pyCLINE 0.1.10__py3-none-any.whl → 0.1.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pyCLINE/example.py CHANGED
@@ -115,7 +115,7 @@ def example(example_model, plot):
115
115
 
116
116
  # train the model
117
117
  print('Step 4: Train the model')
118
- training_loss, val_loss, test_loss, predictions_evolution, lc_predictions = recovery_methods.nn_training.train_FFNN_model(model=nn_model,
118
+ training_loss, val_loss, test_loss, predictions_evolution, lc_predictions, _ = recovery_methods.nn_training.train_FFNN_model(model=nn_model,
119
119
  optimizer=optimizer, loss_fn=loss_fn,
120
120
  input_train=input_train,
121
121
  target_train=target_train,input_test=input_test,
pyCLINE/generate_data.py CHANGED
@@ -11,8 +11,6 @@ def FHN(dt=0.1, N=1000000, epsilons=[0.3], n_intiaL_conditions=1):
11
11
  N (int): Number of time steps. Defaults to 1000000.
12
12
  epsilons (list): List of time scale separations. Defaults to [0.3].
13
13
 
14
- Returns:
15
- None
16
14
  """
17
15
  if dt <= 0:
18
16
  raise ValueError("Time step (dt) must be positive.")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyCLINE
3
- Version: 0.1.10
3
+ Version: 0.1.11
4
4
  Summary: This package is the Python implementation of the CLINE method
5
5
  Author-email: Bartosz Prokop <bartosz.prokop@kuleuven.be>, Nikita Frolov <nikita.frolov@kuleuven.be>, Lendert Gelens <lendert.gelens@kuleuven.be>
6
6
  Project-URL: Homepage, https://pycline-ec8369.pages.gitlab.kuleuven.be/
@@ -100,7 +100,7 @@ With the prepared data, we can set up the model and train it:
100
100
  nn_model, optimizer, loss_fn = recovery_methods.nn_training.configure_FFNN_model(Nin=len(input_vars), Nout=len(target_vars),Nlayers=3, Nnodes=64, summary=True, lr=1e-4, activation=nn.SiLU)
101
101
 
102
102
  #training
103
- training_loss, val_loss, test_loss, predictions_evolution, lc_predictions = recovery_methods.nn_training.train_FFNN_model(model=nn_model, optimizer=optimizer, loss_fn=loss_fn, input_train=input_train,target_train=target_train,input_test=input_test, target_test=target_test, validation_data=(input_val, target_val), epochs=3000, batch_size=64, device='cpu',save_evolution=True,method='derivative', minimal_value=val_min,maximal_value=val_max)
103
+ training_loss, val_loss, test_loss, predictions_evolution, lc_predictions, _ = recovery_methods.nn_training.train_FFNN_model(model=nn_model, optimizer=optimizer, loss_fn=loss_fn, input_train=input_train,target_train=target_train,input_test=input_test, target_test=target_test, validation_data=(input_val, target_val), epochs=3000, batch_size=64, device='cpu',save_evolution=True,method='derivative', minimal_value=val_min,maximal_value=val_max)
104
104
  ```
105
105
 
106
106
  The result of the training are the losses and the predictions of the limit cycle (`lc_predictions`) and nullcline predictions (`predictions_evolution`) over the set amount of epochs, which can be used to visualize the outcome of the nullcline predictions.
@@ -1,12 +1,12 @@
1
1
  pyCLINE/__init__.py,sha256=Z38oxkRTnb_EiU31_03Ba2bUKs1S2PEajMMGtlUOlf8,726
2
- pyCLINE/example.py,sha256=RkQumpOXpkBxn8Zdx1AhQh1GAMWzPzvqc7N2ljPPQC8,8380
3
- pyCLINE/generate_data.py,sha256=mQd5e-qyRv3iDecrYrPELOkR_JtMwxBaC_hBzf7Ddho,3642
2
+ pyCLINE/example.py,sha256=jileF6GB9u4KlnkMY41AW5pVU19ovarIEaQsIXXAxM0,8383
3
+ pyCLINE/generate_data.py,sha256=9aZvluLiBAmc9FFQ_9USBxlVGWdoDr_RUezEcdGGgFo,3614
4
4
  pyCLINE/model.py,sha256=Qq5sQd7bXmI7efoN_IidWjfHAB--ZskEzGDkZYKsE38,35337
5
5
  pyCLINE/recovery_methods/__init__.py,sha256=MQ9ZF_SVZNBJkZ0cyM5zXimiug9yu42lHBCnOMYw080,488
6
6
  pyCLINE/recovery_methods/data_preparation.py,sha256=4XDV-Rc0NpA3f10NlRRhGV7IfhSbZBeepySAMgaxcuo,19690
7
7
  pyCLINE/recovery_methods/nn_training.py,sha256=jRiiG-EBRr_O8bdEpxvQRJ4rVPtbJePWR1260q5ETPI,21049
8
- pycline-0.1.10.dist-info/licenses/LICENSE,sha256=6XV86fklwr93DuwtgX05Jg3n25_0c726oBhoSMn1aoc,1245
9
- pycline-0.1.10.dist-info/METADATA,sha256=7r-G4JR8NXhKYkKLaWhPyBj8Pynj90bXd3JoWKiEJ_Y,6320
10
- pycline-0.1.10.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
11
- pycline-0.1.10.dist-info/top_level.txt,sha256=w0zzQfaPH2RNTWfJ_lsPf-EbkvT6m3quM69exCTMBvU,8
12
- pycline-0.1.10.dist-info/RECORD,,
8
+ pycline-0.1.11.dist-info/licenses/LICENSE,sha256=6XV86fklwr93DuwtgX05Jg3n25_0c726oBhoSMn1aoc,1245
9
+ pycline-0.1.11.dist-info/METADATA,sha256=Zo-RqLxkCa4g_DlBt8gorhhGXL-5Mmfd3wEWuRo4fU8,6323
10
+ pycline-0.1.11.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
11
+ pycline-0.1.11.dist-info/top_level.txt,sha256=w0zzQfaPH2RNTWfJ_lsPf-EbkvT6m3quM69exCTMBvU,8
12
+ pycline-0.1.11.dist-info/RECORD,,