pyAgrum-nightly 2.2.1.9.dev202510271761405498__cp310-abi3-macosx_11_0_arm64.whl → 2.3.0.9.dev202510281761586496__cp310-abi3-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyAgrum-nightly might be problematic. Click here for more details.
- pyagrum/_pyagrum.so +0 -0
- pyagrum/common.py +1 -1
- pyagrum/config.py +1 -0
- pyagrum/explain/_ComputationCausal.py +75 -0
- pyagrum/explain/_ComputationConditional.py +48 -0
- pyagrum/explain/_ComputationMarginal.py +48 -0
- pyagrum/explain/_CustomShapleyCache.py +110 -0
- pyagrum/explain/_Explainer.py +176 -0
- pyagrum/explain/_Explanation.py +70 -0
- pyagrum/explain/_FIFOCache.py +54 -0
- pyagrum/explain/_ShallCausalValues.py +204 -0
- pyagrum/explain/_ShallConditionalValues.py +155 -0
- pyagrum/explain/_ShallMarginalValues.py +155 -0
- pyagrum/explain/_ShallValues.py +296 -0
- pyagrum/explain/_ShapCausalValues.py +208 -0
- pyagrum/explain/_ShapConditionalValues.py +126 -0
- pyagrum/explain/_ShapMarginalValues.py +191 -0
- pyagrum/explain/_ShapleyValues.py +298 -0
- pyagrum/explain/__init__.py +81 -0
- pyagrum/explain/_explGeneralizedMarkovBlanket.py +152 -0
- pyagrum/explain/_explIndependenceListForPairs.py +146 -0
- pyagrum/explain/_explInformationGraph.py +264 -0
- pyagrum/explain/notebook/__init__.py +54 -0
- pyagrum/explain/notebook/_bar.py +142 -0
- pyagrum/explain/notebook/_beeswarm.py +174 -0
- pyagrum/explain/notebook/_showShapValues.py +97 -0
- pyagrum/explain/notebook/_waterfall.py +220 -0
- pyagrum/explain/shapley.py +225 -0
- pyagrum/lib/explain.py +11 -490
- pyagrum/pyagrum.py +17 -10
- {pyagrum_nightly-2.2.1.9.dev202510271761405498.dist-info → pyagrum_nightly-2.3.0.9.dev202510281761586496.dist-info}/METADATA +1 -1
- {pyagrum_nightly-2.2.1.9.dev202510271761405498.dist-info → pyagrum_nightly-2.3.0.9.dev202510281761586496.dist-info}/RECORD +36 -12
- pyagrum/lib/shapley.py +0 -661
- {pyagrum_nightly-2.2.1.9.dev202510271761405498.dist-info → pyagrum_nightly-2.3.0.9.dev202510281761586496.dist-info}/LICENSE.md +0 -0
- {pyagrum_nightly-2.2.1.9.dev202510271761405498.dist-info → pyagrum_nightly-2.3.0.9.dev202510281761586496.dist-info}/LICENSES/LGPL-3.0-or-later.txt +0 -0
- {pyagrum_nightly-2.2.1.9.dev202510271761405498.dist-info → pyagrum_nightly-2.3.0.9.dev202510281761586496.dist-info}/LICENSES/MIT.txt +0 -0
- {pyagrum_nightly-2.2.1.9.dev202510271761405498.dist-info → pyagrum_nightly-2.3.0.9.dev202510281761586496.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,142 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
# This file is part of the aGrUM/pyAgrum library. #
|
|
3
|
+
# #
|
|
4
|
+
# Copyright (c) 2005-2025 by #
|
|
5
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
6
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
7
|
+
# #
|
|
8
|
+
# The aGrUM/pyAgrum library is free software; you can redistribute it #
|
|
9
|
+
# and/or modify it under the terms of either : #
|
|
10
|
+
# #
|
|
11
|
+
# - the GNU Lesser General Public License as published by #
|
|
12
|
+
# the Free Software Foundation, either version 3 of the License, #
|
|
13
|
+
# or (at your option) any later version, #
|
|
14
|
+
# - the MIT license (MIT), #
|
|
15
|
+
# - or both in dual license, as here. #
|
|
16
|
+
# #
|
|
17
|
+
# (see https://agrum.gitlab.io/articles/dual-licenses-lgplv3mit.html) #
|
|
18
|
+
# #
|
|
19
|
+
# This aGrUM/pyAgrum library is distributed in the hope that it will be #
|
|
20
|
+
# useful, but WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #
|
|
21
|
+
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES MERCHANTABILITY or FITNESS #
|
|
22
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
|
|
23
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
|
|
24
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, #
|
|
25
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR #
|
|
26
|
+
# OTHER DEALINGS IN THE SOFTWARE. #
|
|
27
|
+
# #
|
|
28
|
+
# See LICENCES for more details. #
|
|
29
|
+
# #
|
|
30
|
+
# SPDX-FileCopyrightText: Copyright 2005-2025 #
|
|
31
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
32
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
33
|
+
# SPDX-License-Identifier: LGPL-3.0-or-later OR MIT #
|
|
34
|
+
# #
|
|
35
|
+
# Contact : info_at_agrum_dot_org #
|
|
36
|
+
# homepage : http://agrum.gitlab.io #
|
|
37
|
+
# gitlab : https://gitlab.com/agrumery/agrum #
|
|
38
|
+
# #
|
|
39
|
+
############################################################################
|
|
40
|
+
|
|
41
|
+
import pyagrum as gum
|
|
42
|
+
from pyagrum.explain._Explanation import Explanation
|
|
43
|
+
|
|
44
|
+
import numpy as np
|
|
45
|
+
|
|
46
|
+
import matplotlib.pyplot as plt
|
|
47
|
+
from matplotlib.colors import LinearSegmentedColormap, to_rgb
|
|
48
|
+
from matplotlib.patches import Patch
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def bar(explanation: Explanation, y: int = None, ax: plt.Axes = None, percentage: bool = False) -> plt.axis:
|
|
52
|
+
"""
|
|
53
|
+
Plots a horizontal bar chart of the mean absolute SHAP/SHALL values for each feature in the explanation.
|
|
54
|
+
|
|
55
|
+
Parameters:
|
|
56
|
+
----------
|
|
57
|
+
explanation : Explanation
|
|
58
|
+
The explanation object containing the SHAP/SHALL values.
|
|
59
|
+
y : int, optional
|
|
60
|
+
If the values type of the explanation is SHALL, then y is ignored.
|
|
61
|
+
Else it is the class for which to plot the SHAP values (default is None, which plots multi-bar for all classes).
|
|
62
|
+
ax : plt.Axes, optional
|
|
63
|
+
The matplotlib Axes object to plot on (default is None, which creates a new figure).
|
|
64
|
+
percentage: bool
|
|
65
|
+
if True, the importance plot is shown in percent.
|
|
66
|
+
|
|
67
|
+
Raises :
|
|
68
|
+
------
|
|
69
|
+
TypeError : If `explanation` is not an Explanation object or if `y` is not an integer or None.
|
|
70
|
+
IndexError : If `y` is an integer but out of bounds for the explanation keys.
|
|
71
|
+
"""
|
|
72
|
+
|
|
73
|
+
if not isinstance(explanation, Explanation):
|
|
74
|
+
raise TypeError(f"`explanation` must be an Explanation object but got {type(explanation)}")
|
|
75
|
+
|
|
76
|
+
# Determine if The explanation object is a SHALL or SHAP explanation
|
|
77
|
+
if explanation.values_type == "SHAP":
|
|
78
|
+
if not isinstance(y, int) and y is not None:
|
|
79
|
+
raise TypeError(f"`y` must be either a positive integer or None, but got {type(y)}")
|
|
80
|
+
if isinstance(y, int) and (y < min(explanation.keys()) or y > max(explanation.keys())):
|
|
81
|
+
raise IndexError(f"Target index y={y} is out of bounds; expected 0 <= y < {max(explanation.keys()) + 1}.")
|
|
82
|
+
elif explanation.values_type == "SHALL":
|
|
83
|
+
# We force y to be an integer, so we can use the same code after for both explanations
|
|
84
|
+
y = 0
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError(f"Wrong values type, expected SHAP/SHALL but got {explanation.values_type}")
|
|
87
|
+
|
|
88
|
+
if ax is None:
|
|
89
|
+
_, ax = plt.subplots(figsize=(6, 4))
|
|
90
|
+
|
|
91
|
+
if y is not None:
|
|
92
|
+
importances = explanation.importances[y] if explanation.values_type == "SHAP" else explanation.importances
|
|
93
|
+
columns = [col for col in sorted(importances.keys(), key=importances.get)]
|
|
94
|
+
values = [importances[feat] for feat in columns]
|
|
95
|
+
if percentage:
|
|
96
|
+
total = sum(values)
|
|
97
|
+
values = [(v / total) * 100 for v in values]
|
|
98
|
+
ax.barh(columns, values, color=gum.config["notebook", "tensor_color_0"], height=0.5, alpha=0.8)
|
|
99
|
+
else:
|
|
100
|
+
classes = sorted(explanation.keys())
|
|
101
|
+
cmap = LinearSegmentedColormap.from_list(
|
|
102
|
+
"class_cmap", [to_rgb(gum.config["notebook", "tensor_color_0"]), to_rgb(gum.config["notebook", "tensor_color_1"])]
|
|
103
|
+
)
|
|
104
|
+
colors = [cmap(i / (len(explanation) - 1)) for i in range(len(explanation))]
|
|
105
|
+
|
|
106
|
+
n_features = len(explanation.feature_names)
|
|
107
|
+
values = np.array([[explanation.importances[z][feat] for feat in explanation.feature_names] for z in classes])
|
|
108
|
+
# Sort bars
|
|
109
|
+
indices = np.argsort(np.sum(values, axis=0))
|
|
110
|
+
values = values[:, indices]
|
|
111
|
+
features = [explanation.feature_names[i] for i in indices]
|
|
112
|
+
bottom = np.zeros(n_features)
|
|
113
|
+
|
|
114
|
+
for i, cls in enumerate(classes):
|
|
115
|
+
contribs = values[i]
|
|
116
|
+
if percentage:
|
|
117
|
+
total = sum(contribs)
|
|
118
|
+
contribs = [(v / total) * 100 for v in contribs]
|
|
119
|
+
ax.barh(
|
|
120
|
+
features, contribs, height=0.5, left=bottom, color=colors[i % len(colors)], label=f"class {cls}", alpha=0.8
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
bottom += contribs
|
|
124
|
+
legend_elements = [Patch(facecolor=colors[i], edgecolor="black", label=f"Class {i}") for i in range(len(colors))]
|
|
125
|
+
ax.legend(loc="lower right", handles=legend_elements, title="Classes")
|
|
126
|
+
|
|
127
|
+
ax.set_title("Feature Importance", fontsize=16)
|
|
128
|
+
|
|
129
|
+
msg = " in %" if percentage else ""
|
|
130
|
+
ax.set_xlabel(f"mean(|{explanation.values_type} value|){msg}", fontsize=12)
|
|
131
|
+
ax.set_ylabel("Features", fontsize=12)
|
|
132
|
+
ax.tick_params(axis="x", labelsize=10)
|
|
133
|
+
ax.tick_params(axis="y", labelsize=10)
|
|
134
|
+
|
|
135
|
+
# Removing spines
|
|
136
|
+
ax.grid(axis="x", linestyle=":", alpha=0.6)
|
|
137
|
+
ax.grid(axis="y", linestyle=":", alpha=0.3)
|
|
138
|
+
ax.spines["top"].set_visible(False)
|
|
139
|
+
ax.spines["bottom"].set_visible(False)
|
|
140
|
+
ax.spines["left"].set_visible(False)
|
|
141
|
+
ax.spines["right"].set_visible(False)
|
|
142
|
+
ax.figure.set_facecolor("white")
|
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
# This file is part of the aGrUM/pyAgrum library. #
|
|
3
|
+
# #
|
|
4
|
+
# Copyright (c) 2005-2025 by #
|
|
5
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
6
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
7
|
+
# #
|
|
8
|
+
# The aGrUM/pyAgrum library is free software; you can redistribute it #
|
|
9
|
+
# and/or modify it under the terms of either : #
|
|
10
|
+
# #
|
|
11
|
+
# - the GNU Lesser General Public License as published by #
|
|
12
|
+
# the Free Software Foundation, either version 3 of the License, #
|
|
13
|
+
# or (at your option) any later version, #
|
|
14
|
+
# - the MIT license (MIT), #
|
|
15
|
+
# - or both in dual license, as here. #
|
|
16
|
+
# #
|
|
17
|
+
# (see https://agrum.gitlab.io/articles/dual-licenses-lgplv3mit.html) #
|
|
18
|
+
# #
|
|
19
|
+
# This aGrUM/pyAgrum library is distributed in the hope that it will be #
|
|
20
|
+
# useful, but WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #
|
|
21
|
+
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES MERCHANTABILITY or FITNESS #
|
|
22
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
|
|
23
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
|
|
24
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, #
|
|
25
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR #
|
|
26
|
+
# OTHER DEALINGS IN THE SOFTWARE. #
|
|
27
|
+
# #
|
|
28
|
+
# See LICENCES for more details. #
|
|
29
|
+
# #
|
|
30
|
+
# SPDX-FileCopyrightText: Copyright 2005-2025 #
|
|
31
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
32
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
33
|
+
# SPDX-License-Identifier: LGPL-3.0-or-later OR MIT #
|
|
34
|
+
# #
|
|
35
|
+
# Contact : info_at_agrum_dot_org #
|
|
36
|
+
# homepage : http://agrum.gitlab.io #
|
|
37
|
+
# gitlab : https://gitlab.com/agrumery/agrum #
|
|
38
|
+
# #
|
|
39
|
+
############################################################################
|
|
40
|
+
|
|
41
|
+
import pyagrum as gum
|
|
42
|
+
from pyagrum.explain._Explanation import Explanation
|
|
43
|
+
|
|
44
|
+
import numpy as np
|
|
45
|
+
|
|
46
|
+
import matplotlib.pyplot as plt
|
|
47
|
+
import matplotlib.cm as cm
|
|
48
|
+
from matplotlib import colors
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def beeswarm(
|
|
52
|
+
explanation: Explanation, y: int = 1, max_display: int = 20, color_bar: bool = True, ax=None, sort: bool = True
|
|
53
|
+
):
|
|
54
|
+
"""
|
|
55
|
+
Plots a beeswarm plot of the Shapley values for a given target class.
|
|
56
|
+
Parameters:
|
|
57
|
+
----------
|
|
58
|
+
explanation : Explanation
|
|
59
|
+
The explanation object containing the SHAP/SHALL values.
|
|
60
|
+
y : int
|
|
61
|
+
If the values type of the explanation is SHALL, then y is ignored.
|
|
62
|
+
Else it is the class for which to plot the SHAP values.
|
|
63
|
+
max_display : int, optional
|
|
64
|
+
The maximum number of features to display in the beeswarm plot (default is 20).
|
|
65
|
+
color_bar : bool, optional
|
|
66
|
+
If True, adds a color bar to the plot (default is True).
|
|
67
|
+
ax : plt.Axes, optional
|
|
68
|
+
The matplotlib Axes object to plot on (default is None, which creates a new figure).
|
|
69
|
+
sort : bool, optional
|
|
70
|
+
If True, sorts the features by their importance before plotting (default is True).
|
|
71
|
+
|
|
72
|
+
Raises:
|
|
73
|
+
------
|
|
74
|
+
TypeError
|
|
75
|
+
If `explanation` is not an Explanation object, if `y` is not an integer or if the explanation is not global (i.e., does not contain lists of contributions for each feature).
|
|
76
|
+
IndexError
|
|
77
|
+
If `y` is out of bounds for the explanation keys.
|
|
78
|
+
"""
|
|
79
|
+
# Check parameters
|
|
80
|
+
if not isinstance(explanation, Explanation):
|
|
81
|
+
raise TypeError("`explanation` must be an Explanation object but got {}".format(type(explanation)))
|
|
82
|
+
|
|
83
|
+
# Determine if The explanation object is a SHALL or SHAP explanation
|
|
84
|
+
if explanation.values_type == "SHAP":
|
|
85
|
+
if not isinstance(y, int):
|
|
86
|
+
raise TypeError("`y` must be an integer but got {}".format(type(y)))
|
|
87
|
+
if y < min(explanation.keys()) or y > max(explanation.keys()):
|
|
88
|
+
raise IndexError(f"Target index y={y} is out of bounds; expected 0 <= y < {max(explanation.keys()) + 1}.")
|
|
89
|
+
contributions = explanation[y]
|
|
90
|
+
importances = explanation.importances[y]
|
|
91
|
+
elif explanation.values_type == "SHALL":
|
|
92
|
+
contributions = explanation
|
|
93
|
+
importances = explanation.importances
|
|
94
|
+
else:
|
|
95
|
+
raise ValueError(f"Wrong values type, expected SHAP/SHALL but got {explanation.values_type}")
|
|
96
|
+
|
|
97
|
+
feature_names = explanation.feature_names
|
|
98
|
+
if not isinstance(list(contributions.values())[0], list):
|
|
99
|
+
raise TypeError("For beeswarm plot, explanation must be global.")
|
|
100
|
+
values = np.array([contributions[k] for k in feature_names]).T
|
|
101
|
+
features = explanation.data
|
|
102
|
+
|
|
103
|
+
# Create the figure and axis if not provided
|
|
104
|
+
if ax == None:
|
|
105
|
+
_, ax = plt.subplots()
|
|
106
|
+
|
|
107
|
+
# Prepare the y-axis positions
|
|
108
|
+
y_positions = np.arange(min(max_display, len(feature_names)), 0, -1)
|
|
109
|
+
|
|
110
|
+
# Plot the beeswarm
|
|
111
|
+
ax.plot([0, 0], [y_positions[-1] - 0.25, y_positions[0] + 0.25], linestyle="--", color="gray")
|
|
112
|
+
color1 = gum.config["notebook", "tensor_color_0"]
|
|
113
|
+
color2 = gum.config["notebook", "tensor_color_1"]
|
|
114
|
+
cmap = colors.LinearSegmentedColormap.from_list("custom_red_green", [color1, color2])
|
|
115
|
+
|
|
116
|
+
if sort:
|
|
117
|
+
indices = [feature_names.index(feat) for feat in sorted(importances, key=importances.get, reverse=True)]
|
|
118
|
+
else:
|
|
119
|
+
indices = np.arange(min(max_display, values.shape[1]))
|
|
120
|
+
|
|
121
|
+
for k, j in enumerate(indices):
|
|
122
|
+
base = y_positions[k]
|
|
123
|
+
sequence = np.arange(values.shape[0])
|
|
124
|
+
np.random.shuffle(sequence)
|
|
125
|
+
|
|
126
|
+
shapes = values[sequence, j]
|
|
127
|
+
rounded_x = np.round(shapes, 2)
|
|
128
|
+
(unique, counts) = np.unique(rounded_x, return_counts=True)
|
|
129
|
+
density_map = dict(zip(unique, counts))
|
|
130
|
+
densities = np.array([density_map[val] for val in rounded_x])
|
|
131
|
+
|
|
132
|
+
sigmas = (densities / np.max(densities)) * 0.1
|
|
133
|
+
ords = np.random.normal(loc=base, scale=sigmas)
|
|
134
|
+
|
|
135
|
+
vals = features[sequence, j]
|
|
136
|
+
|
|
137
|
+
minimum = vals.min()
|
|
138
|
+
maximum = vals.max()
|
|
139
|
+
norm = colors.Normalize(vmin=minimum, vmax=maximum)
|
|
140
|
+
sm = cm.ScalarMappable(cmap=cmap, norm=norm)
|
|
141
|
+
sm.set_array([])
|
|
142
|
+
|
|
143
|
+
ax.scatter(
|
|
144
|
+
shapes,
|
|
145
|
+
ords,
|
|
146
|
+
c=vals,
|
|
147
|
+
cmap=cmap,
|
|
148
|
+
s=7,
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
ax.set_yticks(y_positions)
|
|
152
|
+
ax.set_yticklabels([feature_names[i] for i in indices])
|
|
153
|
+
if color_bar:
|
|
154
|
+
norm = colors.Normalize(vmin=0.0, vmax=1.0)
|
|
155
|
+
sm = cm.ScalarMappable(cmap=cmap, norm=norm)
|
|
156
|
+
sm.set_array([])
|
|
157
|
+
cbar = plt.colorbar(sm, ax=ax)
|
|
158
|
+
cbar.set_label("Feature value")
|
|
159
|
+
cbar.set_ticks([0, 1])
|
|
160
|
+
cbar.set_ticklabels(["Low", "High"])
|
|
161
|
+
|
|
162
|
+
ax.set_ylim(y_positions[-1] - 0.5, y_positions[0] + 0.5)
|
|
163
|
+
ax.set_xlabel("Impact on model Output", fontsize=12)
|
|
164
|
+
ax.set_ylabel("Features", fontsize=12)
|
|
165
|
+
ax.set_title(f"{explanation.values_type} value (Impact on model Output)", fontsize=16)
|
|
166
|
+
|
|
167
|
+
# Setting the style
|
|
168
|
+
ax.grid(axis="x", linestyle=":", alpha=0.5)
|
|
169
|
+
ax.grid(axis="y", linestyle=":", alpha=0.5)
|
|
170
|
+
ax.spines["top"].set_visible(False)
|
|
171
|
+
ax.spines["bottom"].set_visible(False)
|
|
172
|
+
ax.spines["left"].set_visible(False)
|
|
173
|
+
ax.spines["right"].set_visible(False)
|
|
174
|
+
ax.figure.set_facecolor("white")
|
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
# This file is part of the aGrUM/pyAgrum library. #
|
|
3
|
+
# #
|
|
4
|
+
# Copyright (c) 2005-2025 by #
|
|
5
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
6
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
7
|
+
# #
|
|
8
|
+
# The aGrUM/pyAgrum library is free software; you can redistribute it #
|
|
9
|
+
# and/or modify it under the terms of either : #
|
|
10
|
+
# #
|
|
11
|
+
# - the GNU Lesser General Public License as published by #
|
|
12
|
+
# the Free Software Foundation, either version 3 of the License, #
|
|
13
|
+
# or (at your option) any later version, #
|
|
14
|
+
# - the MIT license (MIT), #
|
|
15
|
+
# - or both in dual license, as here. #
|
|
16
|
+
# #
|
|
17
|
+
# (see https://agrum.gitlab.io/articles/dual-licenses-lgplv3mit.html) #
|
|
18
|
+
# #
|
|
19
|
+
# This aGrUM/pyAgrum library is distributed in the hope that it will be #
|
|
20
|
+
# useful, but WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #
|
|
21
|
+
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES MERCHANTABILITY or FITNESS #
|
|
22
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
|
|
23
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
|
|
24
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, #
|
|
25
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR #
|
|
26
|
+
# OTHER DEALINGS IN THE SOFTWARE. #
|
|
27
|
+
# #
|
|
28
|
+
# See LICENCES for more details. #
|
|
29
|
+
# #
|
|
30
|
+
# SPDX-FileCopyrightText: Copyright 2005-2025 #
|
|
31
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
32
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
33
|
+
# SPDX-License-Identifier: LGPL-3.0-or-later OR MIT #
|
|
34
|
+
# #
|
|
35
|
+
# Contact : info_at_agrum_dot_org #
|
|
36
|
+
# homepage : http://agrum.gitlab.io #
|
|
37
|
+
# gitlab : https://gitlab.com/agrumery/agrum #
|
|
38
|
+
# #
|
|
39
|
+
############################################################################
|
|
40
|
+
|
|
41
|
+
import pyagrum as gum
|
|
42
|
+
import pyagrum.lib.notebook as gnb
|
|
43
|
+
from pyagrum.lib.bn2graph import BN2dot
|
|
44
|
+
from pyagrum.explain import Explanation
|
|
45
|
+
|
|
46
|
+
import matplotlib.pyplot as plt
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def showShapValues(bn: gum.BayesNet, expl: Explanation | dict, cmap="plasma", y=1):
|
|
50
|
+
"""
|
|
51
|
+
Show the Shap values in the DAG of the BN
|
|
52
|
+
Parameters
|
|
53
|
+
----------
|
|
54
|
+
bn : pyagrum.BayesNet
|
|
55
|
+
The Bayesian network
|
|
56
|
+
expl: Explanation | dict[str,float]
|
|
57
|
+
The Shap values to each variable
|
|
58
|
+
cmap: str
|
|
59
|
+
Name of the Matplotlib colormap used for coloring the nodes.
|
|
60
|
+
y: int
|
|
61
|
+
The target class for which the Shap values are computed (default is 1).
|
|
62
|
+
y is ignored if `expl` is a dict.
|
|
63
|
+
|
|
64
|
+
Raises
|
|
65
|
+
------
|
|
66
|
+
TypeError
|
|
67
|
+
If bn is not a gum.BayesNet, if expl is neither an Explanation nor a dict, or if expl is an Explanation and y is not an integer.
|
|
68
|
+
IndexError
|
|
69
|
+
If expl is an Explanation and y is outside the valid class range.
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
if not isinstance(bn, gum.BayesNet):
|
|
73
|
+
raise TypeError(f"The parameter bn must be a gum.BayesNet but got {type(bn)}")
|
|
74
|
+
if isinstance(expl, Explanation):
|
|
75
|
+
if isinstance(y, int):
|
|
76
|
+
if y < min(expl.keys()) or y > max(expl.keys()):
|
|
77
|
+
raise IndexError(
|
|
78
|
+
f"Target index y={y} is out of bounds; expected {min(expl.keys())} <= y < {max(expl.keys()) + 1}."
|
|
79
|
+
)
|
|
80
|
+
else:
|
|
81
|
+
raise TypeError("`y`must be an integer but got {}".format(y))
|
|
82
|
+
importances = expl.importances[y]
|
|
83
|
+
|
|
84
|
+
elif isinstance(expl, dict):
|
|
85
|
+
importances = expl
|
|
86
|
+
|
|
87
|
+
else:
|
|
88
|
+
raise TypeError(f"The parameter expl must be either an Explanation object or a dict but got {type(expl)}")
|
|
89
|
+
|
|
90
|
+
norm_color = {}
|
|
91
|
+
raw = list(importances.values())
|
|
92
|
+
norm = [float(i) / sum(raw) for i in raw]
|
|
93
|
+
for i, feat in enumerate(list(importances.keys())):
|
|
94
|
+
norm_color[feat] = norm[i]
|
|
95
|
+
cm = plt.get_cmap(cmap)
|
|
96
|
+
g = BN2dot(bn, nodeColor=norm_color, cmapNode=cm)
|
|
97
|
+
gnb.showGraph(g)
|
|
@@ -0,0 +1,220 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
# This file is part of the aGrUM/pyAgrum library. #
|
|
3
|
+
# #
|
|
4
|
+
# Copyright (c) 2005-2025 by #
|
|
5
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
6
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
7
|
+
# #
|
|
8
|
+
# The aGrUM/pyAgrum library is free software; you can redistribute it #
|
|
9
|
+
# and/or modify it under the terms of either : #
|
|
10
|
+
# #
|
|
11
|
+
# - the GNU Lesser General Public License as published by #
|
|
12
|
+
# the Free Software Foundation, either version 3 of the License, #
|
|
13
|
+
# or (at your option) any later version, #
|
|
14
|
+
# - the MIT license (MIT), #
|
|
15
|
+
# - or both in dual license, as here. #
|
|
16
|
+
# #
|
|
17
|
+
# (see https://agrum.gitlab.io/articles/dual-licenses-lgplv3mit.html) #
|
|
18
|
+
# #
|
|
19
|
+
# This aGrUM/pyAgrum library is distributed in the hope that it will be #
|
|
20
|
+
# useful, but WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #
|
|
21
|
+
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES MERCHANTABILITY or FITNESS #
|
|
22
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
|
|
23
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
|
|
24
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, #
|
|
25
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR #
|
|
26
|
+
# OTHER DEALINGS IN THE SOFTWARE. #
|
|
27
|
+
# #
|
|
28
|
+
# See LICENCES for more details. #
|
|
29
|
+
# #
|
|
30
|
+
# SPDX-FileCopyrightText: Copyright 2005-2025 #
|
|
31
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
32
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
33
|
+
# SPDX-License-Identifier: LGPL-3.0-or-later OR MIT #
|
|
34
|
+
# #
|
|
35
|
+
# Contact : info_at_agrum_dot_org #
|
|
36
|
+
# homepage : http://agrum.gitlab.io #
|
|
37
|
+
# gitlab : https://gitlab.com/agrumery/agrum #
|
|
38
|
+
# #
|
|
39
|
+
############################################################################
|
|
40
|
+
|
|
41
|
+
import pyagrum as gum
|
|
42
|
+
from pyagrum.explain._Explanation import Explanation
|
|
43
|
+
from typing import Callable, Dict
|
|
44
|
+
import numpy as np
|
|
45
|
+
|
|
46
|
+
import matplotlib.pyplot as plt
|
|
47
|
+
from matplotlib.patches import Polygon
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def _POSTERIOR(y: int, func: str) -> str:
|
|
51
|
+
return f"logit($p(y={y} \\mid x)$)" if func == "_logit" else f"$p(y={y} \\mid x)$"
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def _JOIN(func: str) -> str:
|
|
55
|
+
return "log($p(x \\mid \\theta)$)" if func == "_log" else "$p(x \\mid \\theta)$"
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def _FMT(func: str) -> str:
|
|
59
|
+
return ".2e" if func == "_identity" else ".2f"
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def waterfall(explanation: Explanation, y: int = 1, ax=None, real_values: Dict = None):
|
|
63
|
+
"""
|
|
64
|
+
Plots a waterfall chart of the SHAP/SHALL values.
|
|
65
|
+
|
|
66
|
+
Parameters:
|
|
67
|
+
----------
|
|
68
|
+
explanation : Explanation
|
|
69
|
+
The explanation object containing the SHAP/SHALL values.
|
|
70
|
+
y : int, optional
|
|
71
|
+
If the values type of the explanation is SHALL, then y is ignored.
|
|
72
|
+
Else it is the class for which to plot the SHAP values.
|
|
73
|
+
ax : matplotlib.Axes, optional
|
|
74
|
+
The matplotlib Axes object to plot on (default is None, which creates a new figure).
|
|
75
|
+
real_values : Dict, optional
|
|
76
|
+
Dictionary used to display custum values for each feature.
|
|
77
|
+
For example, useful when continuous values have been discretized but you still want to show the original continuous values from the database.
|
|
78
|
+
The keys of the dictionary must match the keys in the Explanation object, and the values are the values you want to display on the plot.
|
|
79
|
+
|
|
80
|
+
Raises :
|
|
81
|
+
------
|
|
82
|
+
TypeError : If `explanation` is not an Explanation object or if `y` is not an integer.
|
|
83
|
+
IndexError : If `y` is an integer but out of bounds for the explanation keys.
|
|
84
|
+
"""
|
|
85
|
+
|
|
86
|
+
if not isinstance(explanation, Explanation):
|
|
87
|
+
raise TypeError("`explanation` must be an Explanation object but got {}".format(type(explanation)))
|
|
88
|
+
if explanation.values_type == "SHAP":
|
|
89
|
+
if isinstance(y, int):
|
|
90
|
+
if y < min(explanation.keys()) or y > max(explanation.keys()):
|
|
91
|
+
raise IndexError(f"Target index y={y} is out of bounds; expected 0 <= y < {max(explanation.keys()) + 1}.")
|
|
92
|
+
else:
|
|
93
|
+
raise TypeError("`y`must be an integer but got {}".format(y))
|
|
94
|
+
values = explanation[y]
|
|
95
|
+
baseline = explanation.baseline[y]
|
|
96
|
+
elif explanation.values_type == "SHALL":
|
|
97
|
+
values = explanation._values
|
|
98
|
+
baseline = explanation.baseline
|
|
99
|
+
else:
|
|
100
|
+
raise ValueError(f"Wrong values type, expected SHAP/SHALL but got {explanation.values_type}")
|
|
101
|
+
|
|
102
|
+
# Computing arrow width
|
|
103
|
+
arrow_width_base = 0.08 * np.max(np.abs(np.array(list(values.values()))))
|
|
104
|
+
|
|
105
|
+
# Tri des SHAP values par importance décroissante
|
|
106
|
+
features = [feature for feature in sorted(values.keys(), key=lambda x: abs(values.get(x)), reverse=True)]
|
|
107
|
+
y_positions = np.arange(len(values) * 0.25, 0, -0.25)
|
|
108
|
+
|
|
109
|
+
# Create the figure and axis if not provided
|
|
110
|
+
if ax == None:
|
|
111
|
+
_, ax = plt.subplots()
|
|
112
|
+
|
|
113
|
+
# Ligne de base :
|
|
114
|
+
ax.plot([baseline, baseline], [y_positions[-1] - 0.25, y_positions[0] + 0.25], linestyle="--", color="gray")
|
|
115
|
+
if explanation.values_type == "SHAP":
|
|
116
|
+
ax.text(
|
|
117
|
+
baseline,
|
|
118
|
+
y_positions[0] + 0.5,
|
|
119
|
+
f"E({_POSTERIOR(y, explanation.func)}) = {baseline:{_FMT(explanation.func)}}",
|
|
120
|
+
ha="center",
|
|
121
|
+
va="bottom",
|
|
122
|
+
color="gray",
|
|
123
|
+
)
|
|
124
|
+
else:
|
|
125
|
+
ax.text(
|
|
126
|
+
baseline,
|
|
127
|
+
y_positions[0] + 0.5,
|
|
128
|
+
f"E({_JOIN(explanation.func)}) = {baseline:{_FMT(explanation.func)}}",
|
|
129
|
+
ha="center",
|
|
130
|
+
va="bottom",
|
|
131
|
+
color="gray",
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
# Lignes de shapes-values
|
|
135
|
+
current_x = min_x = max_x = baseline
|
|
136
|
+
|
|
137
|
+
for i, feature in enumerate(features):
|
|
138
|
+
delta = values[feature]
|
|
139
|
+
x_start = current_x
|
|
140
|
+
x_end = current_x + delta
|
|
141
|
+
z = y_positions[i]
|
|
142
|
+
height = 0.2
|
|
143
|
+
arrow_width = min(0.4 * abs(delta), arrow_width_base)
|
|
144
|
+
facecolor, edgecolor, alpha = (
|
|
145
|
+
(gum.config["notebook", "tensor_color_0"], "#D98383", 1)
|
|
146
|
+
if values[feature] <= 0
|
|
147
|
+
else (gum.config["notebook", "tensor_color_1"], "#82D882", -1)
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
# Dessin du polygon
|
|
151
|
+
polygon = Polygon(
|
|
152
|
+
[
|
|
153
|
+
(x_end + alpha * arrow_width, z - height / 2),
|
|
154
|
+
(x_start, z - height / 2),
|
|
155
|
+
(x_start, z + height / 2),
|
|
156
|
+
(x_end + alpha * arrow_width, z + height / 2),
|
|
157
|
+
(x_end, z), # pointe
|
|
158
|
+
],
|
|
159
|
+
closed=True,
|
|
160
|
+
facecolor=facecolor,
|
|
161
|
+
edgecolor=edgecolor,
|
|
162
|
+
alpha=0.8,
|
|
163
|
+
linewidth=2,
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
ax.add_patch(polygon)
|
|
167
|
+
|
|
168
|
+
current_x = x_end
|
|
169
|
+
min_x = min(min_x, current_x)
|
|
170
|
+
max_x = max(max_x, current_x)
|
|
171
|
+
|
|
172
|
+
# Ligne de sortie du modèle
|
|
173
|
+
ax.plot([current_x, current_x], [y_positions[-1] - 0.25, y_positions[0] + 0.25], linestyle="--", color="Black")
|
|
174
|
+
if explanation.func == "_logit":
|
|
175
|
+
ax.text(
|
|
176
|
+
current_x,
|
|
177
|
+
y_positions[-1] - 0.5,
|
|
178
|
+
f"{_POSTERIOR(y, explanation.func)} = {current_x:{_FMT(explanation.func)}}",
|
|
179
|
+
ha="center",
|
|
180
|
+
va="bottom",
|
|
181
|
+
color="Black",
|
|
182
|
+
)
|
|
183
|
+
else:
|
|
184
|
+
ax.text(
|
|
185
|
+
current_x,
|
|
186
|
+
y_positions[-1] - 0.5,
|
|
187
|
+
f"{_JOIN(explanation.func)} = {current_x:{_FMT(explanation.func)}}",
|
|
188
|
+
ha="center",
|
|
189
|
+
va="bottom",
|
|
190
|
+
color="Black",
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
y_tickslabels = []
|
|
194
|
+
|
|
195
|
+
for feature in features:
|
|
196
|
+
feat_shap_value = values[feature]
|
|
197
|
+
if real_values is not None:
|
|
198
|
+
value = real_values[feature]
|
|
199
|
+
if isinstance(real_values[feature], float):
|
|
200
|
+
value = round(value, 2)
|
|
201
|
+
else:
|
|
202
|
+
value = explanation.data[explanation.feature_names.index(feature)]
|
|
203
|
+
|
|
204
|
+
y_tickslabels.append(f"{feature} = {value} [{feat_shap_value:{_FMT(explanation.func)}}]")
|
|
205
|
+
|
|
206
|
+
ax.set_yticks(y_positions)
|
|
207
|
+
ax.set_yticklabels(y_tickslabels)
|
|
208
|
+
|
|
209
|
+
# Setting the style
|
|
210
|
+
ax.grid(axis="x", linestyle=":", alpha=0.5)
|
|
211
|
+
ax.grid(axis="y", alpha=0.5)
|
|
212
|
+
ax.spines["top"].set_visible(False)
|
|
213
|
+
ax.spines["bottom"].set_visible(False)
|
|
214
|
+
ax.spines["left"].set_visible(False)
|
|
215
|
+
ax.spines["right"].set_visible(False)
|
|
216
|
+
ax.figure.set_facecolor("White")
|
|
217
|
+
|
|
218
|
+
plt.ylim(min(y_positions) - 1, max(y_positions) + 1)
|
|
219
|
+
delta = max_x - min_x
|
|
220
|
+
plt.xlim(min_x - 0.05 * delta, max_x + 0.05 * delta)
|