py2ls 0.2.4.33__py3-none-any.whl → 0.2.4.35__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- py2ls/data/RealESRGAN_x4plus.pth +0 -0
- py2ls/ips.py +391 -61
- py2ls/netfinder.py +30 -40
- py2ls/ocr.py +4 -5
- {py2ls-0.2.4.33.dist-info → py2ls-0.2.4.35.dist-info}/METADATA +7 -3
- {py2ls-0.2.4.33.dist-info → py2ls-0.2.4.35.dist-info}/RECORD +7 -6
- {py2ls-0.2.4.33.dist-info → py2ls-0.2.4.35.dist-info}/WHEEL +0 -0
Binary file
|
py2ls/ips.py
CHANGED
@@ -26,6 +26,22 @@ import re
|
|
26
26
|
import stat
|
27
27
|
import platform
|
28
28
|
|
29
|
+
# only for backup these scripts
|
30
|
+
def backup(
|
31
|
+
src="/Users/macjianfeng/Dropbox/github/python/py2ls/.venv/lib/python3.12/site-packages/py2ls/",
|
32
|
+
tar="/Users/macjianfeng/Dropbox/github/python/py2ls/py2ls/",
|
33
|
+
kind="py",
|
34
|
+
overwrite=True,
|
35
|
+
reverse=False,
|
36
|
+
verbose=False
|
37
|
+
):
|
38
|
+
if reverse:
|
39
|
+
src, tar = tar,src
|
40
|
+
print(f"reversed")
|
41
|
+
f = listdir(src, kind, verbose=verbose)
|
42
|
+
[copy(i, tar, overwrite=overwrite, verbose=verbose) for i in f.path]
|
43
|
+
print(f"all files are copied from {os.path.basename(src)} to {tar}") if verbose else None
|
44
|
+
|
29
45
|
def run_once_within(duration=60, reverse=False): # default 60s
|
30
46
|
import time
|
31
47
|
|
@@ -2683,13 +2699,41 @@ def fload(fpath, kind=None, **kwargs):
|
|
2683
2699
|
def load_excel(fpath, **kwargs):
|
2684
2700
|
engine = kwargs.get("engine", "openpyxl")
|
2685
2701
|
verbose = kwargs.pop("verbose", False)
|
2686
|
-
|
2687
|
-
|
2688
|
-
|
2702
|
+
password=kwargs.pop("password",None)
|
2703
|
+
|
2704
|
+
if not password:
|
2705
|
+
if run_once_within(reverse=True):
|
2706
|
+
use_pd("read_excel", verbose=verbose)
|
2707
|
+
df = pd.read_excel(fpath, engine=engine, **kwargs)
|
2708
|
+
try:
|
2709
|
+
meta = pd.ExcelFile(fpath)
|
2710
|
+
print(f"n_sheet={len(meta.sheet_names)},\t'sheetname = 0 (default)':")
|
2711
|
+
[print(f"{i}:\t{i_}") for i, i_ in enumerate(meta.sheet_names)]
|
2712
|
+
except:
|
2713
|
+
pass
|
2714
|
+
return df
|
2715
|
+
#* needs a password?
|
2716
|
+
import msoffcrypto # pip install msoffcrypto-tool
|
2717
|
+
from io import BytesIO
|
2718
|
+
|
2719
|
+
# Open the encrypted Excel file
|
2720
|
+
with open(fpath, 'rb') as f:
|
2721
|
+
try:
|
2722
|
+
office_file = msoffcrypto.OfficeFile(f)
|
2723
|
+
office_file.load_key(password=password) # Provide the password
|
2724
|
+
decrypted = BytesIO()
|
2725
|
+
office_file.decrypt(decrypted)
|
2726
|
+
except:
|
2727
|
+
office_file = msoffcrypto.OfficeFile(f)
|
2728
|
+
office_file.load_key(password=depass(password)) # Provide the password
|
2729
|
+
decrypted = BytesIO()
|
2730
|
+
office_file.decrypt(decrypted)
|
2731
|
+
decrypted.seek(0)
|
2732
|
+
df = pd.read_excel(decrypted, engine=engine, **kwargs)
|
2689
2733
|
try:
|
2690
|
-
|
2691
|
-
print(f"n_sheet={len(
|
2692
|
-
[print(f"{i}:\t{i_}") for i, i_ in enumerate(
|
2734
|
+
meta = pd.ExcelFile(fpath)
|
2735
|
+
print(f"n_sheet={len(meta.sheet_names)},\t'sheetname = 0 (default)':")
|
2736
|
+
[print(f"{i}:\t{i_}") for i, i_ in enumerate(meta.sheet_names)]
|
2693
2737
|
except:
|
2694
2738
|
pass
|
2695
2739
|
return df
|
@@ -3273,11 +3317,16 @@ def fsave(
|
|
3273
3317
|
df = pd.DataFrame(data)
|
3274
3318
|
df.to_csv(fpath, **kwargs_valid)
|
3275
3319
|
|
3276
|
-
|
3320
|
+
|
3321
|
+
def save_xlsx(fpath, data, password=None, **kwargs):
|
3322
|
+
import msoffcrypto
|
3323
|
+
from io import BytesIO
|
3277
3324
|
verbose = kwargs.pop("verbose", False)
|
3278
3325
|
sheet_name = kwargs.pop("sheet_name", "Sheet1")
|
3326
|
+
|
3279
3327
|
if run_once_within(reverse=True):
|
3280
3328
|
use_pd("to_excel", verbose=verbose)
|
3329
|
+
|
3281
3330
|
if any(kwargs):
|
3282
3331
|
format_excel(df=data, filename=fpath, **kwargs)
|
3283
3332
|
else:
|
@@ -3302,16 +3351,30 @@ def fsave(
|
|
3302
3351
|
kwargs.pop(key, None)
|
3303
3352
|
|
3304
3353
|
df = pd.DataFrame(data)
|
3305
|
-
|
3306
|
-
|
3307
|
-
|
3308
|
-
|
3309
|
-
|
3310
|
-
|
3311
|
-
|
3312
|
-
|
3313
|
-
|
3314
|
-
|
3354
|
+
|
3355
|
+
# Write to Excel without password first
|
3356
|
+
temp_file = BytesIO()
|
3357
|
+
df.to_excel(temp_file, sheet_name=sheet_name, index=False, engine="xlsxwriter", **kwargs)
|
3358
|
+
|
3359
|
+
# If a password is provided, encrypt the file
|
3360
|
+
if password:
|
3361
|
+
temp_file.seek(0)
|
3362
|
+
office_file = msoffcrypto.OfficeFile(temp_file)
|
3363
|
+
office_file.load_key(password=password) # Provide the password
|
3364
|
+
|
3365
|
+
# Encrypt and save the file
|
3366
|
+
with open(fpath, 'wb') as encrypted_file:
|
3367
|
+
office_file.encrypt(encrypted_file)
|
3368
|
+
else:
|
3369
|
+
# Save the file without encryption if no password is provided
|
3370
|
+
try:
|
3371
|
+
# Use ExcelWriter with append mode if the file exists
|
3372
|
+
with pd.ExcelWriter(fpath, engine="openpyxl", mode="a", if_sheet_exists="new") as writer:
|
3373
|
+
df.to_excel(writer, sheet_name=sheet_name, index=False, **kwargs)
|
3374
|
+
except FileNotFoundError:
|
3375
|
+
# If file doesn't exist, create a new one
|
3376
|
+
df.to_excel(fpath, sheet_name=sheet_name, index=False, **kwargs)
|
3377
|
+
|
3315
3378
|
|
3316
3379
|
def save_ipynb(fpath, data, **kwargs):
|
3317
3380
|
# Split the content by code fences to distinguish between code and markdown
|
@@ -4400,13 +4463,13 @@ def func_list(lib_name, opt="call"):
|
|
4400
4463
|
return list_func(lib_name, opt=opt)
|
4401
4464
|
|
4402
4465
|
|
4403
|
-
def copy(src, dst, overwrite=False):
|
4466
|
+
def copy(src, dst, overwrite=False, verbose=True):
|
4404
4467
|
"""Copy a file from src to dst."""
|
4405
4468
|
try:
|
4406
4469
|
dir_par_dst = os.path.dirname(dst)
|
4407
4470
|
if not os.path.isdir(dir_par_dst):
|
4408
4471
|
mkdir(dir_par_dst)
|
4409
|
-
print(dir_par_dst)
|
4472
|
+
print(dir_par_dst) if verbose else None
|
4410
4473
|
src = Path(src)
|
4411
4474
|
dst = Path(dst)
|
4412
4475
|
if not src.is_dir():
|
@@ -4421,7 +4484,7 @@ def copy(src, dst, overwrite=False):
|
|
4421
4484
|
f"{dst.stem}_{datetime.now().strftime('_%H%M%S')}{dst.suffix}"
|
4422
4485
|
)
|
4423
4486
|
shutil.copy(src, dst)
|
4424
|
-
print(f"\n Done! copy to {dst}\n")
|
4487
|
+
print(f"\n Done! copy to {dst}\n") if verbose else None
|
4425
4488
|
else:
|
4426
4489
|
dst = dst / src.name
|
4427
4490
|
if dst.exists():
|
@@ -4432,7 +4495,7 @@ def copy(src, dst, overwrite=False):
|
|
4432
4495
|
f"{dst.stem}_{datetime.now().strftime('%H%M%S')}"
|
4433
4496
|
)
|
4434
4497
|
shutil.copytree(src, dst)
|
4435
|
-
print(f"\n Done! copy to {dst}\n")
|
4498
|
+
print(f"\n Done! copy to {dst}\n") if verbose else None
|
4436
4499
|
|
4437
4500
|
except Exception as e:
|
4438
4501
|
logging.error(f"Failed {e}")
|
@@ -4442,7 +4505,7 @@ def cut(src, dst, overwrite=False):
|
|
4442
4505
|
return move(src=src, dst=dst, overwrite=overwrite)
|
4443
4506
|
|
4444
4507
|
|
4445
|
-
def move(src, dst, overwrite=False):
|
4508
|
+
def move(src, dst, overwrite=False, verbose=True):
|
4446
4509
|
try:
|
4447
4510
|
dir_par_dst = os.path.dirname(dst)
|
4448
4511
|
if not os.path.isdir(dir_par_dst):
|
@@ -4460,7 +4523,7 @@ def move(src, dst, overwrite=False):
|
|
4460
4523
|
f"{dst.stem}_{datetime.now().strftime('_%H%M%S')}{dst.suffix}"
|
4461
4524
|
)
|
4462
4525
|
shutil.move(src, dst)
|
4463
|
-
print(f"\n Done! moved to {dst}\n")
|
4526
|
+
print(f"\n Done! moved to {dst}\n") if verbose else None
|
4464
4527
|
except Exception as e:
|
4465
4528
|
logging.error(f"Failed to move file from {src} to {dst}: {e}")
|
4466
4529
|
|
@@ -4719,6 +4782,19 @@ def figsave(*args, dpi=300):
|
|
4719
4782
|
plt.savefig(fname, format="emf", dpi=dpi, bbox_inches="tight", pad_inches=0)
|
4720
4783
|
elif ftype.lower() == "fig":
|
4721
4784
|
plt.savefig(fname, format="pdf", bbox_inches="tight", dpi=dpi, pad_inches=0)
|
4785
|
+
|
4786
|
+
elif ftype.lower() == "ico":
|
4787
|
+
# Ensure the image is in a format that can be saved as an icon (e.g., 32x32, 64x64, etc.)
|
4788
|
+
if img is None: # If no image is provided, use the matplotlib figure
|
4789
|
+
img = plt.figure()
|
4790
|
+
img.savefig(fname, dpi=dpi, format="png", bbox_inches="tight")
|
4791
|
+
img = Image.open(fname) # Load the saved figure image
|
4792
|
+
|
4793
|
+
# Resize the image to typical icon sizes and save it as .ico
|
4794
|
+
icon_sizes = [(32, 32), (64, 64), (128, 128), (256, 256)]
|
4795
|
+
img = img.convert("RGBA") # Ensure it has an alpha channel for transparency
|
4796
|
+
img.save(fname, format="ICO", sizes=icon_sizes)
|
4797
|
+
print(f"Icon saved @: {fname} with sizes: {icon_sizes}")
|
4722
4798
|
print(f"\nSaved @: dpi={dpi}\n{fname}")
|
4723
4799
|
|
4724
4800
|
|
@@ -5497,7 +5573,6 @@ def detect_angle(image, by="median", template=None):
|
|
5497
5573
|
print(f"Unknown method {by}: supported methods: {methods}")
|
5498
5574
|
return 0
|
5499
5575
|
|
5500
|
-
|
5501
5576
|
def imgsets(img,
|
5502
5577
|
auto:bool=True,
|
5503
5578
|
size=None,
|
@@ -5506,7 +5581,9 @@ def imgsets(img,
|
|
5506
5581
|
show_axis:bool=False,
|
5507
5582
|
plot_:bool=True,
|
5508
5583
|
verbose:bool=False,
|
5509
|
-
|
5584
|
+
model:str="isnet-general-use",
|
5585
|
+
**kwargs,
|
5586
|
+
):
|
5510
5587
|
"""
|
5511
5588
|
Apply various enhancements and filters to an image using PIL's ImageEnhance and ImageFilter modules.
|
5512
5589
|
|
@@ -5562,6 +5639,26 @@ def imgsets(img,
|
|
5562
5639
|
"BOX_BLUR",
|
5563
5640
|
"MEDIAN_FILTER",
|
5564
5641
|
]
|
5642
|
+
# *Rembg is a tool to remove images background.
|
5643
|
+
# https://github.com/danielgatis/rembg
|
5644
|
+
rem_models = {
|
5645
|
+
"u2net": "general use cases.",
|
5646
|
+
"u2netp": "A lightweight version of u2net model.",
|
5647
|
+
"u2net_human_seg": "human segmentation.",
|
5648
|
+
"u2net_cloth_seg": "Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.",
|
5649
|
+
"silueta": "Same as u2net but the size is reduced to 43Mb.",
|
5650
|
+
"isnet-general-use": "A new pre-trained model for general use cases.",
|
5651
|
+
"isnet-anime": "A high-accuracy segmentation for anime character.",
|
5652
|
+
"sam": "any use cases.",
|
5653
|
+
"birefnet-general": "general use cases.",
|
5654
|
+
"birefnet-general-lite": "A light pre-trained model for general use cases.",
|
5655
|
+
"birefnet-portrait": "human portraits.",
|
5656
|
+
"birefnet-dis": "dichotomous image segmentation (DIS).",
|
5657
|
+
"birefnet-hrsod": "high-resolution salient object detection (HRSOD).",
|
5658
|
+
"birefnet-cod": "concealed object detection (COD).",
|
5659
|
+
"birefnet-massive": "A pre-trained model with massive dataset.",
|
5660
|
+
}
|
5661
|
+
models_support_rem=list(rem_models.keys())
|
5565
5662
|
str_usage="""
|
5566
5663
|
imgsets(dir_img, auto=1, color=1.5, plot_=0)
|
5567
5664
|
imgsets(dir_img, color=2)
|
@@ -5569,6 +5666,7 @@ def imgsets(img,
|
|
5569
5666
|
imgsets(dir_img, contrast=0, color=1.2, plot_=0)
|
5570
5667
|
imgsets(get_clip(), flip="tb")# flip top and bottom
|
5571
5668
|
imgsets(get_clip(), contrast=1, rm=[100, 5, 2]) #'foreground_threshold', 'background_threshold' and 'erode_structure_size'
|
5669
|
+
imgsets(dir_img, rm="birefnet-portrait") # with using custom model
|
5572
5670
|
"""
|
5573
5671
|
if run_once_within():
|
5574
5672
|
print(str_usage)
|
@@ -5577,28 +5675,7 @@ def imgsets(img,
|
|
5577
5675
|
# adjust gama value
|
5578
5676
|
inv_gamma = 1.0 / gamma
|
5579
5677
|
lut = [int((i / float(v_max)) ** inv_gamma * int(v_max)) for i in range(int(v_max))]
|
5580
|
-
return lut #image.point(lut)
|
5581
|
-
|
5582
|
-
def confirm_rembg_models(model_name):
|
5583
|
-
models_support = [
|
5584
|
-
"u2net",
|
5585
|
-
"u2netp",
|
5586
|
-
"u2net_human_seg",
|
5587
|
-
"u2net_cloth_seg",
|
5588
|
-
"silueta",
|
5589
|
-
"isnet-general-use",
|
5590
|
-
"isnet-anime",
|
5591
|
-
"sam",
|
5592
|
-
]
|
5593
|
-
if model_name in models_support:
|
5594
|
-
print(f"model_name: {model_name}")
|
5595
|
-
return model_name
|
5596
|
-
else:
|
5597
|
-
print(
|
5598
|
-
f"{model_name} cannot be found, check the name:{models_support}, default('isnet-general-use') has been used"
|
5599
|
-
)
|
5600
|
-
return "isnet-general-use"
|
5601
|
-
|
5678
|
+
return lut #image.point(lut)
|
5602
5679
|
def auto_enhance(img):
|
5603
5680
|
"""
|
5604
5681
|
Automatically enhances the image based on its characteristics, including brightness,
|
@@ -5701,7 +5778,7 @@ def imgsets(img,
|
|
5701
5778
|
kwargs = {**auto_enhance(img_update), **kwargs}
|
5702
5779
|
params=["sharp","color","contrast","bright","crop","rotate",'size',"resize",
|
5703
5780
|
"thumbnail","cover","contain","filter","fit","pad",
|
5704
|
-
"rem","rm","back","bg_color","cut",
|
5781
|
+
"rem","rm","back","bg_color","cut","gamma","flip","booster"]
|
5705
5782
|
for k, value in kwargs.items():
|
5706
5783
|
k = strcmp(k, params)[0] # correct the param name
|
5707
5784
|
if "shar" in k.lower():
|
@@ -5722,7 +5799,7 @@ def imgsets(img,
|
|
5722
5799
|
img_update = ImageOps.autocontrast(img_update)
|
5723
5800
|
print("autocontrasted")
|
5724
5801
|
except Exception as e:
|
5725
|
-
print(f"Failed '
|
5802
|
+
print(f"Failed 'auto-contrasted':{e}")
|
5726
5803
|
elif "bri" in k.lower():
|
5727
5804
|
enhancer = ImageEnhance.Brightness(img_update)
|
5728
5805
|
img_update = enhancer.enhance(value)
|
@@ -5765,9 +5842,14 @@ def imgsets(img,
|
|
5765
5842
|
img_update = ImageOps.pad(img_update, size=value)
|
5766
5843
|
elif "rem" in k.lower() or "rm" in k.lower() or "back" in k.lower():
|
5767
5844
|
from rembg import remove, new_session
|
5768
|
-
|
5845
|
+
if verbose:
|
5846
|
+
preview(rem_models)
|
5847
|
+
|
5848
|
+
print(f"supported modles: {models_support_rem}")
|
5849
|
+
model=strcmp(model, models_support_rem)[0]
|
5850
|
+
session = new_session(model)
|
5769
5851
|
if isinstance(value, bool):
|
5770
|
-
|
5852
|
+
print(f"using model:{model}")
|
5771
5853
|
img_update = remove(img_update, session=session)
|
5772
5854
|
elif value and isinstance(value, (int, float, list)):
|
5773
5855
|
if verbose:
|
@@ -5779,14 +5861,14 @@ def imgsets(img,
|
|
5779
5861
|
img_update = remove(
|
5780
5862
|
img_update,
|
5781
5863
|
alpha_matting=True,
|
5782
|
-
alpha_matting_background_threshold=value,
|
5864
|
+
alpha_matting_background_threshold=value, session=session
|
5783
5865
|
)
|
5784
5866
|
elif 2 <= len(value) < 3:
|
5785
5867
|
img_update = remove(
|
5786
5868
|
img_update,
|
5787
5869
|
alpha_matting=True,
|
5788
5870
|
alpha_matting_background_threshold=value[0],
|
5789
|
-
alpha_matting_foreground_threshold=value[1],
|
5871
|
+
alpha_matting_foreground_threshold=value[1], session=session
|
5790
5872
|
)
|
5791
5873
|
elif 3 <= len(value) < 4:
|
5792
5874
|
img_update = remove(
|
@@ -5794,17 +5876,16 @@ def imgsets(img,
|
|
5794
5876
|
alpha_matting=True,
|
5795
5877
|
alpha_matting_background_threshold=value[0],
|
5796
5878
|
alpha_matting_foreground_threshold=value[1],
|
5797
|
-
alpha_matting_erode_size=value[2],
|
5879
|
+
alpha_matting_erode_size=value[2], session=session
|
5798
5880
|
)
|
5799
5881
|
elif isinstance(value, tuple): # replace the background color
|
5800
5882
|
if len(value) == 3:
|
5801
5883
|
value += (255,)
|
5802
|
-
img_update = remove(img_update, bgcolor=value)
|
5884
|
+
img_update = remove(img_update, bgcolor=value, session=session)
|
5803
5885
|
elif isinstance(value, str):
|
5804
|
-
|
5805
|
-
|
5806
|
-
|
5807
|
-
img_update = remove(img_update)
|
5886
|
+
# use custom model
|
5887
|
+
print(f"using model:{strcmp(value, models_support_rem)[0]}")
|
5888
|
+
img_update = remove(img_update, session=new_session(strcmp(value, models_support_rem)[0]))
|
5808
5889
|
elif "bg" in k.lower() and "color" in k.lower():
|
5809
5890
|
from rembg import remove
|
5810
5891
|
|
@@ -5814,7 +5895,33 @@ def imgsets(img,
|
|
5814
5895
|
if len(value) == 3:
|
5815
5896
|
value += (255,)
|
5816
5897
|
img_update = remove(img_update, bgcolor=value)
|
5817
|
-
|
5898
|
+
elif 'boost' in k.lower():
|
5899
|
+
import torch
|
5900
|
+
from realesrgan import RealESRGANer
|
5901
|
+
if verbose:
|
5902
|
+
print("Applying Real-ESRGAN for image reconstruction...")
|
5903
|
+
if isinstance(value, bool):
|
5904
|
+
scale=4
|
5905
|
+
elif isinstance(value, (float, int)):
|
5906
|
+
scale=value
|
5907
|
+
else:
|
5908
|
+
scale=4
|
5909
|
+
|
5910
|
+
# try:
|
5911
|
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
5912
|
+
dir_curr_script = os.path.dirname(os.path.abspath(__file__))
|
5913
|
+
model_path = dir_curr_script + "/data/RealESRGAN_x4plus.pth"
|
5914
|
+
model_RealESRGAN = RealESRGANer(device=device,
|
5915
|
+
scale=scale,
|
5916
|
+
model_path=model_path,
|
5917
|
+
model="RealESRGAN_x4plus"
|
5918
|
+
)
|
5919
|
+
# https://github.com/xinntao/Real-ESRGAN?tab=readme-ov-file#python-script
|
5920
|
+
|
5921
|
+
img_update = model_RealESRGAN.enhance(np.array(img_update))[0]
|
5922
|
+
# except Exception as e:
|
5923
|
+
# print(f"Failed to apply Real-ESRGAN: {e}")
|
5924
|
+
|
5818
5925
|
# elif "ga" in k.lower() and "m" in k.lower():
|
5819
5926
|
# img_update = gamma_correction(img_update, gamma=value)
|
5820
5927
|
# Display the image if requested
|
@@ -10715,4 +10822,227 @@ def mouse(
|
|
10715
10822
|
# "Image not found. Ensure the image is visible and parameters are correct."
|
10716
10823
|
# )
|
10717
10824
|
# except Exception as e:
|
10718
|
-
# print(f"An error occurred: {e}")
|
10825
|
+
# print(f"An error occurred: {e}")
|
10826
|
+
|
10827
|
+
|
10828
|
+
|
10829
|
+
def py2installer(
|
10830
|
+
script_path: str=None,
|
10831
|
+
flatform:str="mingw64",
|
10832
|
+
output_dir: str = "dist",
|
10833
|
+
icon_path: str = None,
|
10834
|
+
extra_data: list = None,
|
10835
|
+
hidden_imports: list = None,
|
10836
|
+
plugins:list=None,
|
10837
|
+
use_nuitka: bool = True,
|
10838
|
+
onefile: bool = True,
|
10839
|
+
console: bool = True,
|
10840
|
+
clean_build: bool = False,
|
10841
|
+
additional_args: list = None,
|
10842
|
+
verbose: bool = True,
|
10843
|
+
use_docker: bool = False,
|
10844
|
+
docker_image: str = "python:3.12-slim",
|
10845
|
+
):
|
10846
|
+
"""
|
10847
|
+
to package Python scripts into standalone application.
|
10848
|
+
|
10849
|
+
script_path (str): Path to the Python script to package.
|
10850
|
+
output_dir (str): Directory where the executable will be stored.
|
10851
|
+
icon_path (str): Path to the .ico file for the executable icon.
|
10852
|
+
extra_data (list): List of additional data files or directories in "source:dest" format.
|
10853
|
+
hidden_imports (list): List of hidden imports to include.
|
10854
|
+
plugins (list): List of plugins imports to include.e.g., 'tk-inter'
|
10855
|
+
use_nuitka (bool): Whether to use Nuitka instead of PyInstaller.
|
10856
|
+
onefile (bool): If True, produces a single executable file.
|
10857
|
+
console (bool): If False, hides the console window (GUI mode).
|
10858
|
+
clean_build (bool): If True, cleans previous build and dist directories.
|
10859
|
+
additional_args (list): Additional arguments for PyInstaller/Nuitka.
|
10860
|
+
verbose (bool): If True, provides detailed logs.
|
10861
|
+
use_docker (bool): If True, uses Docker to package the script.
|
10862
|
+
docker_image (str): Docker image to use for packaging.
|
10863
|
+
|
10864
|
+
"""
|
10865
|
+
|
10866
|
+
import os
|
10867
|
+
import sys
|
10868
|
+
import shutil
|
10869
|
+
import subprocess
|
10870
|
+
import sys
|
10871
|
+
import glob
|
10872
|
+
from pathlib import Path
|
10873
|
+
if run_once_within():
|
10874
|
+
usage_str="""
|
10875
|
+
# build locally
|
10876
|
+
py2installer(
|
10877
|
+
script_path="update_tab.py",
|
10878
|
+
output_dir="dist",
|
10879
|
+
icon_path="icon4app.ico",
|
10880
|
+
extra_data=["dat/*.xlsx:dat"],
|
10881
|
+
hidden_imports=["msoffcrypto", "tkinter", "pandas", "numpy"],
|
10882
|
+
onefile=True,
|
10883
|
+
console=False,
|
10884
|
+
clean_build=True,
|
10885
|
+
verbose=True,
|
10886
|
+
)
|
10887
|
+
# build via docker
|
10888
|
+
py2installer(
|
10889
|
+
"my_script.py",
|
10890
|
+
output_dir="dist",
|
10891
|
+
onefile=True,
|
10892
|
+
clean_build=True,
|
10893
|
+
use_docker=True,
|
10894
|
+
docker_image="python:3.12-slim"
|
10895
|
+
)
|
10896
|
+
"""
|
10897
|
+
print(usage_str)
|
10898
|
+
if verbose:
|
10899
|
+
return
|
10900
|
+
else:
|
10901
|
+
pass
|
10902
|
+
# Check if the script path exists
|
10903
|
+
script_path = Path(script_path)
|
10904
|
+
if not script_path.exists():
|
10905
|
+
raise FileNotFoundError(f"Script '{script_path}' not found.")
|
10906
|
+
|
10907
|
+
# Clean build and dist directories if requested
|
10908
|
+
if clean_build:
|
10909
|
+
for folder in ["build", "dist"]:
|
10910
|
+
folder_path = Path(folder)
|
10911
|
+
if folder_path.exists():
|
10912
|
+
shutil.rmtree(folder_path, ignore_errors=True)
|
10913
|
+
# Recreate the folders
|
10914
|
+
for folder in ["build", "dist"]:
|
10915
|
+
folder_path = Path(folder)
|
10916
|
+
folder_path.mkdir(parents=True, exist_ok=True)
|
10917
|
+
|
10918
|
+
|
10919
|
+
if use_docker:
|
10920
|
+
# Ensure Docker is installed
|
10921
|
+
try:
|
10922
|
+
subprocess.run(["docker", "--version"], check=True, capture_output=True, text=True)
|
10923
|
+
except FileNotFoundError:
|
10924
|
+
raise EnvironmentError("Docker is not installed or not in the PATH.")
|
10925
|
+
|
10926
|
+
# Prepare Docker volume mappings
|
10927
|
+
script_dir = script_path.parent.resolve()
|
10928
|
+
dist_path = Path(output_dir).resolve()
|
10929
|
+
volumes = [
|
10930
|
+
f"{script_dir}:/app:rw",
|
10931
|
+
f"{dist_path}:/output:rw",
|
10932
|
+
]
|
10933
|
+
docker_cmd = [
|
10934
|
+
"docker", "run", "--rm",
|
10935
|
+
"-v", volumes[0],
|
10936
|
+
"-v", volumes[1],
|
10937
|
+
docker_image,
|
10938
|
+
"bash", "-c",
|
10939
|
+
]
|
10940
|
+
|
10941
|
+
# Build the packaging command inside the container
|
10942
|
+
cmd = ["nuitka"] if use_nuitka else ["pyinstaller"]
|
10943
|
+
if onefile:
|
10944
|
+
cmd.append("--onefile")
|
10945
|
+
if not console:
|
10946
|
+
cmd.append("--windowed")
|
10947
|
+
cmd.extend(["--distpath", "/output"])
|
10948
|
+
if icon_path:
|
10949
|
+
cmd.extend(["--icon", f"/app/{Path(icon_path).name}"])
|
10950
|
+
if extra_data:
|
10951
|
+
for data in extra_data:
|
10952
|
+
cmd.extend(["--add-data", f"/app/{data}"])
|
10953
|
+
if hidden_imports:
|
10954
|
+
for hidden in hidden_imports:
|
10955
|
+
cmd.extend(["--hidden-import", hidden])
|
10956
|
+
if additional_args:
|
10957
|
+
cmd.extend(additional_args)
|
10958
|
+
cmd.append(f"/app/{script_path.name}")
|
10959
|
+
|
10960
|
+
# Full command to execute inside the container
|
10961
|
+
docker_cmd.append(" ".join(cmd))
|
10962
|
+
|
10963
|
+
if verbose:
|
10964
|
+
print(f"Running Docker command: {' '.join(docker_cmd)}")
|
10965
|
+
|
10966
|
+
# Run Docker command
|
10967
|
+
try:
|
10968
|
+
subprocess.run(
|
10969
|
+
docker_cmd,
|
10970
|
+
capture_output=not verbose,
|
10971
|
+
text=True,
|
10972
|
+
check=True,
|
10973
|
+
)
|
10974
|
+
except subprocess.CalledProcessError as e:
|
10975
|
+
print(f"Error during Docker packaging:\n{e.stderr}", file=sys.stderr)
|
10976
|
+
raise
|
10977
|
+
else:
|
10978
|
+
# Handle local packaging (native build)
|
10979
|
+
cmd = ["nuitka"]
|
10980
|
+
cmd.append("--standalone") # Make sure to use --standalone for independent environments
|
10981
|
+
if 'min' in flatform.lower():
|
10982
|
+
cmd.append("--mingw64")
|
10983
|
+
if onefile:
|
10984
|
+
cmd.append("--onefile")
|
10985
|
+
if not console:
|
10986
|
+
# cmd.append("--windows-disable-console") # Disabled based on your request
|
10987
|
+
pass
|
10988
|
+
|
10989
|
+
cmd.extend([f"--output-dir={output_dir}"]) # Correct the space issue here
|
10990
|
+
if icon_path:
|
10991
|
+
icon_path = Path(icon_path)
|
10992
|
+
if not icon_path.exists():
|
10993
|
+
raise FileNotFoundError(f"Icon file '{icon_path}' not found.")
|
10994
|
+
cmd.extend([f"--windows-icon-from-ico={icon_path}"])
|
10995
|
+
|
10996
|
+
if extra_data:
|
10997
|
+
for data in extra_data:
|
10998
|
+
if "*" in data:
|
10999
|
+
matches = glob.glob(data.split(":")[0])
|
11000
|
+
for match in matches:
|
11001
|
+
dest = data.split(":")[1]
|
11002
|
+
cmd.extend(
|
11003
|
+
[
|
11004
|
+
"--include-data-file=" if use_nuitka else "--add-data",
|
11005
|
+
f"{match}:{dest}",
|
11006
|
+
]
|
11007
|
+
)
|
11008
|
+
else:
|
11009
|
+
cmd.extend(
|
11010
|
+
["--include-data-file=" if use_nuitka else "--add-data", data]
|
11011
|
+
)
|
11012
|
+
|
11013
|
+
if hidden_imports:
|
11014
|
+
cmd.extend([f"--nofollow-import-to={','.join(hidden_imports)}"])
|
11015
|
+
|
11016
|
+
if plugins:
|
11017
|
+
for plugin in plugins:
|
11018
|
+
cmd.extend([f"--plugin-enable={plugin}"])
|
11019
|
+
|
11020
|
+
if additional_args:
|
11021
|
+
cmd.extend(additional_args)
|
11022
|
+
|
11023
|
+
# Add the script path (final positional argument)
|
11024
|
+
cmd.append(str(script_path))
|
11025
|
+
|
11026
|
+
# Ensure Windows shell compatibility
|
11027
|
+
shell_flag = sys.platform.startswith("win")
|
11028
|
+
|
11029
|
+
# Run the command
|
11030
|
+
if verbose:
|
11031
|
+
print(f"Running command: {' '.join(cmd)}")
|
11032
|
+
try:
|
11033
|
+
result = subprocess.run(
|
11034
|
+
cmd,
|
11035
|
+
capture_output=not verbose,
|
11036
|
+
text=True,
|
11037
|
+
shell=shell_flag,
|
11038
|
+
check=True,
|
11039
|
+
)
|
11040
|
+
if verbose:
|
11041
|
+
print(result.stdout)
|
11042
|
+
except subprocess.CalledProcessError as e:
|
11043
|
+
print(f"Error during packaging:\n{e.stderr}", file=sys.stderr)
|
11044
|
+
print(" ".join(cmd))
|
11045
|
+
raise
|
11046
|
+
|
11047
|
+
print("\nPackaging complete. Check the output directory for the executable.")
|
11048
|
+
|
py2ls/netfinder.py
CHANGED
@@ -333,32 +333,6 @@ def parse_cookies(cookies_str):
|
|
333
333
|
|
334
334
|
return cookies_dict
|
335
335
|
|
336
|
-
class FetchSpider(scrapy.Spider):
|
337
|
-
name = "fetch_spider"
|
338
|
-
|
339
|
-
def __init__(self, url, parser="html.parser", cookies=None, headers=None, *args, **kwargs):
|
340
|
-
super(FetchSpider, self).__init__(*args, **kwargs)
|
341
|
-
self.start_urls = [url]
|
342
|
-
self.cookies = cookies
|
343
|
-
self.headers = headers
|
344
|
-
self.parser = parser
|
345
|
-
|
346
|
-
def start_requests(self):
|
347
|
-
for url in self.start_urls:
|
348
|
-
yield scrapy.Request(
|
349
|
-
url,
|
350
|
-
cookies=self.cookies,
|
351
|
-
headers=self.headers,
|
352
|
-
callback=self.parse
|
353
|
-
)
|
354
|
-
|
355
|
-
def parse(self, response):
|
356
|
-
# Use the desired parser (default: html.parser)
|
357
|
-
from bs4 import BeautifulSoup
|
358
|
-
soup = BeautifulSoup(response.text, self.parser)
|
359
|
-
yield {"content": soup}
|
360
|
-
|
361
|
-
|
362
336
|
def fetch_scrapy(
|
363
337
|
url,
|
364
338
|
parser="html.parser",
|
@@ -367,7 +341,7 @@ def fetch_scrapy(
|
|
367
341
|
settings=None,
|
368
342
|
):
|
369
343
|
"""
|
370
|
-
Fetches content using Scrapy.
|
344
|
+
Fetches content using Scrapy with proper reactor handling.
|
371
345
|
|
372
346
|
Args:
|
373
347
|
url (str): The URL to scrape.
|
@@ -380,9 +354,10 @@ def fetch_scrapy(
|
|
380
354
|
dict: Parsed content as a dictionary.
|
381
355
|
"""
|
382
356
|
from scrapy.utils.project import get_project_settings
|
383
|
-
from scrapy.crawler import
|
357
|
+
from scrapy.crawler import CrawlerRunner
|
384
358
|
from scrapy.signalmanager import dispatcher
|
385
359
|
from scrapy import signals
|
360
|
+
from twisted.internet import reactor, defer
|
386
361
|
import scrapy
|
387
362
|
|
388
363
|
# Container for scraped content
|
@@ -403,19 +378,30 @@ def fetch_scrapy(
|
|
403
378
|
}
|
404
379
|
)
|
405
380
|
|
406
|
-
#
|
407
|
-
process = CrawlerProcess(settings=process_settings)
|
381
|
+
# Connect item scraped signal
|
408
382
|
dispatcher.connect(handle_item, signal=signals.item_scraped)
|
409
383
|
|
410
|
-
#
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
384
|
+
# Asynchronous Twisted function
|
385
|
+
@defer.inlineCallbacks
|
386
|
+
def crawl():
|
387
|
+
runner = CrawlerRunner(settings=process_settings)
|
388
|
+
yield runner.crawl(
|
389
|
+
FetchSpider,
|
390
|
+
url=url,
|
391
|
+
parser=parser,
|
392
|
+
cookies=cookies,
|
393
|
+
headers=headers,
|
394
|
+
)
|
395
|
+
reactor.stop()
|
396
|
+
|
397
|
+
# Start the reactor if not already running
|
398
|
+
if not reactor.running:
|
399
|
+
crawl()
|
400
|
+
reactor.run() # Blocks until the crawl finishes
|
401
|
+
else:
|
402
|
+
# Run the crawl if the reactor is already running
|
403
|
+
d = crawl()
|
404
|
+
d.addBoth(lambda _: reactor.stop())
|
419
405
|
|
420
406
|
# Return the first scraped content or None if empty
|
421
407
|
return content[0] if content else None
|
@@ -654,7 +640,11 @@ def fetch_all(
|
|
654
640
|
"COOKIES_ENABLED": True if cookies else False,
|
655
641
|
"LOG_LEVEL": "WARNING", # Reduce log verbosity
|
656
642
|
}
|
657
|
-
content=fetch_scrapy(url,
|
643
|
+
content=fetch_scrapy(url,
|
644
|
+
parser=parser,
|
645
|
+
cookies=cookies,
|
646
|
+
headers=headers,
|
647
|
+
settings=settings)
|
658
648
|
return parser, content
|
659
649
|
|
660
650
|
except requests.RequestException as e:
|
py2ls/ocr.py
CHANGED
@@ -9,8 +9,6 @@ from py2ls.ips import (
|
|
9
9
|
isa
|
10
10
|
)
|
11
11
|
import logging
|
12
|
-
#logging.getLogger("ppocr").setLevel(logging.ERROR)
|
13
|
-
logging.getLogger("ppocr").setLevel(logging.WARNING)
|
14
12
|
|
15
13
|
"""
|
16
14
|
Optical Character Recognition (OCR)
|
@@ -563,8 +561,8 @@ def get_text(
|
|
563
561
|
font=cv2.FONT_HERSHEY_SIMPLEX,# draw_box
|
564
562
|
fontsize=8,# draw_box
|
565
563
|
figsize=[10,10],
|
566
|
-
box_color = (0, 255, 0),
|
567
|
-
fontcolor = (
|
564
|
+
box_color = (0, 255, 0), # draw_box
|
565
|
+
fontcolor = (116,173,233), # draw_box
|
568
566
|
bg_color=(133, 203, 245, 100),# draw_box
|
569
567
|
usage=False,
|
570
568
|
**kwargs,
|
@@ -618,7 +616,6 @@ def get_text(
|
|
618
616
|
image = cv2.imread(image)
|
619
617
|
elif isa(image,'image'):
|
620
618
|
cvt_cmp=False
|
621
|
-
print(1)
|
622
619
|
image = np.array(image)
|
623
620
|
else:
|
624
621
|
raise ValueError(f"not support image with {type(image)} type")
|
@@ -704,6 +701,8 @@ def get_text(
|
|
704
701
|
return detections
|
705
702
|
elif "pad" in model.lower():
|
706
703
|
from paddleocr import PaddleOCR
|
704
|
+
logging.getLogger("ppocr").setLevel(logging.ERROR)
|
705
|
+
|
707
706
|
lang=strcmp(lang, ['ch','en','french','german','korean','japan'])[0]
|
708
707
|
ocr = PaddleOCR(
|
709
708
|
use_angle_cls=True,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: py2ls
|
3
|
-
Version: 0.2.4.
|
3
|
+
Version: 0.2.4.35
|
4
4
|
Summary: py(thon)2(too)ls
|
5
5
|
Author: Jianfeng
|
6
6
|
Author-email: Jianfeng.Liu0413@gmail.com
|
@@ -14,7 +14,7 @@ Classifier: Programming Language :: Python :: 3.9
|
|
14
14
|
Classifier: Programming Language :: Python :: 3.10
|
15
15
|
Classifier: Programming Language :: Python :: 3.11
|
16
16
|
Classifier: Programming Language :: Python :: 3.12
|
17
|
-
Provides-Extra:
|
17
|
+
Provides-Extra: full
|
18
18
|
Requires-Dist: CacheControl (>=0.13.1)
|
19
19
|
Requires-Dist: Cython (>=3.0.10)
|
20
20
|
Requires-Dist: Deprecated (>=1.2.14)
|
@@ -85,7 +85,7 @@ Requires-Dist: h2 (>=3.2.0)
|
|
85
85
|
Requires-Dist: h5py (>=3.11.0)
|
86
86
|
Requires-Dist: hpack (>=3.0.0)
|
87
87
|
Requires-Dist: hstspreload (>=2024.7.1)
|
88
|
-
Requires-Dist: httpcore (>=0.9.
|
88
|
+
Requires-Dist: httpcore (>=0.9.0)
|
89
89
|
Requires-Dist: httpx (>=0.13.3)
|
90
90
|
Requires-Dist: humanfriendly (>=10.0)
|
91
91
|
Requires-Dist: hyperframe (>=5.2.0)
|
@@ -123,6 +123,7 @@ Requires-Dist: mne (>=1.7.1)
|
|
123
123
|
Requires-Dist: more-itertools (>=10.3.0)
|
124
124
|
Requires-Dist: mpmath (>=1.3.0)
|
125
125
|
Requires-Dist: msgpack (>=1.0.8)
|
126
|
+
Requires-Dist: msoffcrypto-tool (>=5.4.2)
|
126
127
|
Requires-Dist: mtscomp (>=1.0.2)
|
127
128
|
Requires-Dist: nbclient (>=0.10.0)
|
128
129
|
Requires-Dist: nbconvert (>=7.16.4)
|
@@ -131,6 +132,7 @@ Requires-Dist: neo (>=0.13.1)
|
|
131
132
|
Requires-Dist: nest-asyncio (>=1.6.0)
|
132
133
|
Requires-Dist: networkx (>=3.3)
|
133
134
|
Requires-Dist: nltk (>=3.8.1)
|
135
|
+
Requires-Dist: nuitka (>=2.5.9)
|
134
136
|
Requires-Dist: numba (>=0.59.1)
|
135
137
|
Requires-Dist: numcodecs (>=0.13.0)
|
136
138
|
Requires-Dist: numerizer (>=0.2.3)
|
@@ -139,6 +141,7 @@ Requires-Dist: onnxruntime (>=1.18.1)
|
|
139
141
|
Requires-Dist: opencv-contrib-python (>=4.10.0.84)
|
140
142
|
Requires-Dist: opencv-python (>=4.10.0.84)
|
141
143
|
Requires-Dist: opencv-python-headless (>=4.10.0.84)
|
144
|
+
Requires-Dist: openpyxl (>=3.1.5)
|
142
145
|
Requires-Dist: outcome (>=1.3.0.post0)
|
143
146
|
Requires-Dist: packaging (>=24.1)
|
144
147
|
Requires-Dist: pandas (>=2.2.2)
|
@@ -199,6 +202,7 @@ Requires-Dist: rpds-py (>=0.18.1)
|
|
199
202
|
Requires-Dist: scikit-image (>=0.23.2)
|
200
203
|
Requires-Dist: scikit-learn (>=1.5.1)
|
201
204
|
Requires-Dist: scipy (>=1.14.0)
|
205
|
+
Requires-Dist: scrapy (>=2.12.0)
|
202
206
|
Requires-Dist: seaborn (>=0.13.2)
|
203
207
|
Requires-Dist: selenium (>=4.23.1)
|
204
208
|
Requires-Dist: setuptools (>=70.3.0)
|
@@ -182,6 +182,7 @@ py2ls/chat.py,sha256=Yr22GoIvoWhpV3m4fdwV_I0Mn77La346_ymSinR-ORA,3793
|
|
182
182
|
py2ls/corr.py,sha256=RbOaJIPLCHJtUm5SFi_4dCJ7VFUPWR0PErfK3K26ad4,18243
|
183
183
|
py2ls/correlators.py,sha256=RbOaJIPLCHJtUm5SFi_4dCJ7VFUPWR0PErfK3K26ad4,18243
|
184
184
|
py2ls/data/.DS_Store,sha256=0vLN27VSbtJbHNG5DG-oGqs9h_ubWh3xHz-baHnyfck,6148
|
185
|
+
py2ls/data/RealESRGAN_x4plus.pth,sha256=T6DTiQX3WsButJp5UbQmZwAhvjAYJl_RkdISXfnWgvE,67040989
|
185
186
|
py2ls/data/db2ls_sql_chtsht.json,sha256=ls9d7Sm8TLeujanWHfHlWhU85Qz1KnAizO_9X3wUH7E,6933
|
186
187
|
py2ls/data/docs_links.json,sha256=kXgbbWo0b8bfV4n6iuuUNLnZipIyLzokUO6Lzmf7nO4,101829
|
187
188
|
py2ls/data/email/email_html_template.html,sha256=UIg3aixWfdNsvVx-j2dX1M5N3G-6DgrnV1Ya1cLjiUQ,2809
|
@@ -242,18 +243,18 @@ py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,
|
|
242
243
|
py2ls/fetch_update.py,sha256=9LXj661GpCEFII2wx_99aINYctDiHni6DOruDs_fdt8,4752
|
243
244
|
py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
|
244
245
|
py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
|
245
|
-
py2ls/ips.py,sha256=
|
246
|
+
py2ls/ips.py,sha256=2tFfYrkRXdR-jwWYK1goE2zhSfG_iHhkDc73gLje6hI,416145
|
246
247
|
py2ls/ml2ls.py,sha256=I-JFPdikgEtfQjhv5gBz-QSeorpTJI_Pda_JwkTioBY,209732
|
247
248
|
py2ls/mol.py,sha256=AZnHzarIk_MjueKdChqn1V6e4tUle3X1NnHSFA6n3Nw,10645
|
248
|
-
py2ls/netfinder.py,sha256=
|
249
|
+
py2ls/netfinder.py,sha256=OhqD3S9PuwweL2013D-q4GNP1WvJjuYfZzq5BZgGddE,68980
|
249
250
|
py2ls/nl2ls.py,sha256=UEIdok-OamFZFIvvz_PdZenu085zteMdaJd9mLu3F-s,11485
|
250
|
-
py2ls/ocr.py,sha256=
|
251
|
+
py2ls/ocr.py,sha256=WDFvx1oVxXjlyyFs2a6pizdu4-jEL5pTFLP960-HbyM,33939
|
251
252
|
py2ls/plot.py,sha256=7C1x6KX0Fvmbll4IStIzlNjxLnrRBNSPaLJRgGjF3Ok,239172
|
252
253
|
py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
|
253
254
|
py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
|
254
255
|
py2ls/stats.py,sha256=qBn2rJmNa_QLLUqjwYqXUlGzqmW94sgA1bxJU2FC3r0,39175
|
255
256
|
py2ls/translator.py,sha256=77Tp_GjmiiwFbEIJD_q3VYpQ43XL9ZeJo6Mhl44mvh8,34284
|
256
257
|
py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
|
257
|
-
py2ls-0.2.4.
|
258
|
-
py2ls-0.2.4.
|
259
|
-
py2ls-0.2.4.
|
258
|
+
py2ls-0.2.4.35.dist-info/METADATA,sha256=j9QC5tXPpOp4VTvG6onwy3BaoPw_ROq0KGPGw2bo8Gk,20473
|
259
|
+
py2ls-0.2.4.35.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
260
|
+
py2ls-0.2.4.35.dist-info/RECORD,,
|
File without changes
|