *base* string
|
721
|
+
ys.append(tot)
|
722
|
+
gstrs.add(plaq.base)
|
723
|
+
if hover_info:
|
724
|
+
if callable(hover_info):
|
725
|
+
texts.append(hover_info(tot, iy, ix))
|
726
|
+
else:
|
727
|
+
texts.append(str(tot))
|
728
|
+
else:
|
729
|
+
for iiy, iix, opstr in plaq:
|
730
|
+
if opstr in gstrs: continue # skip duplicates
|
731
|
+
xs.append(len(opstr))
|
732
|
+
ys.append(sub_mxs[iy][ix][iiy][iix])
|
733
|
+
gstrs.add(opstr)
|
734
|
+
if hover_info:
|
735
|
+
if callable(hover_info):
|
736
|
+
texts.append(hover_info(sub_mxs[iy][ix][iiy][iix], iy, ix, iiy, iix))
|
737
|
+
else:
|
738
|
+
texts.append(str(sub_mxs[iy][ix][iiy][iix]))
|
739
|
+
elif isinstance(g, _CircuitList):
|
740
|
+
for i, ckt in enumerate(g):
|
741
|
+
if ckt in gstrs:
|
742
|
+
continue
|
690
743
|
else:
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
744
|
+
if sum_up:
|
745
|
+
pass
|
746
|
+
#TODO: Implement sum_up behavior mirroring that above.
|
747
|
+
gstrs.add(ckt)
|
748
|
+
ys.append(sub_mxs[i])
|
749
|
+
xs.append(len(ckt))
|
750
|
+
if hover_info:
|
751
|
+
if callable(hover_info):
|
752
|
+
texts.append(hover_info(sub_mxs[i], i))
|
753
|
+
else:
|
754
|
+
texts.append(str(sub_mxs[i]))
|
755
|
+
elif isinstance(g, list) and all([isinstance(el, _CircuitList) for el in g]):
|
756
|
+
for i, circuit_list in enumerate(g):
|
757
|
+
for j, ckt in enumerate(circuit_list):
|
758
|
+
if ckt in gstrs:
|
759
|
+
continue
|
760
|
+
else:
|
761
|
+
if sum_up:
|
762
|
+
pass
|
763
|
+
#TODO: Implement sum_up behavior mirroring that above.
|
764
|
+
gstrs.add(ckt)
|
765
|
+
ys.append(sub_mxs[i][j])
|
766
|
+
xs.append(len(ckt))
|
696
767
|
if hover_info:
|
697
768
|
if callable(hover_info):
|
698
|
-
texts.append(hover_info(sub_mxs[
|
769
|
+
texts.append(hover_info(sub_mxs[i][j], i, j))
|
699
770
|
else:
|
700
|
-
texts.append(str(sub_mxs[
|
771
|
+
texts.append(str(sub_mxs[i][j]))
|
701
772
|
|
702
773
|
#This GL version works, but behaves badly, sometimes failing to render...
|
703
774
|
#trace = go.Scattergl(x=xs, y=ys, mode="markers",
|
@@ -768,17 +839,42 @@ def _circuit_color_histogram(circuit_structure, sub_mxs, colormap,
|
|
768
839
|
plotly.Figure
|
769
840
|
"""
|
770
841
|
g = circuit_structure
|
771
|
-
|
842
|
+
|
843
|
+
#For all of the fanciness below, this all essentially looks like it just produces
|
844
|
+
#a flattened list of all of the contents of sub_mxs, so we can still do that with the
|
845
|
+
#submx structures we get from using CircuitList objects.
|
772
846
|
ys = [] # artificially add minval so
|
773
847
|
gstrs = set() # to eliminate duplicate strings
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
if
|
780
|
-
|
781
|
-
|
848
|
+
|
849
|
+
if isinstance(g, _PlaquetteGridCircuitStructure):
|
850
|
+
for ix, x in enumerate(g.used_xs):
|
851
|
+
for iy, y in enumerate(g.used_ys):
|
852
|
+
plaq = g.plaquette(x, y, empty_if_missing=True)
|
853
|
+
#TODO: if sum_up then need to sum before appending...
|
854
|
+
for iiy, iix, opstr in plaq:
|
855
|
+
if opstr in gstrs: continue # skip duplicates
|
856
|
+
ys.append(sub_mxs[iy][ix][iiy][iix])
|
857
|
+
gstrs.add(opstr)
|
858
|
+
|
859
|
+
elif isinstance(g, _CircuitList):
|
860
|
+
for i, ckt in enumerate(g):
|
861
|
+
if ckt in gstrs:
|
862
|
+
continue
|
863
|
+
else:
|
864
|
+
gstrs.add(ckt)
|
865
|
+
ys.append(sub_mxs[i])
|
866
|
+
|
867
|
+
elif isinstance(g, list) and all([isinstance(el, _CircuitList) for el in g]):
|
868
|
+
for i, circuit_list in enumerate(g):
|
869
|
+
for j, ckt in enumerate(circuit_list):
|
870
|
+
if ckt in gstrs:
|
871
|
+
continue
|
872
|
+
else:
|
873
|
+
gstrs.add(ckt)
|
874
|
+
ys.append(sub_mxs[i][j])
|
875
|
+
else:
|
876
|
+
raise ValueError('Can only handle PlaquetteGridCircuitStructure, CircuitList or lists of CircuitList objects at present.')
|
877
|
+
|
782
878
|
if len(ys) == 0: ys = [0] # case of no data - dummy so max works below
|
783
879
|
|
784
880
|
minval = 0
|
@@ -1607,19 +1703,6 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1607
1703
|
dataset = mdc_store.dataset
|
1608
1704
|
model = mdc_store.model
|
1609
1705
|
|
1610
|
-
#DEBUG: for checking
|
1611
|
-
#def _addl_mx_fn_chk(plaq,x,y):
|
1612
|
-
# gsplaq_ds = plaq.expand_aliases(dataset)
|
1613
|
-
# spamlabels = model.get_spam_labels()
|
1614
|
-
# cntMxs = _ph.total_count_matrix( gsplaq_ds, dataset)[None,:,:]
|
1615
|
-
# probMxs = _ph.probability_matrices( plaq, model, spamlabels,
|
1616
|
-
# probs_precomp_dict)
|
1617
|
-
# freqMxs = _ph.frequency_matrices( gsplaq_ds, dataset, spamlabels)
|
1618
|
-
# logLMxs = _tools.two_delta_logl_term( cntMxs, probMxs, freqMxs, 1e-4)
|
1619
|
-
# return logLMxs.sum(axis=0) # sum over spam labels
|
1620
|
-
|
1621
|
-
# End "Additional sub-matrix" functions
|
1622
|
-
|
1623
1706
|
if not isinstance(plottypes, (list, tuple)):
|
1624
1707
|
plottypes = [plottypes]
|
1625
1708
|
|
@@ -1641,7 +1724,6 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1641
1724
|
|
1642
1725
|
if isinstance(objfn, (_objfns.PoissonPicDeltaLogLFunction, _objfns.DeltaLogLFunction)):
|
1643
1726
|
terms *= 2.0 # show 2 * deltaLogL values, not just deltaLogL
|
1644
|
-
|
1645
1727
|
if isinstance(objfn, _objfns.TVDFunction):
|
1646
1728
|
colormapType = "blueseq"
|
1647
1729
|
else:
|
@@ -1649,16 +1731,34 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1649
1731
|
linlog_color = "red"
|
1650
1732
|
|
1651
1733
|
ytitle = objfn.description # "chi<sup>2</sup>" OR "2 log(L ratio)"
|
1652
|
-
|
1653
|
-
|
1734
|
+
|
1735
|
+
if isinstance(circuits, _PlaquetteGridCircuitStructure):
|
1736
|
+
mx_fn = _mx_fn_from_elements # use a *global* function so cache can tell it's the same
|
1737
|
+
elif isinstance(circuits, _CircuitList):
|
1738
|
+
mx_fn = _mx_fn_from_elements_circuit_list
|
1739
|
+
elif isinstance(circuits, list) and all([isinstance(el, _CircuitList) for el in circuits]):
|
1740
|
+
mx_fn = _mx_fn_from_elements_circuit_list
|
1741
|
+
|
1654
1742
|
extra_arg = (terms, objfn.layout, "sum")
|
1655
|
-
|
1656
|
-
|
1657
|
-
|
1658
|
-
|
1659
|
-
|
1660
|
-
|
1661
|
-
|
1743
|
+
|
1744
|
+
if isinstance(circuits, _PlaquetteGridCircuitStructure):
|
1745
|
+
# (function, extra_arg) tuples
|
1746
|
+
addl_hover_info_fns['outcomes'] = (_addl_mx_fn_outcomes, objfn.layout)
|
1747
|
+
addl_hover_info_fns['p'] = (_mx_fn_from_elements, (objfn.probs, objfn.layout, "%.5g"))
|
1748
|
+
addl_hover_info_fns['f'] = (_mx_fn_from_elements, (objfn.freqs, objfn.layout, "%.5g"))
|
1749
|
+
addl_hover_info_fns['counts'] = (_mx_fn_from_elements, (objfn.counts, objfn.layout, "%d"))
|
1750
|
+
elif isinstance(circuits, _CircuitList):
|
1751
|
+
# (function, extra_arg) tuples
|
1752
|
+
addl_hover_info_fns['outcomes'] = (_addl_mx_fn_outcomes_circuit_list, objfn.layout)
|
1753
|
+
addl_hover_info_fns['p'] = (_mx_fn_from_elements_circuit_list, (objfn.probs, objfn.layout, "%.5g"))
|
1754
|
+
addl_hover_info_fns['f'] = (_mx_fn_from_elements_circuit_list, (objfn.freqs, objfn.layout, "%.5g"))
|
1755
|
+
addl_hover_info_fns['counts'] = (_mx_fn_from_elements_circuit_list, (objfn.counts, objfn.layout, "%d"))
|
1756
|
+
elif isinstance(circuits, list) and all([isinstance(el, _CircuitList) for el in circuits]):
|
1757
|
+
addl_hover_info_fns['outcomes'] = (_addl_mx_fn_outcomes_circuit_list, objfn.layout)
|
1758
|
+
addl_hover_info_fns['p'] = (_mx_fn_from_elements_circuit_list, (objfn.probs, objfn.layout, "%.5g"))
|
1759
|
+
addl_hover_info_fns['f'] = (_mx_fn_from_elements_circuit_list, (objfn.freqs, objfn.layout, "%.5g"))
|
1760
|
+
addl_hover_info_fns['counts'] = (_mx_fn_from_elements_circuit_list, (objfn.counts, objfn.layout, "%d"))
|
1761
|
+
|
1662
1762
|
elif ptyp == "blank":
|
1663
1763
|
colormapType = "trivial"
|
1664
1764
|
ytitle = ""
|
@@ -1777,23 +1877,116 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1777
1877
|
colormapType = submatrices.get(ptyp + ".colormap", "seq")
|
1778
1878
|
else:
|
1779
1879
|
raise ValueError("Invalid plot type: %s" % ptyp)
|
1780
|
-
|
1781
|
-
circuit_struct = _PlaquetteGridCircuitStructure.cast(circuits) # , dataset?
|
1782
|
-
|
1880
|
+
|
1783
1881
|
#TODO: propagate mdc_store down into compute_sub_mxs?
|
1784
1882
|
if (submatrices is not None) and ptyp in submatrices:
|
1785
1883
|
subMxs = submatrices[ptyp] # "custom" type -- all mxs precomputed by user
|
1786
|
-
else:
|
1787
|
-
subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model, mx_fn, dataset, extra_arg)
|
1788
1884
|
|
1789
|
-
|
1790
|
-
|
1791
|
-
|
1792
|
-
|
1885
|
+
#some of the branches below rely on circuit_struct being defined, which is previously
|
1886
|
+
#wasn't when hitting this condition on the if statement, so add those definitions here.
|
1887
|
+
#also need to built the addl_hover_info as well, based on circuit_struct.
|
1888
|
+
if isinstance(circuits, _PlaquetteGridCircuitStructure):
|
1889
|
+
circuit_struct = circuits
|
1890
|
+
|
1891
|
+
addl_hover_info = _collections.OrderedDict()
|
1892
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1893
|
+
if (submatrices is not None) and lbl in submatrices:
|
1894
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1895
|
+
else:
|
1896
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model,
|
1897
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1898
|
+
addl_hover_info[lbl] = addl_subMxs
|
1899
|
+
|
1900
|
+
elif isinstance(circuits, _CircuitList):
|
1901
|
+
circuit_struct = [circuits]
|
1902
|
+
|
1903
|
+
addl_hover_info = _collections.OrderedDict()
|
1904
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1905
|
+
if (submatrices is not None) and lbl in submatrices:
|
1906
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1907
|
+
else:
|
1908
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs_circuit_list, circuit_struct, model,
|
1909
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1910
|
+
addl_hover_info[lbl] = addl_subMxs
|
1911
|
+
|
1912
|
+
elif isinstance(circuits, list) and all([isinstance(el, _CircuitList) for el in circuits]):
|
1913
|
+
circuit_struct = circuits
|
1914
|
+
|
1915
|
+
addl_hover_info = _collections.OrderedDict()
|
1916
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1917
|
+
if (submatrices is not None) and lbl in submatrices:
|
1918
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1919
|
+
else:
|
1920
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs_circuit_list, circuit_struct, model,
|
1921
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1922
|
+
addl_hover_info[lbl] = addl_subMxs
|
1923
|
+
|
1924
|
+
#Otherwise fall-back to the old casting behavior and proceed
|
1793
1925
|
else:
|
1794
|
-
|
1795
|
-
|
1796
|
-
|
1926
|
+
circuit_struct = _PlaquetteGridCircuitStructure.cast(circuits)
|
1927
|
+
addl_hover_info = _collections.OrderedDict()
|
1928
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1929
|
+
if (submatrices is not None) and lbl in submatrices:
|
1930
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1931
|
+
else:
|
1932
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model,
|
1933
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1934
|
+
addl_hover_info[lbl] = addl_subMxs
|
1935
|
+
|
1936
|
+
elif isinstance(circuits, _PlaquetteGridCircuitStructure):
|
1937
|
+
circuit_struct= circuits
|
1938
|
+
subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model, mx_fn, dataset, extra_arg)
|
1939
|
+
|
1940
|
+
addl_hover_info = _collections.OrderedDict()
|
1941
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1942
|
+
if (submatrices is not None) and lbl in submatrices:
|
1943
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1944
|
+
else:
|
1945
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model,
|
1946
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1947
|
+
addl_hover_info[lbl] = addl_subMxs
|
1948
|
+
|
1949
|
+
#Add in alternative logic for constructing sub-matrices when we have either a CircuitList or a
|
1950
|
+
#list of circuit lists:
|
1951
|
+
elif isinstance(circuits, _CircuitList):
|
1952
|
+
circuit_struct= [circuits]
|
1953
|
+
subMxs = self._ccompute(_ph._compute_sub_mxs_circuit_list, circuit_struct, model, mx_fn, dataset, extra_arg)
|
1954
|
+
|
1955
|
+
addl_hover_info = _collections.OrderedDict()
|
1956
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1957
|
+
if (submatrices is not None) and lbl in submatrices:
|
1958
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1959
|
+
else:
|
1960
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs_circuit_list, circuit_struct, model,
|
1961
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1962
|
+
addl_hover_info[lbl] = addl_subMxs
|
1963
|
+
|
1964
|
+
elif isinstance(circuits, list) and all([isinstance(el, _CircuitList) for el in circuits]):
|
1965
|
+
circuit_struct= circuits
|
1966
|
+
subMxs = self._ccompute(_ph._compute_sub_mxs_circuit_list, circuit_struct, model, mx_fn, dataset, extra_arg)
|
1967
|
+
|
1968
|
+
addl_hover_info = _collections.OrderedDict()
|
1969
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1970
|
+
if (submatrices is not None) and lbl in submatrices:
|
1971
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1972
|
+
else:
|
1973
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs_circuit_list, circuit_struct, model,
|
1974
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1975
|
+
addl_hover_info[lbl] = addl_subMxs
|
1976
|
+
|
1977
|
+
#Otherwise fall-back to the old casting behavior and proceed
|
1978
|
+
else:
|
1979
|
+
circuit_struct = _PlaquetteGridCircuitStructure.cast(circuits) # , dataset?
|
1980
|
+
subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model, mx_fn, dataset, extra_arg)
|
1981
|
+
|
1982
|
+
addl_hover_info = _collections.OrderedDict()
|
1983
|
+
for lbl, (addl_mx_fn, addl_extra_arg) in addl_hover_info_fns.items():
|
1984
|
+
if (submatrices is not None) and lbl in submatrices:
|
1985
|
+
addl_subMxs = submatrices[lbl] # ever useful?
|
1986
|
+
else:
|
1987
|
+
addl_subMxs = self._ccompute(_ph._compute_sub_mxs, circuit_struct, model,
|
1988
|
+
addl_mx_fn, dataset, addl_extra_arg)
|
1989
|
+
addl_hover_info[lbl] = addl_subMxs
|
1797
1990
|
|
1798
1991
|
if colormapType == "linlog":
|
1799
1992
|
if dataset is None:
|
@@ -1827,9 +2020,17 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1827
2020
|
|
1828
2021
|
elif colormapType in ("seq", "revseq", "blueseq", "redseq"):
|
1829
2022
|
if len(subMxs) > 0:
|
1830
|
-
|
1831
|
-
|
1832
|
-
|
2023
|
+
if isinstance(circuit_struct, _PlaquetteGridCircuitStructure):
|
2024
|
+
max_abs = max([_np.max(_np.abs(_np.nan_to_num(subMxs[iy][ix])))
|
2025
|
+
for ix in range(len(circuit_struct.used_xs))
|
2026
|
+
for iy in range(len(circuit_struct.used_ys))])
|
2027
|
+
#circuit_struct logic above should mean that we always have at least a length 1 list of
|
2028
|
+
#CircuitList objects if not a plaquette circuit structure by this point.
|
2029
|
+
elif isinstance(circuit_struct, list) and all([isinstance(el, _CircuitList) for el in circuit_struct]):
|
2030
|
+
max_abs = max([_np.max(_np.abs(_np.nan_to_num(subMxs[i][j])))
|
2031
|
+
for i, ckt_list in enumerate(circuit_struct)
|
2032
|
+
for j in range(len(ckt_list))])
|
2033
|
+
|
1833
2034
|
else: max_abs = 0
|
1834
2035
|
if max_abs == 0: max_abs = 1e-6 # pick a nonzero value if all entries are zero or nan
|
1835
2036
|
if colormapType == "seq": color = "whiteToBlack"
|
@@ -1841,7 +2042,15 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1841
2042
|
else: assert(False), "Internal logic error" # pragma: no cover
|
1842
2043
|
|
1843
2044
|
if typ == "boxes":
|
1844
|
-
|
2045
|
+
if not isinstance(circuit_struct, _PlaquetteGridCircuitStructure):
|
2046
|
+
#if not a plaquette structure then maybe try returning a NotApplicable object
|
2047
|
+
#for the figure?
|
2048
|
+
return NotApplicable(self.ws)
|
2049
|
+
else:
|
2050
|
+
#I am expecting this cast won't do anything at the moment, but
|
2051
|
+
#maybe down the line it will.
|
2052
|
+
circuit_struct= _PlaquetteGridCircuitStructure.cast(circuits)
|
2053
|
+
newfig = _circuit_color_boxplot(circuit_struct, subMxs, colormap,
|
1845
2054
|
colorbar, box_labels, prec,
|
1846
2055
|
hover_info, sum_up, invert,
|
1847
2056
|
scale, bgcolor, addl_hover_info)
|
@@ -1897,9 +2106,25 @@ class ColorBoxPlot(WorkspacePlot):
|
|
1897
2106
|
|
1898
2107
|
#Helper function for ColorBoxPlot matrix computation
|
1899
2108
|
def _mx_fn_from_elements(plaq, x, y, extra):
|
1900
|
-
return plaq.
|
1901
|
-
|
2109
|
+
return plaq.elementvec_to_array(extra[0], extra[1], mergeop=extra[2])
|
2110
|
+
|
2111
|
+
#modified version of the above meant for working with circuit lists
|
2112
|
+
def _mx_fn_from_elements_circuit_list(circuit_list, extra):
|
2113
|
+
#Based on the convention above in the ColorBoxPlot code it looks likelihood
|
2114
|
+
#extra[0] is the thing we want to index into, extra[1] is the layout and extra[2]
|
2115
|
+
#is something called the merge op, which indicated how to combine the elements of extra[0]
|
2116
|
+
#for each circuit in the circuit_list
|
2117
|
+
if isinstance(circuit_list, _CircuitList):
|
2118
|
+
pass
|
2119
|
+
elif isinstance(circuit_list, list) and all([isinstance(el, _CircuitList) for el in circuit_list]):
|
2120
|
+
circuit_list = _CircuitList.cast(circuit_list)
|
2121
|
+
else:
|
2122
|
+
msg = 'Invalid type. _mx_fn_from_elements_circuit_list is only presently implemented for CircuitList'\
|
2123
|
+
+'objects and lists of Circuit objects.'
|
2124
|
+
raise ValueError(msg)
|
1902
2125
|
|
2126
|
+
return circuit_list.elementvec_to_array(extra[0], extra[1], mergeop=extra[2])
|
2127
|
+
|
1903
2128
|
def _mx_fn_blank(plaq, x, y, unused):
|
1904
2129
|
return _np.nan * _np.zeros((plaq.num_rows, plaq.num_cols), 'd')
|
1905
2130
|
|
@@ -1940,12 +2165,6 @@ def _mx_fn_driftpv(plaq, x, y, instabilityanalyzertuple):
|
|
1940
2165
|
def _mx_fn_drifttvd(plaq, x, y, instabilityanalyzertuple):
|
1941
2166
|
return _ph.drift_maxtvd_matrices(plaq, instabilityanalyzertuple)
|
1942
2167
|
|
1943
|
-
# future: delete this, or update it and added it back in.
|
1944
|
-
# def _mx_fn_driftpwr(plaq, x, y, driftresults):
|
1945
|
-
# return _ph.drift_maxpower_matrices(plaq, driftresults)
|
1946
|
-
|
1947
|
-
# Begin "Additional sub-matrix" functions for adding more info to hover text
|
1948
|
-
|
1949
2168
|
|
1950
2169
|
def _outcome_to_str(x): # same function as in writers.py
|
1951
2170
|
if isinstance(x, str): return x
|
@@ -1958,6 +2177,15 @@ def _addl_mx_fn_outcomes(plaq, x, y, layout):
|
|
1958
2177
|
slmx[i, j] = ", ".join([_outcome_to_str(ol) for ol in layout.outcomes(opstr)])
|
1959
2178
|
return slmx
|
1960
2179
|
|
2180
|
+
#modified version of the above function meant to work for CircuitList objects
|
2181
|
+
def _addl_mx_fn_outcomes_circuit_list(circuit_list, layout):
|
2182
|
+
slmx = _np.empty(len(circuit_list), dtype=_np.object_)
|
2183
|
+
for i,ckt in enumerate(circuit_list):
|
2184
|
+
slmx[i] = ", ".join([_outcome_to_str(ol) for ol in layout.outcomes(ckt)])
|
2185
|
+
return slmx
|
2186
|
+
|
2187
|
+
|
2188
|
+
|
1961
2189
|
|
1962
2190
|
class GateMatrixPlot(WorkspacePlot):
|
1963
2191
|
"""
|
@@ -2319,8 +2547,8 @@ class PolarEigenvaluePlot(WorkspacePlot):
|
|
2319
2547
|
for i, evals in enumerate(evals_list):
|
2320
2548
|
color = colors[i] if (colors is not None) else "black"
|
2321
2549
|
trace = go.Scatterpolar(
|
2322
|
-
r=list(_np.absolute(evals).
|
2323
|
-
theta=list(_np.angle(evals).
|
2550
|
+
r=list(_np.absolute(evals).ravel()),
|
2551
|
+
theta=list(_np.angle(evals).ravel() * (180.0 / _np.pi)),
|
2324
2552
|
mode='markers',
|
2325
2553
|
marker=dict(
|
2326
2554
|
color=color,
|
@@ -2340,8 +2568,8 @@ class PolarEigenvaluePlot(WorkspacePlot):
|
|
2340
2568
|
if amp is not None:
|
2341
2569
|
amp_evals = evals**amp
|
2342
2570
|
trace = go.Scatterpolar(
|
2343
|
-
r=list(_np.absolute(amp_evals).
|
2344
|
-
theta=list(_np.angle(amp_evals).
|
2571
|
+
r=list(_np.absolute(amp_evals).ravel()),
|
2572
|
+
theta=list(_np.angle(amp_evals).ravel() * (180.0 / _np.pi)),
|
2345
2573
|
showlegend=False,
|
2346
2574
|
mode='markers',
|
2347
2575
|
marker=dict(
|
@@ -2651,16 +2879,17 @@ class ChoiEigenvalueBarPlot(WorkspacePlot):
|
|
2651
2879
|
errbars, scale)
|
2652
2880
|
|
2653
2881
|
def _create(self, evals, errbars, scale):
|
2654
|
-
|
2882
|
+
if errbars is not None:
|
2883
|
+
flat_errbars = errbars.ravel()
|
2655
2884
|
HOVER_PREC = 7
|
2656
2885
|
xs = list(range(evals.size))
|
2657
|
-
ys = []
|
2658
|
-
for i, ev in enumerate(evals.
|
2886
|
+
ys, colors, texts = [], [], []
|
2887
|
+
for i, ev in enumerate(evals.ravel()):
|
2659
2888
|
ys.append(abs(ev.real))
|
2660
2889
|
colors.append('rgb(200,200,200)' if ev.real > 0 else 'red')
|
2661
2890
|
if errbars is not None:
|
2662
2891
|
texts.append("%g +/- %g" % (round(ev.real, HOVER_PREC),
|
2663
|
-
round(
|
2892
|
+
round(flat_errbars[i].real, HOVER_PREC)))
|
2664
2893
|
else:
|
2665
2894
|
texts.append("%g" % round(ev.real, HOVER_PREC))
|
2666
2895
|
|
@@ -2786,13 +3015,13 @@ class GramMatrixBarPlot(WorkspacePlot):
|
|
2786
3015
|
|
2787
3016
|
xs = list(range(svals.size))
|
2788
3017
|
trace1 = go.Bar(
|
2789
|
-
x=xs, y=list(svals.
|
3018
|
+
x=xs, y=list(svals.ravel()),
|
2790
3019
|
marker=dict(color="blue"),
|
2791
3020
|
hoverinfo='y',
|
2792
3021
|
name="from Data"
|
2793
3022
|
)
|
2794
3023
|
trace2 = go.Bar(
|
2795
|
-
x=xs, y=list(target_svals.
|
3024
|
+
x=xs, y=list(target_svals.ravel()),
|
2796
3025
|
marker=dict(color="black"),
|
2797
3026
|
hoverinfo='y',
|
2798
3027
|
name="from Target"
|
@@ -2803,7 +3032,8 @@ class GramMatrixBarPlot(WorkspacePlot):
|
|
2803
3032
|
ymax = max(_np.max(svals), _np.max(target_svals))
|
2804
3033
|
ymin = max(ymin, 1e-8) # prevent lower y-limit from being riduculously small
|
2805
3034
|
else:
|
2806
|
-
ymin = 0.1
|
3035
|
+
ymin = 0.1
|
3036
|
+
ymax = 1.0 # just pick some values for empty plot
|
2807
3037
|
|
2808
3038
|
data = [trace1, trace2]
|
2809
3039
|
layout = go.Layout(
|
@@ -3706,411 +3936,3 @@ class RandomizedBenchmarkingPlot(WorkspacePlot):
|
|
3706
3936
|
#reverse order of data so z-ordering is nicer
|
3707
3937
|
return ReportFigure(go.Figure(data=list(data), layout=layout),
|
3708
3938
|
None, pythonVal)
|
3709
|
-
|
3710
|
-
|
3711
|
-
#This older version on an RB decay plot contained a lot more theory detail
|
3712
|
-
# compared with the current one - so we'll keep it around (commented out)
|
3713
|
-
# in case we want to steal/revive pieces of it in the future.
|
3714
|
-
#class OLDRandomizedBenchmarkingPlot(WorkspacePlot):
|
3715
|
-
# """ Plot of RB Decay curve """
|
3716
|
-
# def __init__(self, ws, rb_r,xlim=None, ylim=None,
|
3717
|
-
# fit='standard', Magesan_zeroth=False, Magesan_first=False,
|
3718
|
-
# exact_decay=False,L_matrix_decay=False, Magesan_zeroth_SEB=False,
|
3719
|
-
# Magesan_first_SEB=False, L_matrix_decay_SEB=False,mdl=False,
|
3720
|
-
# target_model=False,group=False, group_to_model=None, norm='1to1', legend=True,
|
3721
|
-
# title='Randomized Benchmarking Decay', scale=1.0):
|
3722
|
-
# """
|
3723
|
-
# Plot RB decay curve, as a function of some the sequence length
|
3724
|
-
# computed using the `gstyp` gate-label-set.
|
3725
|
-
#
|
3726
|
-
# Parameters
|
3727
|
-
# ----------
|
3728
|
-
# rb_r : RBResults
|
3729
|
-
# The RB results object containing all the relevant RB data.
|
3730
|
-
#
|
3731
|
-
# gstyp : str, optional
|
3732
|
-
# The gate-label-set specifying which translation (i.e. strings with
|
3733
|
-
# which operation labels) to use when computing sequence lengths.
|
3734
|
-
#
|
3735
|
-
# xlim : tuple, optional
|
3736
|
-
# The x-range as (xmin,xmax).
|
3737
|
-
#
|
3738
|
-
# ylim : tuple, optional
|
3739
|
-
# The y-range as (ymin,ymax).
|
3740
|
-
#
|
3741
|
-
# save_fig_path : str, optional
|
3742
|
-
# If not None, the filename where the resulting plot should be saved.
|
3743
|
-
#
|
3744
|
-
# fitting : str, optional
|
3745
|
-
# Allowed values are 'standard', 'first order' or 'all'. Specifies
|
3746
|
-
# whether the zeroth or first order fitting model results are plotted,
|
3747
|
-
# or both.
|
3748
|
-
#
|
3749
|
-
# Magesan_zeroth : bool, optional
|
3750
|
-
# If True, plots the decay predicted by the 'zeroth order' theory of Magesan
|
3751
|
-
# et al. PRA 85 042311 2012. Requires mdl and target_model to be specified.
|
3752
|
-
#
|
3753
|
-
# Magesan_first : bool, optional
|
3754
|
-
# If True, plots the decay predicted by the 'first order' theory of Magesan
|
3755
|
-
# et al. PRA 85 042311 2012. Requires mdl and target_model to be specified.
|
3756
|
-
#
|
3757
|
-
# Magesan_zeroth_SEB : bool, optional
|
3758
|
-
# If True, plots the systematic error bound for the 'zeroth order' theory
|
3759
|
-
# predicted decay. This is the region around the zeroth order decay in which
|
3760
|
-
# the exact RB average survival probabilities are guaranteed to fall.
|
3761
|
-
#
|
3762
|
-
# Magesan_first_SEB : bool, optional
|
3763
|
-
# As above, but for 'first order' theory.
|
3764
|
-
#
|
3765
|
-
# exact_decay : bool, optional
|
3766
|
-
# If True, plots the exact RB decay, as predicted by the 'R matrix' theory
|
3767
|
-
# of arXiv:1702.01853. Requires mdl and group to be specified
|
3768
|
-
#
|
3769
|
-
# L_matrix_decay : bool, optional
|
3770
|
-
# If True, plots the RB decay, as predicted by the approximate 'L matrix'
|
3771
|
-
# theory of arXiv:1702.01853. Requires mdl and target_model to be specified.
|
3772
|
-
#
|
3773
|
-
# L_matrix_decay_SEB : bool, optional
|
3774
|
-
# If True, plots the systematic error bound for approximate 'L matrix'
|
3775
|
-
# theory of arXiv:1702.01853. This is the region around predicted decay
|
3776
|
-
# in which the exact RB average survival probabilities are guaranteed
|
3777
|
-
# to fall.
|
3778
|
-
#
|
3779
|
-
# mdl : model, optional
|
3780
|
-
# Required, if plotting any of the theory decays. The model for which
|
3781
|
-
# these decays should be plotted for.
|
3782
|
-
#
|
3783
|
-
# target_model : Model, optional
|
3784
|
-
# Required, if plotting certain theory decays. The target model for which
|
3785
|
-
# these decays should be plotted for.
|
3786
|
-
#
|
3787
|
-
# group : MatrixGroup, optional
|
3788
|
-
# Required, if plotting R matrix theory decay. The matrix group that mdl
|
3789
|
-
# is an implementation of.
|
3790
|
-
#
|
3791
|
-
# group_to_model : dict, optional
|
3792
|
-
# If not None, a dictionary that maps labels of group elements to labels
|
3793
|
-
# of mdl. Only used if subset_sampling is not None. If subset_sampling is
|
3794
|
-
# not None and the mdl and group elements have the same labels, this dictionary
|
3795
|
-
# is not required. Otherwise it is necessary.
|
3796
|
-
#
|
3797
|
-
# norm : str, optional
|
3798
|
-
# The norm used for calculating the Magesan theory bounds.
|
3799
|
-
#
|
3800
|
-
# legend : bool, optional
|
3801
|
-
# Specifies whether a legend is added to the graph
|
3802
|
-
#
|
3803
|
-
# title : str, optional
|
3804
|
-
# Specifies a title for the graph
|
3805
|
-
#
|
3806
|
-
# Returns
|
3807
|
-
# -------
|
3808
|
-
# None
|
3809
|
-
# """
|
3810
|
-
# # loc : str, optional
|
3811
|
-
# # Specifies the location of the legend.
|
3812
|
-
# super(RandomizedBenchmarkingPlot,self).__init__(
|
3813
|
-
# ws, self._create, rb_r, xlim, ylim, fit, Magesan_zeroth,
|
3814
|
-
# Magesan_first, exact_decay, L_matrix_decay, Magesan_zeroth_SEB,
|
3815
|
-
# Magesan_first_SEB, L_matrix_decay_SEB, mdl, target_model, group,
|
3816
|
-
# group_to_model, norm, legend, title, scale)
|
3817
|
-
#
|
3818
|
-
# def _create(self, rb_r, xlim, ylim, fit, Magesan_zeroth,
|
3819
|
-
# Magesan_first, exact_decay, L_matrix_decay, Magesan_zeroth_SEB,
|
3820
|
-
# Magesan_first_SEB, L_matrix_decay_SEB, mdl, target_model, group,
|
3821
|
-
# group_to_model, norm, legend, title, scale):
|
3822
|
-
#
|
3823
|
-
# from ..extras.rb import rbutils as _rbutils
|
3824
|
-
# #TODO: maybe move the computational/fitting part of this function
|
3825
|
-
# # back to the RBResults object to reduce the logic (and dependence
|
3826
|
-
# # on rbutils) here.
|
3827
|
-
#
|
3828
|
-
# #newplot = _plt.figure(figsize=(8, 4))
|
3829
|
-
# #newplotgca = newplot.gca()
|
3830
|
-
#
|
3831
|
-
# # Note: minus one to get xdata that discounts final Clifford-inverse
|
3832
|
-
# xdata = _np.asarray(rb_r.results['lengths']) - 1
|
3833
|
-
# ydata = _np.asarray(rb_r.results['successes'])
|
3834
|
-
# A = rb_r.results['A']
|
3835
|
-
# B = rb_r.results['B']
|
3836
|
-
# f = rb_r.results['f']
|
3837
|
-
# if fit == 'first order':
|
3838
|
-
# C = rb_r.results['C']
|
3839
|
-
# pre_avg = rb_r.pre_avg
|
3840
|
-
#
|
3841
|
-
# if (Magesan_zeroth_SEB is True) and (Magesan_zeroth is False):
|
3842
|
-
# print("As Magesan_zeroth_SEB is True, Setting Magesan_zeroth to True\n")
|
3843
|
-
# Magesan_zeroth = True
|
3844
|
-
# if (Magesan_first_SEB is True) and (Magesan_first is False):
|
3845
|
-
# print("As Magesan_first_SEB is True, Setting Magesan_first to True\n")
|
3846
|
-
# Magesan_first = True
|
3847
|
-
#
|
3848
|
-
# if (Magesan_zeroth is True) or (Magesan_first is True):
|
3849
|
-
# if (mdl is False) or (target_model is False):
|
3850
|
-
# raise ValueError("To plot Magesan et al theory decay curves a model" +
|
3851
|
-
# " and a target model is required.")
|
3852
|
-
# else:
|
3853
|
-
# MTP = _rbutils.Magesan_theory_parameters(mdl, target_model,
|
3854
|
-
# success_outcomelabel=rb_r.success_outcomelabel,
|
3855
|
-
# norm=norm,d=rb_r.d)
|
3856
|
-
# f_an = MTP['p']
|
3857
|
-
# A_an = MTP['A']
|
3858
|
-
# B_an = MTP['B']
|
3859
|
-
# A1_an = MTP['A1']
|
3860
|
-
# B1_an = MTP['B1']
|
3861
|
-
# C1_an = MTP['C1']
|
3862
|
-
# delta = MTP['delta']
|
3863
|
-
#
|
3864
|
-
# if exact_decay is True:
|
3865
|
-
# if (mdl is False) or (group is False):
|
3866
|
-
# raise ValueError("To plot the exact decay curve a model" +
|
3867
|
-
# " and the target group are required.")
|
3868
|
-
# else:
|
3869
|
-
# mvalues,ASPs = _rbutils.exact_rb_asps(mdl,group,max(xdata),m_min=1,m_step=1,
|
3870
|
-
# d=rb_r.d, group_to_model=group_to_model,
|
3871
|
-
# success_outcomelabel=rb_r.success_outcomelabel)
|
3872
|
-
#
|
3873
|
-
# if L_matrix_decay is True:
|
3874
|
-
# if (mdl is False) or (target_model is False):
|
3875
|
-
# raise ValueError("To plot the L matrix theory decay curve a model" +
|
3876
|
-
# " and a target model is required.")
|
3877
|
-
# else:
|
3878
|
-
# mvalues, LM_ASPs, LM_ASPs_SEB_lower, LM_ASPs_SEB_upper = \
|
3879
|
-
# _rbutils.L_matrix_asps(mdl,target_model,max(xdata),m_min=1,m_step=1,d=rb_r.d,
|
3880
|
-
# success_outcomelabel=rb_r.success_outcomelabel, error_bounds=True)
|
3881
|
-
#
|
3882
|
-
# xlabel = 'Sequence length'
|
3883
|
-
#
|
3884
|
-
# data = [] # list of traces
|
3885
|
-
# data.append( go.Scatter(
|
3886
|
-
# x = xdata, y = ydata,
|
3887
|
-
# mode = 'markers',
|
3888
|
-
# marker = dict(
|
3889
|
-
# color = "rgb(0,0,0)",
|
3890
|
-
# size = 6 if pre_avg else 3
|
3891
|
-
# ),
|
3892
|
-
# name = 'Averaged RB data' if pre_avg else 'RB data',
|
3893
|
-
# ))
|
3894
|
-
#
|
3895
|
-
# if fit=='standard' or fit=='first order':
|
3896
|
-
# fit_label_1='Fit'
|
3897
|
-
# fit_label_2='Fit'
|
3898
|
-
# color2 = "black"
|
3899
|
-
#
|
3900
|
-
# theory_color2 = "green"
|
3901
|
-
# theory_fill2 = "rgba(0,128,0,0.1)"
|
3902
|
-
# if Magesan_zeroth is True and Magesan_first is True:
|
3903
|
-
# theory_color2 = "magenta"
|
3904
|
-
# theory_fill2 = "rgba(255,0,255,0.1)"
|
3905
|
-
#
|
3906
|
-
# if fit=='standard':
|
3907
|
-
# data.append( go.Scatter(
|
3908
|
-
# x = _np.arange(max(xdata)),
|
3909
|
-
# y = _rbutils.standard_fit_function(_np.arange(max(xdata)),A,B,f),
|
3910
|
-
# mode = 'lines',
|
3911
|
-
# line = dict(width=1, color="black"),
|
3912
|
-
# name = fit_label_1,
|
3913
|
-
# showlegend=legend,
|
3914
|
-
# ))
|
3915
|
-
#
|
3916
|
-
# if fit=='first order':
|
3917
|
-
# data.append( go.Scatter(
|
3918
|
-
# x = _np.arange(max(xdata)),
|
3919
|
-
# y = _rbutils.first_order_fit_function(_np.arange(max(xdata)),A,B,C,f),
|
3920
|
-
# mode = 'lines',
|
3921
|
-
# line = dict(width=1, color=color2),
|
3922
|
-
# name = fit_label_2,
|
3923
|
-
# showlegend=legend,
|
3924
|
-
# ))
|
3925
|
-
#
|
3926
|
-
# if Magesan_zeroth is True:
|
3927
|
-
# data.append( go.Scatter(
|
3928
|
-
# x = _np.arange(max(xdata)),
|
3929
|
-
# y = _rbutils.standard_fit_function(_np.arange(max(xdata)),A_an,B_an,f_an),
|
3930
|
-
# mode = 'lines',
|
3931
|
-
# line = dict(width=2, color="green", dash='dash'),
|
3932
|
-
# name = '0th order theory',
|
3933
|
-
# showlegend=legend,
|
3934
|
-
# ))
|
3935
|
-
#
|
3936
|
-
# if Magesan_zeroth_SEB is True:
|
3937
|
-
# data.append( go.Scatter(
|
3938
|
-
# x = _np.arange(max(xdata)),
|
3939
|
-
# y = _rbutils.seb_upper(
|
3940
|
-
# _rbutils.standard_fit_function(_np.arange(max(xdata)),A_an,B_an,f_an),
|
3941
|
-
# _np.arange(max(xdata)), delta, order='zeroth'),
|
3942
|
-
# mode = 'lines',
|
3943
|
-
# line = dict(width=0.5, color="green"),
|
3944
|
-
# name = '0th order bound',
|
3945
|
-
# fill='tonexty',
|
3946
|
-
# fillcolor='rgba(0,128,0,0.1)',
|
3947
|
-
# showlegend=False,
|
3948
|
-
# ))
|
3949
|
-
# data.append( go.Scatter(
|
3950
|
-
# x = _np.arange(max(xdata)),
|
3951
|
-
# y = _rbutils.seb_lower(
|
3952
|
-
# _rbutils.standard_fit_function(_np.arange(max(xdata)),A_an,B_an,f_an),
|
3953
|
-
# _np.arange(max(xdata)), delta, order='zeroth'),
|
3954
|
-
# mode = 'lines',
|
3955
|
-
# line = dict(width=0.5, color="green"),
|
3956
|
-
# name = '0th order bound',
|
3957
|
-
# showlegend=False,
|
3958
|
-
# ))
|
3959
|
-
#
|
3960
|
-
#
|
3961
|
-
# if Magesan_first is True:
|
3962
|
-
# data.append( go.Scatter(
|
3963
|
-
# x = _np.arange(max(xdata)),
|
3964
|
-
# y = _rbutils.first_order_fit_function(_np.arange(max(xdata)),A1_an,B1_an,C1_an,f_an),
|
3965
|
-
# mode = 'lines',
|
3966
|
-
# line = dict(width=2, color=theory_color2, dash='dash'),
|
3967
|
-
# name = '1st order theory',
|
3968
|
-
# showlegend=legend,
|
3969
|
-
# ))
|
3970
|
-
#
|
3971
|
-
# if Magesan_first_SEB is True:
|
3972
|
-
# data.append( go.Scatter(
|
3973
|
-
# x = _np.arange(max(xdata)),
|
3974
|
-
# y = _rbutils.seb_upper(
|
3975
|
-
# _rbutils.first_order_fit_function(_np.arange(max(xdata)),A1_an,B1_an,C1_an,f_an),
|
3976
|
-
# _np.arange(max(xdata)), delta, order='first'),
|
3977
|
-
# mode = 'lines',
|
3978
|
-
# line = dict(width=0.5, color=theory_color2), #linewidth=4?
|
3979
|
-
# name = '1st order bound',
|
3980
|
-
# fill='tonexty',
|
3981
|
-
# fillcolor=theory_fill2,
|
3982
|
-
# showlegend=False,
|
3983
|
-
# ))
|
3984
|
-
# data.append( go.Scatter(
|
3985
|
-
# x = _np.arange(max(xdata)),
|
3986
|
-
# y = _rbutils.seb_lower(
|
3987
|
-
# _rbutils.first_order_fit_function(_np.arange(max(xdata)),A1_an,B1_an,C1_an,f_an),
|
3988
|
-
# _np.arange(max(xdata)), delta, order='first'),
|
3989
|
-
# mode = 'lines',
|
3990
|
-
# line = dict(width=0.5, color=theory_color2),
|
3991
|
-
# name = '1st order bound',
|
3992
|
-
# showlegend=False,
|
3993
|
-
# ))
|
3994
|
-
#
|
3995
|
-
#
|
3996
|
-
# if exact_decay is True:
|
3997
|
-
# data.append( go.Scatter(
|
3998
|
-
# x = mvalues,
|
3999
|
-
# y = ASPs,
|
4000
|
-
# mode = 'lines',
|
4001
|
-
# line = dict(width=2, color="blue",dash='dash'),
|
4002
|
-
# name = 'Exact decay',
|
4003
|
-
# showlegend=legend,
|
4004
|
-
# ))
|
4005
|
-
#
|
4006
|
-
# if L_matrix_decay is True:
|
4007
|
-
# data.append( go.Scatter(
|
4008
|
-
# x = mvalues,
|
4009
|
-
# y = LM_ASPs,
|
4010
|
-
# mode = 'lines',
|
4011
|
-
# line = dict(width=2, color="cyan",dash='dash'),
|
4012
|
-
# name = 'L matrix decay',
|
4013
|
-
# showlegend=legend,
|
4014
|
-
# ))
|
4015
|
-
# if L_matrix_decay_SEB is True:
|
4016
|
-
# data.append( go.Scatter(
|
4017
|
-
# x = mvalues,
|
4018
|
-
# y = LM_ASPs_SEB_upper,
|
4019
|
-
# mode = 'lines',
|
4020
|
-
# line = dict(width=0.5, color="cyan"),
|
4021
|
-
# name = 'LM bound',
|
4022
|
-
# fill='tonexty',
|
4023
|
-
# fillcolor='rgba(0,255,255,0.1)',
|
4024
|
-
# showlegend=False,
|
4025
|
-
# ))
|
4026
|
-
# data.append( go.Scatter(
|
4027
|
-
# x = mvalues,
|
4028
|
-
# y = LM_ASPs_SEB_lower,
|
4029
|
-
# mode = 'lines',
|
4030
|
-
# line = dict(width=0.5, color="cyan"),
|
4031
|
-
# name = 'LM bound',
|
4032
|
-
# showlegend=False,
|
4033
|
-
# ))
|
4034
|
-
#
|
4035
|
-
# ymin = min([min(trace['y']) for trace in data])
|
4036
|
-
# ymin -= 0.1*abs(1.0-ymin) #pad by 10%
|
4037
|
-
#
|
4038
|
-
# layout = go.Layout(
|
4039
|
-
# width=800*scale,
|
4040
|
-
# height=400*scale,
|
4041
|
-
# title=title,
|
4042
|
-
# titlefont=dict(size=16),
|
4043
|
-
# xaxis=dict(
|
4044
|
-
# title=xlabel,
|
4045
|
-
# titlefont=dict(size=14),
|
4046
|
-
# range=xlim if xlim else [0,max(xdata)],
|
4047
|
-
# ),
|
4048
|
-
# yaxis=dict(
|
4049
|
-
# title='Mean survival probability',
|
4050
|
-
# titlefont=dict(size=14),
|
4051
|
-
# range=ylim if ylim else [ymin,1.0],
|
4052
|
-
# ),
|
4053
|
-
# legend=dict(
|
4054
|
-
# font=dict(
|
4055
|
-
# size=13,
|
4056
|
-
# ),
|
4057
|
-
# )
|
4058
|
-
# )
|
4059
|
-
#
|
4060
|
-
# pythonVal = {}
|
4061
|
-
# for i,tr in enumerate(data):
|
4062
|
-
# key = tr['name'] if ("name" in tr) else "trace%d" % i
|
4063
|
-
# pythonVal[key] = {'x': tr['x'], 'y': tr['y']}
|
4064
|
-
#
|
4065
|
-
# #reverse order of data so z-ordering is nicer
|
4066
|
-
# return ReportFigure(go.Figure(data=list(reversed(data)), layout=layout),
|
4067
|
-
# None, pythonVal)
|
4068
|
-
#
|
4069
|
-
# #newplotgca.set_xlabel(xlabel, fontsize=15)
|
4070
|
-
# #newplotgca.set_ylabel('Mean survival probability',fontsize=15)
|
4071
|
-
# #if title==True:
|
4072
|
-
# # newplotgca.set_title('Randomized Benchmarking Decay', fontsize=18)
|
4073
|
-
# #newplotgca.set_frame_on(True)
|
4074
|
-
# #newplotgca.yaxis.grid(False)
|
4075
|
-
# #newplotgca.tick_params(axis='x', top='off', labelsize=12)
|
4076
|
-
# #newplotgca.tick_params(axis='y', left='off', right='off', labelsize=12)
|
4077
|
-
#
|
4078
|
-
# #if legend==True:
|
4079
|
-
# # leg = _plt.legend(fancybox=True, loc=loc)
|
4080
|
-
# # leg.get_frame().set_alpha(0.9)
|
4081
|
-
#
|
4082
|
-
# #newplotgca.spines["top"].set_visible(False)
|
4083
|
-
# #newplotgca.spines["right"].set_visible(False)
|
4084
|
-
# #newplotgca.spines["bottom"].set_alpha(.7)
|
4085
|
-
# #newplotgca.spines["left"].set_alpha(.7)
|
4086
|
-
|
4087
|
-
|
4088
|
-
#Histograms??
|
4089
|
-
#TODO: histogram
|
4090
|
-
# if histogram:
|
4091
|
-
# fig = _plt.figure()
|
4092
|
-
# histdata = subMxSums.flatten()
|
4093
|
-
# #take gives back (1,N) shaped array (why?)
|
4094
|
-
# histdata_finite = _np.take(histdata, _np.where(_np.isfinite(histdata)))[0]
|
4095
|
-
# histMin = min( histdata_finite ) if cmapFactory.vmin is None else cmapFactory.vmin
|
4096
|
-
# histMax = max( histdata_finite ) if cmapFactory.vmax is None else cmapFactory.vmax
|
4097
|
-
# _plt.hist(_np.clip(histdata_finite,histMin,histMax), histBins,
|
4098
|
-
# range=[histMin, histMax], facecolor='gray', align='mid')
|
4099
|
-
# if save_to is not None:
|
4100
|
-
# if len(save_to) > 0:
|
4101
|
-
# _plt.savefig( _makeHistFilename(save_to) )
|
4102
|
-
# _plt.close(fig)
|
4103
|
-
|
4104
|
-
# if histogram:
|
4105
|
-
# fig = _plt.figure()
|
4106
|
-
# histdata = _np.concatenate( [ sub_mxs[iy][ix].flatten() for ix in range(nXs) for iy in range(nYs)] )
|
4107
|
-
# #take gives back (1,N) shaped array (why?)
|
4108
|
-
# histdata_finite = _np.take(histdata, _np.where(_np.isfinite(histdata)))[0]
|
4109
|
-
# histMin = min( histdata_finite ) if cmapFactory.vmin is None else cmapFactory.vmin
|
4110
|
-
# histMax = max( histdata_finite ) if cmapFactory.vmax is None else cmapFactory.vmax
|
4111
|
-
# _plt.hist(_np.clip(histdata_finite,histMin,histMax), histBins,
|
4112
|
-
# range=[histMin, histMax], facecolor='gray', align='mid')
|
4113
|
-
# if save_to is not None:
|
4114
|
-
# if len(save_to) > 0:
|
4115
|
-
# _plt.savefig( _makeHistFilename(save_to) )
|
4116
|
-
# _plt.close(fig)
|