py4dgeo 0.7.0__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py4dgeo/epoch.py ADDED
@@ -0,0 +1,814 @@
1
+ from py4dgeo.logger import logger_context
2
+ from py4dgeo.registration import Transformation
3
+ from py4dgeo.util import (
4
+ Py4DGeoError,
5
+ append_file_extension,
6
+ as_double_precision,
7
+ find_file,
8
+ make_contiguous,
9
+ is_iterable,
10
+ )
11
+ from numpy.lib.recfunctions import append_fields
12
+
13
+ import dateparser
14
+ import datetime
15
+ import json
16
+ import laspy
17
+ import logging
18
+ import numpy as np
19
+ import os
20
+ import tempfile
21
+ import typing
22
+ import zipfile
23
+
24
+ import _py4dgeo
25
+
26
+ logger = logging.getLogger("py4dgeo")
27
+
28
+ # This integer controls the versioning of the epoch file format. Whenever the
29
+ # format is changed, this version should be increased, so that py4dgeo can warn
30
+ # about incompatibilities of py4dgeo with loaded data. This version is intentionally
31
+ # different from py4dgeo's version, because not all releases of py4dgeo necessarily
32
+ # change the epoch file format and we want to be as compatible as possible.
33
+ PY4DGEO_EPOCH_FILE_FORMAT_VERSION = 4
34
+
35
+
36
+ class NumpyArrayEncoder(json.JSONEncoder):
37
+ def default(self, obj):
38
+ if isinstance(obj, np.ndarray):
39
+ return obj.tolist()
40
+ return json.JSONEncoder.default(self, obj)
41
+
42
+
43
+ class Epoch(_py4dgeo.Epoch):
44
+ def __init__(
45
+ self,
46
+ cloud: np.ndarray,
47
+ normals: np.ndarray = None,
48
+ additional_dimensions: np.ndarray = None,
49
+ timestamp=None,
50
+ scanpos_info: dict = None,
51
+ ):
52
+ """
53
+
54
+ :param cloud:
55
+ The point cloud array of shape (n, 3).
56
+
57
+ :param normals:
58
+ The point cloud normals of shape (n, 3) where n is the
59
+ same as the number of points in the point cloud.
60
+
61
+ :param additional_dimensions:
62
+ A numpy array of additional, per-point data in the point cloud. The
63
+ numpy data type is expected to be a structured dtype, so that the data
64
+ columns are accessible by their name.
65
+
66
+ :param timestamp:
67
+ The point cloud timestamp, default is None.
68
+
69
+ :param scanpos_info:
70
+ The point scan positions information, default is None..
71
+ """
72
+ # Check the given array shapes
73
+ if len(cloud.shape) != 2 or cloud.shape[1] != 3:
74
+ raise Py4DGeoError("Clouds need to be an array of shape nx3")
75
+
76
+ # Make sure that cloud is double precision and contiguous in memory
77
+ cloud = as_double_precision(cloud)
78
+ cloud = make_contiguous(cloud)
79
+
80
+ # Set identity transformation
81
+ self._transformations = []
82
+
83
+ # Make sure that given normals are DP and contiguous as well
84
+ if normals is not None:
85
+ normals = make_contiguous(as_double_precision(normals))
86
+ self._normals = normals
87
+
88
+ # Set metadata properties
89
+ self.timestamp = timestamp
90
+ self.scanpos_info = scanpos_info
91
+
92
+ # Set the additional information (e.g. segment ids, normals, etc)
93
+ self.additional_dimensions = additional_dimensions
94
+
95
+ # Call base class constructor
96
+ super().__init__(cloud)
97
+
98
+ @property
99
+ def cloud(self):
100
+ return self._cloud
101
+
102
+ @cloud.setter
103
+ def cloud(self, cloud):
104
+ raise Py4DGeoError(
105
+ "The Epoch point cloud cannot be changed after initialization. Please construct a new Epoch, e.g. by slicing an existing one."
106
+ )
107
+
108
+ @property
109
+ def kdtree(self):
110
+ return self._kdtree
111
+
112
+ @kdtree.setter
113
+ def kdtree(self, kdtree):
114
+ raise Py4DGeoError(
115
+ "The KDTree of an Epoch cannot be changed after initialization."
116
+ )
117
+
118
+ @property
119
+ def normals(self):
120
+ # Maybe calculate normals
121
+ if self._normals is None:
122
+ raise Py4DGeoError(
123
+ "Normals for this Epoch have not been calculated! Please use Epoch.calculate_normals or load externally calculated normals."
124
+ )
125
+
126
+ return self._normals
127
+
128
+ def calculate_normals(
129
+ self, radius=1.0, orientation_vector: np.ndarray = np.array([0, 0, 1])
130
+ ):
131
+ """Calculate point cloud normals
132
+
133
+ :param radius:
134
+ The radius used to determine the neighborhood of a point.
135
+
136
+ :param orientation_vector:
137
+ A vector to determine orientation of the normals. It should point "up".
138
+ """
139
+
140
+ # Ensure that the KDTree is built
141
+ if self.kdtree.leaf_parameter() == 0:
142
+ self.build_kdtree()
143
+
144
+ # Reuse the multiscale code with a single radius in order to
145
+ # avoid code duplication.
146
+ with logger_context("Calculating point cloud normals:"):
147
+ self._normals, _ = _py4dgeo.compute_multiscale_directions(
148
+ self,
149
+ self.cloud,
150
+ [radius],
151
+ orientation_vector,
152
+ )
153
+
154
+ return self.normals
155
+
156
+ def normals_attachment(self, normals_array):
157
+ """Attach normals to the epoch object
158
+
159
+ :param normals:
160
+ The point cloud normals of shape (n, 3) where n is the
161
+ same as the number of points in the point cloud.
162
+ """
163
+
164
+ if normals_array.shape == self.cloud.shape:
165
+ self._normals = normals_array
166
+ else:
167
+ raise ValueError("Normals cannot be added. Shape does not match.")
168
+
169
+ def copy(self):
170
+ """Copy the epoch object"""
171
+
172
+ new_epoch = Epoch(
173
+ self.cloud.copy(),
174
+ normals=self.normals.copy() if self.normals is not None else None,
175
+ additional_dimensions=(
176
+ self.additional_dimensions.copy()
177
+ if self.additional_dimensions is not None
178
+ else None
179
+ ),
180
+ timestamp=self.timestamp,
181
+ scanpos_info=(
182
+ self.scanpos_info.copy() if self.scanpos_info is not None else None
183
+ ),
184
+ )
185
+
186
+ return new_epoch
187
+
188
+ def __getitem__(self, ind):
189
+ """Slice the epoch in order to e.g. downsample it.
190
+
191
+ Creates a copy of the epoch.
192
+ """
193
+
194
+ return Epoch(
195
+ self.cloud[ind],
196
+ normals=self.normals[ind] if self.normals is not None else None,
197
+ additional_dimensions=(
198
+ self.additional_dimensions[ind]
199
+ if self.additional_dimensions is not None
200
+ else None
201
+ ),
202
+ **self.metadata,
203
+ )
204
+
205
+ @property
206
+ def timestamp(self):
207
+ return self._timestamp
208
+
209
+ @timestamp.setter
210
+ def timestamp(self, timestamp):
211
+ self._timestamp = normalize_timestamp(timestamp)
212
+
213
+ @property
214
+ def scanpos_info(self):
215
+ return self._scanpos_info
216
+
217
+ @scanpos_info.setter
218
+ def scanpos_info(self, scanpos_info):
219
+ if isinstance(scanpos_info, list):
220
+ self._scanpos_info = scanpos_info
221
+ elif isinstance(scanpos_info, dict):
222
+ self._scanpos_info = scan_positions_info_from_dict(scanpos_info)
223
+ else:
224
+ self._scanpos_info = None
225
+
226
+ @property
227
+ def scanpos_id(self):
228
+ return (
229
+ self.additional_dimensions["scanpos_id"]
230
+ .reshape(self.cloud.shape[0])
231
+ .astype(np.int32)
232
+ )
233
+
234
+ @scanpos_id.setter
235
+ def scanpos_id(self, scanpos_id):
236
+ if self.additional_dimensions is None:
237
+ additional_columns = np.empty(
238
+ shape=(self.cloud.shape[0], 1),
239
+ dtype=np.dtype([("scanpos_id", "<i4")]),
240
+ )
241
+ additional_columns["scanpos_id"] = np.array(
242
+ scanpos_id, dtype=np.int32
243
+ ).reshape(-1, 1)
244
+ self.additional_dimensions = additional_columns
245
+ else:
246
+ scanpos_id = np.array(scanpos_id, dtype=np.int32)
247
+ new_additional_dimensions = append_fields(
248
+ self.additional_dimensions, "scanpos_id", scanpos_id, usemask=False
249
+ )
250
+
251
+ self.additional_dimensions = new_additional_dimensions
252
+
253
+ @property
254
+ def metadata(self):
255
+ """Provide the metadata of this epoch as a Python dictionary
256
+
257
+ The return value of this property only makes use of Python built-in
258
+ data structures such that it can e.g. be serialized using the JSON
259
+ module. Also, the returned values are understood by :ref:`Epoch.__init__`
260
+ such that you can do :code:`Epoch(cloud, **other.metadata)`.
261
+ """
262
+
263
+ return {
264
+ "timestamp": None if self.timestamp is None else str(self.timestamp),
265
+ "scanpos_info": None if self.scanpos_info is None else self.scanpos_info,
266
+ }
267
+
268
+ def build_kdtree(self, leaf_size=10, force_rebuild=False):
269
+ """Build the search tree index
270
+
271
+ :param leaf_size:
272
+ An internal optimization parameter of the search tree data structure.
273
+ The algorithm uses a bruteforce search on subtrees of size below the
274
+ given threshold. Increasing this value speeds up search tree build time,
275
+ but slows down query times.
276
+ :type leaf_size: int
277
+ :param force_rebuild:
278
+ Rebuild the search tree even if it was already built before.
279
+ :type force_rebuild: bool
280
+ """
281
+ if self.kdtree.leaf_parameter() == 0 or force_rebuild:
282
+ logger.info(f"Building KDTree structure with leaf parameter {leaf_size}")
283
+ self.kdtree.build_tree(leaf_size)
284
+
285
+ def transform(
286
+ self,
287
+ transformation: typing.Optional[Transformation] = None,
288
+ affine_transformation: typing.Optional[np.ndarray] = None,
289
+ rotation: typing.Optional[np.ndarray] = None,
290
+ translation: typing.Optional[np.ndarray] = None,
291
+ reduction_point: typing.Optional[np.ndarray] = None,
292
+ ):
293
+ """Transform the epoch with an affine transformation
294
+
295
+ :param transformation:
296
+ A Transformation object that describes the transformation to apply.
297
+ If this argument is given, the other arguments are ignored.
298
+ This parameter is typically used if the transformation was calculated
299
+ by py4dgeo itself.
300
+ :type transformation: Transformation
301
+ :param affine_transformation:
302
+ A 4x4 or 3x4 matrix representing the affine transformation. Given
303
+ as a numpy array. If this argument is given, the rotation and
304
+ translation arguments are ignored.
305
+ :type transformation: np.ndarray
306
+ :param rotation:
307
+ A 3x3 matrix specifying the rotation to apply
308
+ :type rotation: np.ndarray
309
+ :param translation:
310
+ A vector specifying the translation to apply
311
+ :type translation: np.ndarray
312
+ :param reduction_point:
313
+ A translation vector to apply before applying rotation and scaling.
314
+ This is used to increase the numerical accuracy of transformation.
315
+ If a transformation is given, this argument is ignored.
316
+ :type reduction_point: np.ndarray
317
+ """
318
+
319
+ # Extract the affine transformation and reduction point from the given transformation
320
+ if transformation is not None:
321
+ assert isinstance(transformation, Transformation)
322
+ affine_transformation = transformation.affine_transformation
323
+ reduction_point = transformation.reduction_point
324
+
325
+ # Build the transformation if it is not explicitly given
326
+ if affine_transformation is None:
327
+ trafo = np.identity(4, dtype=np.float64)
328
+ trafo[:3, :3] = rotation
329
+ trafo[:3, 3] = translation
330
+ else:
331
+ # If it was given, make a copy and potentially resize it
332
+ trafo = affine_transformation.copy()
333
+ if trafo.shape[0] == 3:
334
+ trafo.resize((4, 4), refcheck=False)
335
+ trafo[3, 3] = 1
336
+
337
+ if reduction_point is None:
338
+ reduction_point = np.array([0, 0, 0], dtype=np.float64)
339
+
340
+ # Ensure contiguous DP memory
341
+ trafo = as_double_precision(make_contiguous(trafo))
342
+
343
+ # Invalidate the KDTree
344
+ self.kdtree.invalidate()
345
+
346
+ if self._normals is None:
347
+ self._normals = np.empty((1, 3)) # dummy array to avoid error in C++ code
348
+ # Apply the actual transformation as efficient C++
349
+ _py4dgeo.transform_pointcloud_inplace(
350
+ self.cloud, trafo, reduction_point, self._normals
351
+ )
352
+
353
+ # Store the transformation
354
+ self._transformations.append(
355
+ Transformation(affine_transformation=trafo, reduction_point=reduction_point)
356
+ )
357
+
358
+ @property
359
+ def transformation(self):
360
+ """Access the affine transformations that were applied to this epoch
361
+
362
+ In order to set this property please use the transform method instead,
363
+ which will make sure to also apply the transformation.
364
+
365
+ :returns:
366
+ Returns a list of applied transformations. These are given
367
+ as a tuple of a 4x4 matrix defining the affine transformation
368
+ and the reduction point used when applying it.
369
+ """
370
+ return self._transformations
371
+
372
+ def save(self, filename):
373
+ """Save this epoch to a file
374
+
375
+ :param filename:
376
+ The filename to save the epoch in.
377
+ :type filename: str
378
+ """
379
+
380
+ # Ensure that we have a file extension
381
+ filename = append_file_extension(filename, "zip")
382
+ logger.info(f"Saving epoch to file '{filename}'")
383
+
384
+ # Use a temporary directory when creating files
385
+ with tempfile.TemporaryDirectory() as tmp_dir:
386
+ # Create the final archive
387
+ with zipfile.ZipFile(
388
+ filename, mode="w", compression=zipfile.ZIP_BZIP2
389
+ ) as zf:
390
+ # Write the epoch file format version number
391
+ zf.writestr("EPOCH_FILE_FORMAT", str(PY4DGEO_EPOCH_FILE_FORMAT_VERSION))
392
+
393
+ # Write the metadata dictionary into a json file
394
+ metadatafile = os.path.join(tmp_dir, "metadata.json")
395
+ with open(metadatafile, "w") as f:
396
+ json.dump(self.metadata, f)
397
+ zf.write(metadatafile, arcname="metadata.json")
398
+
399
+ # Write the transformation into a file
400
+ trafofile = os.path.join(tmp_dir, "trafo.json")
401
+ with open(trafofile, "w") as f:
402
+ json.dump(
403
+ [t.__dict__ for t in self._transformations],
404
+ f,
405
+ cls=NumpyArrayEncoder,
406
+ )
407
+ zf.write(trafofile, arcname="trafo.json")
408
+
409
+ # Write the actual point cloud array using laspy - LAZ compression
410
+ # is far better than any compression numpy + zipfile can do.
411
+ cloudfile = os.path.join(tmp_dir, "cloud.laz")
412
+ hdr = laspy.LasHeader(version="1.4", point_format=6)
413
+ hdr.x_scale = 0.00025
414
+ hdr.y_scale = 0.00025
415
+ hdr.z_scale = 0.00025
416
+ mean_extent = np.mean(self.cloud, axis=0)
417
+ hdr.x_offset = int(mean_extent[0])
418
+ hdr.y_offset = int(mean_extent[1])
419
+ hdr.z_offset = int(mean_extent[2])
420
+ lasfile = laspy.LasData(hdr)
421
+ lasfile.x = self.cloud[:, 0]
422
+ lasfile.y = self.cloud[:, 1]
423
+ lasfile.z = self.cloud[:, 2]
424
+
425
+ # define dimensions for normals below:
426
+ if self._normals is not None:
427
+ lasfile.add_extra_dim(
428
+ laspy.ExtraBytesParams(
429
+ name="NormalX", type="f8", description="X axis of normals"
430
+ )
431
+ )
432
+ lasfile.add_extra_dim(
433
+ laspy.ExtraBytesParams(
434
+ name="NormalY", type="f8", description="Y axis of normals"
435
+ )
436
+ )
437
+ lasfile.add_extra_dim(
438
+ laspy.ExtraBytesParams(
439
+ name="NormalZ", type="f8", description="Z axis of normals"
440
+ )
441
+ )
442
+ lasfile.NormalX = self.normals[:, 0]
443
+ lasfile.NormalY = self.normals[:, 1]
444
+ lasfile.NormalZ = self.normals[:, 2]
445
+ else:
446
+ logger.info("Saving a file without normals.")
447
+
448
+ lasfile.write(cloudfile)
449
+ zf.write(cloudfile, arcname="cloud.laz")
450
+
451
+ kdtreefile = os.path.join(tmp_dir, "kdtree")
452
+ with open(kdtreefile, "w") as f:
453
+ self.kdtree.save_index(kdtreefile)
454
+ zf.write(kdtreefile, arcname="kdtree")
455
+
456
+ @staticmethod
457
+ def load(filename):
458
+ """Construct an Epoch instance by loading it from a file
459
+
460
+ :param filename:
461
+ The filename to load the epoch from.
462
+ :type filename: str
463
+ """
464
+
465
+ # Ensure that we have a file extension
466
+ filename = append_file_extension(filename, "zip")
467
+ logger.info(f"Restoring epoch from file '{filename}'")
468
+
469
+ # Use temporary directory for extraction of files
470
+ with tempfile.TemporaryDirectory() as tmp_dir:
471
+ # Open the ZIP archive
472
+ with zipfile.ZipFile(filename, mode="r") as zf:
473
+ # Read the epoch file version number and compare to current
474
+ version = int(zf.read("EPOCH_FILE_FORMAT").decode())
475
+ if version > PY4DGEO_EPOCH_FILE_FORMAT_VERSION:
476
+ raise Py4DGeoError(
477
+ "Epoch file format not known - please update py4dgeo!"
478
+ )
479
+
480
+ # Read the metadata JSON file
481
+ metadatafile = zf.extract("metadata.json", path=tmp_dir)
482
+ with open(metadatafile, "r") as f:
483
+ metadata = json.load(f)
484
+
485
+ # Restore the point cloud itself
486
+ cloudfile = zf.extract("cloud.laz", path=tmp_dir)
487
+ lasfile = laspy.read(cloudfile)
488
+ cloud = np.vstack((lasfile.x, lasfile.y, lasfile.z)).transpose()
489
+ try:
490
+ normals = np.vstack(
491
+ (lasfile.NormalX, lasfile.NormalY, lasfile.NormalZ)
492
+ ).transpose()
493
+ except AttributeError:
494
+ normals = None
495
+ # Construct the epoch object
496
+ epoch = Epoch(cloud, normals=normals, **metadata)
497
+
498
+ # Restore the KDTree object
499
+ kdtreefile = zf.extract("kdtree", path=tmp_dir)
500
+ epoch.kdtree.load_index(kdtreefile)
501
+
502
+ # Read the transformation if it exists
503
+ if version >= 3:
504
+ trafofile = zf.extract("trafo.json", path=tmp_dir)
505
+ with open(trafofile, "r") as f:
506
+ trafo = json.load(f)
507
+ epoch._transformations = [Transformation(**t) for t in trafo]
508
+
509
+ return epoch
510
+
511
+ def __getstate__(self):
512
+ return (
513
+ PY4DGEO_EPOCH_FILE_FORMAT_VERSION,
514
+ self.metadata,
515
+ _py4dgeo.Epoch.__getstate__(self),
516
+ )
517
+
518
+ def __setstate__(self, state):
519
+ v, metadata, base = state
520
+
521
+ if v != PY4DGEO_EPOCH_FILE_FORMAT_VERSION:
522
+ raise Py4DGeoError("Epoch file format is out of date!")
523
+
524
+ # Restore metadata
525
+ for k, v in metadata.items():
526
+ setattr(self, k, v)
527
+
528
+ # Set the base class object
529
+ _py4dgeo.Epoch.__setstate__(self, base)
530
+
531
+
532
+ def save_epoch(epoch, filename):
533
+ """Save an epoch to a given filename
534
+
535
+ :param epoch:
536
+ The epoch that should be saved.
537
+ :type epoch: Epoch
538
+ :param filename:
539
+ The filename where to save the epoch
540
+ :type filename: str
541
+ """
542
+ return epoch.save(filename)
543
+
544
+
545
+ def load_epoch(filename):
546
+ """Load an epoch from a given filename
547
+
548
+ :param filename:
549
+ The filename to load the epoch from.
550
+ :type filename: str
551
+ """
552
+ return Epoch.load(filename)
553
+
554
+
555
+ def as_epoch(cloud):
556
+ """Create an epoch from a cloud
557
+
558
+ Idempotent operation to create an epoch from a cloud.
559
+ """
560
+
561
+ # If this is already an epoch, this is a no-op
562
+ if isinstance(cloud, Epoch):
563
+ return cloud
564
+
565
+ # Initialize an epoch from the given cloud
566
+ logger.info("Initializing Epoch object from given point cloud")
567
+ return Epoch(cloud)
568
+
569
+
570
+ def _as_tuple(x):
571
+ if isinstance(x, tuple):
572
+ return x
573
+ return (x,)
574
+
575
+
576
+ def read_from_xyz(
577
+ *filenames,
578
+ xyz_columns=[0, 1, 2],
579
+ normal_columns=[],
580
+ additional_dimensions={},
581
+ **parse_opts,
582
+ ):
583
+ """Create an epoch from an xyz file
584
+
585
+ :param filename:
586
+ The filename to read from. Each line in the input file is expected
587
+ to contain three space separated numbers.
588
+ :type filename: str
589
+ :param xyz_columns:
590
+ The column indices of X, Y and Z coordinates. Defaults to [0, 1, 2].
591
+ :type xyz_columns: list
592
+ :param normal_columns:
593
+ The column indices of the normal vector components. Leave empty, if
594
+ your data file does not contain normals, otherwise exactly three indices
595
+ for the x, y and z components need to be given.
596
+ :type normal_columns: list
597
+ :param parse_opts:
598
+ Additional options forwarded to numpy.genfromtxt. This can be used
599
+ to e.g. change the delimiter character, remove header_lines or manually
600
+ specify which columns of the input contain the XYZ coordinates.
601
+ :param additional_dimensions:
602
+ A dictionary, mapping column indices to names of additional data dimensions.
603
+ They will be read from the file and are accessible under their names from the
604
+ created Epoch objects.
605
+ Additional column indexes start with 3.
606
+ :type parse_opts: dict
607
+ """
608
+
609
+ # Resolve the given path
610
+ filename = find_file(filenames[0])
611
+
612
+ # Ensure that usecols is not passed by the user, we need to use this
613
+ if "usecols" in parse_opts:
614
+ raise Py4DGeoError(
615
+ "read_from_xyz cannot be customized by using usecols, please use xyz_columns, normal_columns or additional_dimensions instead!"
616
+ )
617
+
618
+ # Read the point cloud
619
+ logger.info(f"Reading point cloud from file '{filename}'")
620
+
621
+ try:
622
+ cloud = np.genfromtxt(
623
+ filename, dtype=np.float64, usecols=xyz_columns, **parse_opts
624
+ )
625
+ except ValueError:
626
+ raise Py4DGeoError("Malformed XYZ file")
627
+
628
+ # Potentially read normals
629
+ normals = None
630
+ if normal_columns:
631
+ if len(normal_columns) != 3:
632
+ raise Py4DGeoError("normal_columns need to be a list of three integers!")
633
+
634
+ try:
635
+ normals = np.genfromtxt(
636
+ filename, dtype=np.float64, usecols=normal_columns, **parse_opts
637
+ )
638
+ except ValueError:
639
+ raise Py4DGeoError("Malformed XYZ file")
640
+
641
+ # Potentially read additional_dimensions passed by the user
642
+ additional_columns = np.empty(
643
+ shape=(cloud.shape[0], 1),
644
+ dtype=np.dtype([(name, "<f8") for name in additional_dimensions.values()]),
645
+ )
646
+
647
+ add_cols = list(sorted(additional_dimensions.keys()))
648
+ try:
649
+ parsed_additionals = np.genfromtxt(
650
+ filename, dtype=np.float64, usecols=add_cols, **parse_opts
651
+ )
652
+ # Ensure that the parsed array is two-dimensional, even if only
653
+ # one additional dimension was given (avoids an edge case)
654
+ parsed_additionals = parsed_additionals.reshape(-1, 1)
655
+ except ValueError:
656
+ raise Py4DGeoError("Malformed XYZ file")
657
+
658
+ for i, col in enumerate(add_cols):
659
+ additional_columns[additional_dimensions[col]] = parsed_additionals[
660
+ :, i
661
+ ].reshape(-1, 1)
662
+
663
+ # Finalize the construction of the new epoch
664
+ new_epoch = Epoch(cloud, normals=normals, additional_dimensions=additional_columns)
665
+
666
+ if len(filenames) == 1:
667
+ # End recursion and return non-tuple to make the case that the user
668
+ # called this with only one filename more intuitive
669
+ return new_epoch
670
+ else:
671
+ # Go into recursion
672
+ return (new_epoch,) + _as_tuple(
673
+ read_from_xyz(
674
+ *filenames[1:],
675
+ xyz_columns=xyz_columns,
676
+ normal_columns=normal_columns,
677
+ additional_dimensions=additional_dimensions,
678
+ **parse_opts,
679
+ )
680
+ )
681
+
682
+
683
+ def read_from_las(*filenames, normal_columns=[], additional_dimensions={}):
684
+ """Create an epoch from a LAS/LAZ file
685
+
686
+ :param filename:
687
+ The filename to read from. It is expected to be in LAS/LAZ format
688
+ and will be processed using laspy.
689
+ :type filename: str
690
+ :param normal_columns:
691
+ The column names of the normal vector components, e.g. "NormalX", "nx", "normal_x" etc., keep in mind that there
692
+ must be exactly 3 columns. Leave empty, if your data file does not contain normals.
693
+ :type normal_columns: list
694
+ :param additional_dimensions:
695
+ A dictionary, mapping names of additional data dimensions in the input
696
+ dataset to additional data dimensions in our epoch data structure.
697
+ :type additional_dimensions: dict
698
+ """
699
+
700
+ # Resolve the given path
701
+ filename = find_file(filenames[0])
702
+
703
+ # Read the lasfile using laspy
704
+ logger.info(f"Reading point cloud from file '{filename}'")
705
+ lasfile = laspy.read(filename)
706
+
707
+ cloud = np.vstack(
708
+ (
709
+ lasfile.x,
710
+ lasfile.y,
711
+ lasfile.z,
712
+ )
713
+ ).transpose()
714
+
715
+ normals = None
716
+ if normal_columns:
717
+ if len(normal_columns) != 3:
718
+ raise Py4DGeoError("normal_columns need to be a list of three strings!")
719
+
720
+ normals = np.vstack(
721
+ [
722
+ lasfile.points[normal_columns[0]],
723
+ lasfile.points[normal_columns[1]],
724
+ lasfile.points[normal_columns[2]],
725
+ ]
726
+ ).transpose()
727
+
728
+ # set scan positions
729
+ # build additional_dimensions dtype structure
730
+ additional_columns = np.empty(
731
+ shape=(cloud.shape[0], 1),
732
+ dtype=np.dtype([(name, "<f8") for name in additional_dimensions.values()]),
733
+ )
734
+ for column_id, column_name in additional_dimensions.items():
735
+ additional_columns[column_name] = np.array(
736
+ lasfile.points[column_id], dtype=np.int32
737
+ ).reshape(-1, 1)
738
+
739
+ # Construct Epoch and go into recursion
740
+ new_epoch = Epoch(
741
+ cloud,
742
+ normals=normals,
743
+ timestamp=lasfile.header.creation_date,
744
+ additional_dimensions=additional_columns,
745
+ )
746
+
747
+ if len(filenames) == 1:
748
+ # End recursion and return non-tuple to make the case that the user
749
+ # called this with only one filename more intuitive
750
+ return new_epoch
751
+ else:
752
+ # Go into recursion
753
+ return (new_epoch,) + _as_tuple(
754
+ read_from_las(
755
+ *filenames[1:],
756
+ normal_columns=normal_columns,
757
+ additional_dimensions=additional_dimensions,
758
+ )
759
+ )
760
+
761
+
762
+ def normalize_timestamp(timestamp):
763
+ """Bring a given timestamp into a standardized Python format"""
764
+
765
+ # This might be normalized already or non-existing
766
+ if isinstance(timestamp, datetime.datetime) or timestamp is None:
767
+ return timestamp
768
+
769
+ # This might be a date without time information e.g. from laspy
770
+ if isinstance(timestamp, datetime.date):
771
+ return datetime.datetime(timestamp.year, timestamp.month, timestamp.day)
772
+
773
+ # If this is a tuple of (year, day of year) as used in the LAS
774
+ # file header, we convert it.
775
+ if is_iterable(timestamp):
776
+ if len(timestamp) == 2:
777
+ return datetime.datetime(timestamp[0], 1, 1) + datetime.timedelta(
778
+ timestamp[1] - 1
779
+ )
780
+
781
+ # If this is a string we use the dateparser library that understands
782
+ # all sorts of human-readable timestamps
783
+ if isinstance(timestamp, str):
784
+ parsed = dateparser.parse(timestamp)
785
+
786
+ # dateparser returns None for anything it does not understand
787
+ if parsed is not None:
788
+ return parsed
789
+
790
+ raise Py4DGeoError(f"The timestamp '{timestamp}' was not understood by py4dgeo.")
791
+
792
+
793
+ def scan_positions_info_from_dict(info_dict: dict):
794
+ if info_dict is None:
795
+ return None
796
+ if not isinstance(info_dict, dict):
797
+ raise Py4DGeoError(f"The input scan position information should be dictionary.")
798
+ return None
799
+ # Compatible with both integer key and string key as index of the scan positions in json file
800
+ # load scan positions from dictionary, standardize loading via json format dumps to string key
801
+ scanpos_dict_load = json.loads(json.dumps(info_dict))
802
+ sps_list = []
803
+ for i in range(1, 1 + len(scanpos_dict_load)):
804
+ sps_list.append(scanpos_dict_load[str(i)])
805
+
806
+ for sp in sps_list:
807
+ sp_check = True
808
+ sp_check = False if len(sp["origin"]) != 3 else sp_check
809
+ sp_check = False if not isinstance(sp["sigma_range"], float) else sp_check
810
+ sp_check = False if not isinstance(sp["sigma_scan"], float) else sp_check
811
+ sp_check = False if not isinstance(sp["sigma_yaw"], float) else sp_check
812
+ if not sp_check:
813
+ raise Py4DGeoError("Scan positions load failed, please check format. ")
814
+ return sps_list