py2ls 0.2.4.32__py3-none-any.whl → 0.2.4.34__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- py2ls/.git/index +0 -0
- py2ls/ips.py +779 -194
- py2ls/netfinder.py +99 -0
- py2ls/ocr.py +139 -126
- py2ls/plot.py +612 -376
- {py2ls-0.2.4.32.dist-info → py2ls-0.2.4.34.dist-info}/METADATA +2 -2
- {py2ls-0.2.4.32.dist-info → py2ls-0.2.4.34.dist-info}/RECORD +8 -8
- {py2ls-0.2.4.32.dist-info → py2ls-0.2.4.34.dist-info}/WHEEL +0 -0
py2ls/ips.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
import numpy as np
|
2
2
|
import pandas as pd
|
3
|
-
import sys
|
3
|
+
import sys
|
4
|
+
import os
|
4
5
|
from IPython.display import display
|
5
6
|
from typing import List, Optional, Union
|
6
7
|
|
@@ -17,13 +18,24 @@ import warnings
|
|
17
18
|
warnings.simplefilter("ignore", category=pd.errors.SettingWithCopyWarning)
|
18
19
|
warnings.filterwarnings("ignore", category=pd.errors.PerformanceWarning)
|
19
20
|
warnings.filterwarnings("ignore")
|
20
|
-
import os
|
21
21
|
import shutil
|
22
22
|
import logging
|
23
23
|
from pathlib import Path
|
24
24
|
from datetime import datetime
|
25
|
+
import re
|
26
|
+
import stat
|
27
|
+
import platform
|
25
28
|
|
26
|
-
|
29
|
+
# only for backup these scripts
|
30
|
+
def backup(
|
31
|
+
src="/Users/macjianfeng/Dropbox/github/python/py2ls/.venv/lib/python3.12/site-packages/py2ls/",
|
32
|
+
tar="/Users/macjianfeng/Dropbox/github/python/py2ls/py2ls/",
|
33
|
+
kind="py",
|
34
|
+
overwrite=True,
|
35
|
+
):
|
36
|
+
f = listdir(src, kind)
|
37
|
+
[copy(i, tar, overwrite=overwrite) for i in f.path]
|
38
|
+
print(f"all files are copied from {os.path.basename(src)} to {tar}")
|
27
39
|
def run_once_within(duration=60, reverse=False): # default 60s
|
28
40
|
import time
|
29
41
|
|
@@ -786,13 +798,22 @@ def strcmp(
|
|
786
798
|
return candidates[best_match_index], best_match_index
|
787
799
|
|
788
800
|
|
789
|
-
def imgcmp(img: list,
|
801
|
+
def imgcmp(img: list,
|
802
|
+
method:str ="knn",
|
803
|
+
thr:float =0.75,
|
804
|
+
detector: str = "sift",
|
805
|
+
plot_:bool =True,
|
806
|
+
figsize=[12, 6],
|
807
|
+
grid_size=10,# only for grid detector
|
808
|
+
**kwargs):
|
790
809
|
"""
|
791
810
|
Compare two images using SSIM, Feature Matching (SIFT), or KNN Matching.
|
792
811
|
|
793
812
|
Parameters:
|
794
|
-
- img (list): List containing two image file paths [img1, img2].
|
813
|
+
- img (list): List containing two image file paths [img1, img2] or two numpy arrays.
|
795
814
|
- method (str): Comparison method ('ssim', 'match', or 'knn').
|
815
|
+
- detector (str): Feature detector ('sift', 'grid', 'pixel').
|
816
|
+
- thr (float): Threshold for filtering matches.
|
796
817
|
- plot_ (bool): Whether to display the results visually.
|
797
818
|
- figsize (list): Size of the figure for plots.
|
798
819
|
|
@@ -805,8 +826,13 @@ def imgcmp(img: list, method="knn", plot_=True, figsize=[12, 6]):
|
|
805
826
|
from skimage.metrics import structural_similarity as ssim
|
806
827
|
|
807
828
|
# Load images
|
808
|
-
|
809
|
-
|
829
|
+
if isinstance(img, list) and isinstance(img[0],str):
|
830
|
+
image1 = cv2.imread(img[0])
|
831
|
+
image2 = cv2.imread(img[1])
|
832
|
+
bool_cvt=True
|
833
|
+
else:
|
834
|
+
image1, image2 = np.array(img[0]),np.array(img[1])
|
835
|
+
bool_cvt=False
|
810
836
|
|
811
837
|
if image1 is None or image2 is None:
|
812
838
|
raise ValueError("Could not load one or both images. Check file paths.")
|
@@ -841,21 +867,53 @@ def imgcmp(img: list, method="knn", plot_=True, figsize=[12, 6]):
|
|
841
867
|
elif method in ["match", "knn"]:
|
842
868
|
# Convert images to grayscale
|
843
869
|
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
|
844
|
-
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
|
870
|
+
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
|
871
|
+
|
872
|
+
if detector == "sift":
|
873
|
+
# SIFT detector
|
874
|
+
sift = cv2.SIFT_create()
|
875
|
+
keypoints1, descriptors1 = sift.detectAndCompute(gray1, None)
|
876
|
+
keypoints2, descriptors2 = sift.detectAndCompute(gray2, None)
|
877
|
+
|
878
|
+
elif detector == "grid":
|
879
|
+
# Grid-based detection
|
880
|
+
keypoints1, descriptors1 = [], []
|
881
|
+
keypoints2, descriptors2 = [], []
|
882
|
+
|
883
|
+
for i in range(0, gray1.shape[0], grid_size):
|
884
|
+
for j in range(0, gray1.shape[1], grid_size):
|
885
|
+
patch1 = gray1[i:i + grid_size, j:j + grid_size]
|
886
|
+
patch2 = gray2[i:i + grid_size, j:j + grid_size]
|
887
|
+
if patch1.size > 0 and patch2.size > 0:
|
888
|
+
keypoints1.append(cv2.KeyPoint(j + grid_size // 2, i + grid_size // 2, grid_size))
|
889
|
+
keypoints2.append(cv2.KeyPoint(j + grid_size // 2, i + grid_size // 2, grid_size))
|
890
|
+
descriptors1.append(np.mean(patch1))
|
891
|
+
descriptors2.append(np.mean(patch2))
|
892
|
+
|
893
|
+
descriptors1 = np.array(descriptors1).reshape(-1, 1)
|
894
|
+
descriptors2 = np.array(descriptors2).reshape(-1, 1)
|
895
|
+
|
896
|
+
elif detector == "pixel":
|
897
|
+
# Pixel-based direct comparison
|
898
|
+
descriptors1 = gray1.flatten()
|
899
|
+
descriptors2 = gray2.flatten()
|
900
|
+
keypoints1 = [cv2.KeyPoint(x, y, 1) for y in range(gray1.shape[0]) for x in range(gray1.shape[1])]
|
901
|
+
keypoints2 = [cv2.KeyPoint(x, y, 1) for y in range(gray2.shape[0]) for x in range(gray2.shape[1])]
|
845
902
|
|
846
|
-
|
847
|
-
|
848
|
-
|
849
|
-
#
|
850
|
-
|
851
|
-
|
852
|
-
|
853
|
-
if
|
854
|
-
|
903
|
+
else:
|
904
|
+
raise ValueError("Invalid detector. Use 'sift', 'grid', or 'pixel'.")
|
905
|
+
|
906
|
+
# Handle missing descriptors
|
907
|
+
if descriptors1 is None or descriptors2 is None:
|
908
|
+
raise ValueError("Failed to compute descriptors for one or both images.")
|
909
|
+
# Ensure descriptors are in the correct data type
|
910
|
+
if descriptors1.dtype != np.float32:
|
911
|
+
descriptors1 = descriptors1.astype(np.float32)
|
912
|
+
if descriptors2.dtype != np.float32:
|
913
|
+
descriptors2 = descriptors2.astype(np.float32)
|
855
914
|
|
856
915
|
# BFMatcher initialization
|
857
916
|
bf = cv2.BFMatcher()
|
858
|
-
|
859
917
|
if method == "match": # Cross-check matching
|
860
918
|
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
|
861
919
|
matches = bf.match(descriptors1, descriptors2)
|
@@ -863,13 +921,14 @@ def imgcmp(img: list, method="knn", plot_=True, figsize=[12, 6]):
|
|
863
921
|
|
864
922
|
# Filter good matches
|
865
923
|
good_matches = [
|
866
|
-
m for m in matches if m.distance <
|
924
|
+
m for m in matches if m.distance < thr * matches[-1].distance
|
867
925
|
]
|
868
926
|
|
869
927
|
elif method == "knn": # KNN matching with ratio test
|
928
|
+
bf = cv2.BFMatcher()
|
870
929
|
matches = bf.knnMatch(descriptors1, descriptors2, k=2)
|
871
930
|
# Apply Lowe's ratio test
|
872
|
-
good_matches = [m for m, n in matches if m.distance <
|
931
|
+
good_matches = [m for m, n in matches if m.distance < thr * n.distance]
|
873
932
|
|
874
933
|
# Calculate similarity score
|
875
934
|
similarity_score = len(good_matches) / min(len(keypoints1), len(keypoints2))
|
@@ -887,23 +946,24 @@ def imgcmp(img: list, method="knn", plot_=True, figsize=[12, 6]):
|
|
887
946
|
dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(
|
888
947
|
-1, 1, 2
|
889
948
|
)
|
890
|
-
|
891
|
-
# Calculate Homography using RANSAC
|
892
|
-
homography_matrix, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
|
893
|
-
|
894
949
|
# Apply the homography to image2
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
|
903
|
-
|
904
|
-
|
905
|
-
|
906
|
-
|
950
|
+
try:
|
951
|
+
# Calculate Homography using RANSAC
|
952
|
+
homography_matrix, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
|
953
|
+
h, w = image1.shape[:2]
|
954
|
+
warped_image2 = cv2.warpPerspective(image2, homography_matrix, (w, h))
|
955
|
+
|
956
|
+
# Plot result if needed
|
957
|
+
if plot_:
|
958
|
+
fig, ax = plt.subplots(1, 2, figsize=figsize)
|
959
|
+
ax[0].imshow(cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)) if bool_cvt else ax[0].imshow(image1)
|
960
|
+
ax[0].set_title("Image 1")
|
961
|
+
ax[1].imshow(cv2.cvtColor(warped_image2, cv2.COLOR_BGR2RGB)) if bool_cvt else ax[1].imshow(warped_image2)
|
962
|
+
ax[1].set_title("Warped Image 2")
|
963
|
+
plt.tight_layout()
|
964
|
+
plt.show()
|
965
|
+
except Exception as e:
|
966
|
+
print(e)
|
907
967
|
|
908
968
|
# Plot matches if needed
|
909
969
|
if plot_:
|
@@ -911,28 +971,41 @@ def imgcmp(img: list, method="knn", plot_=True, figsize=[12, 6]):
|
|
911
971
|
image1, keypoints1, image2, keypoints2, good_matches, None, flags=2
|
912
972
|
)
|
913
973
|
plt.figure(figsize=figsize)
|
914
|
-
plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
915
|
-
plt.title(
|
916
|
-
f"Feature Matches ({len(good_matches)} matches, Score: {similarity_score:.4f})"
|
917
|
-
)
|
974
|
+
plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if bool_cvt else plt.imshow(result)
|
975
|
+
plt.title(f"Feature Matches ({len(good_matches)} matches, Score: {similarity_score:.4f})")
|
918
976
|
plt.axis("off")
|
919
977
|
plt.show()
|
920
978
|
# Identify unmatched keypoints
|
921
979
|
matched_idx1 = [m.queryIdx for m in good_matches]
|
922
980
|
matched_idx2 = [m.trainIdx for m in good_matches]
|
923
|
-
|
981
|
+
matched_kp1 = [kp for i, kp in enumerate(keypoints1) if i in matched_idx1]
|
982
|
+
matched_kp2 = [kp for i, kp in enumerate(keypoints2) if i in matched_idx2]
|
924
983
|
unmatched_kp1 = [kp for i, kp in enumerate(keypoints1) if i not in matched_idx1]
|
925
984
|
unmatched_kp2 = [kp for i, kp in enumerate(keypoints2) if i not in matched_idx2]
|
926
985
|
|
927
|
-
# Mark
|
928
|
-
|
986
|
+
# Mark keypoints on the images
|
987
|
+
img1_match = cv2.drawKeypoints(
|
988
|
+
image1,
|
989
|
+
matched_kp1,
|
990
|
+
None,
|
991
|
+
color=(0, 0, 255),
|
992
|
+
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,
|
993
|
+
)
|
994
|
+
img2_match = cv2.drawKeypoints(
|
995
|
+
image2,
|
996
|
+
matched_kp2,
|
997
|
+
None,
|
998
|
+
color=(0, 0, 255),
|
999
|
+
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,
|
1000
|
+
)
|
1001
|
+
img1_unmatch = cv2.drawKeypoints(
|
929
1002
|
image1,
|
930
1003
|
unmatched_kp1,
|
931
1004
|
None,
|
932
1005
|
color=(0, 0, 255),
|
933
1006
|
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,
|
934
1007
|
)
|
935
|
-
|
1008
|
+
img2_unmatch = cv2.drawKeypoints(
|
936
1009
|
image2,
|
937
1010
|
unmatched_kp2,
|
938
1011
|
None,
|
@@ -940,16 +1013,27 @@ def imgcmp(img: list, method="knn", plot_=True, figsize=[12, 6]):
|
|
940
1013
|
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,
|
941
1014
|
)
|
942
1015
|
|
943
|
-
# Display results
|
944
1016
|
if plot_:
|
945
1017
|
fig, ax = plt.subplots(1, 2, figsize=figsize)
|
946
|
-
ax[0].imshow(cv2.cvtColor(
|
1018
|
+
ax[0].imshow(cv2.cvtColor(img1_unmatch, cv2.COLOR_BGR2RGB)) if bool_cvt else ax[0].imshow(img1_unmatch)
|
947
1019
|
ax[0].set_title("Unmatched Keypoints (Image 1)")
|
948
|
-
ax[1].imshow(cv2.cvtColor(
|
1020
|
+
ax[1].imshow(cv2.cvtColor(img2_unmatch, cv2.COLOR_BGR2RGB)) if bool_cvt else ax[1].imshow(img2_unmatch)
|
949
1021
|
ax[1].set_title("Unmatched Keypoints (Image 2)")
|
1022
|
+
ax[0].axis("off")
|
1023
|
+
ax[1].axis("off")
|
950
1024
|
plt.tight_layout()
|
951
1025
|
plt.show()
|
952
|
-
|
1026
|
+
if plot_:
|
1027
|
+
fig, ax = plt.subplots(1, 2, figsize=figsize)
|
1028
|
+
ax[0].imshow(cv2.cvtColor(img1_match, cv2.COLOR_BGR2RGB)) if bool_cvt else ax[0].imshow(img1_match)
|
1029
|
+
ax[0].set_title("Matched Keypoints (Image 1)")
|
1030
|
+
ax[1].imshow(cv2.cvtColor(img2_match, cv2.COLOR_BGR2RGB)) if bool_cvt else ax[1].imshow(img2_match)
|
1031
|
+
ax[1].set_title("Matched Keypoints (Image 2)")
|
1032
|
+
ax[0].axis("off")
|
1033
|
+
ax[1].axis("off")
|
1034
|
+
plt.tight_layout()
|
1035
|
+
plt.show()
|
1036
|
+
return good_matches, similarity_score#, homography_matrix
|
953
1037
|
|
954
1038
|
else:
|
955
1039
|
raise ValueError("Invalid method. Use 'ssim', 'match', or 'knn'.")
|
@@ -969,9 +1053,7 @@ def cn2pinyin(
|
|
969
1053
|
Args:
|
970
1054
|
cn_str (str): Chinese string to convert.
|
971
1055
|
sep (str): Separator for the output Pinyin string.
|
972
|
-
|
973
|
-
"finals","finals_tone","finals_tone2","finals_tone3",
|
974
|
-
"initials","bopomofo","bopomofo_first","cyrillic","pl",
|
1056
|
+
fmt (Style): "normal","tone", "tone2","tone3","finals","finals_tone","finals_tone2","finals_tone3","initials","bopomofo","bopomofo_first","cyrillic","pl",
|
975
1057
|
Returns:
|
976
1058
|
cn_str: The Pinyin representation of the Chinese string.
|
977
1059
|
"""
|
@@ -1224,7 +1306,6 @@ def text2audio(
|
|
1224
1306
|
print(f"Error opening file: {e}")
|
1225
1307
|
print("done")
|
1226
1308
|
|
1227
|
-
|
1228
1309
|
def str2time(time_str, fmt="24"):
|
1229
1310
|
"""
|
1230
1311
|
Convert a time string into the specified format.
|
@@ -3649,8 +3730,8 @@ def get_os(full=False, verbose=False):
|
|
3649
3730
|
import os
|
3650
3731
|
import subprocess
|
3651
3732
|
from datetime import datetime, timedelta
|
3652
|
-
from collections import defaultdict
|
3653
3733
|
|
3734
|
+
|
3654
3735
|
def get_os_type():
|
3655
3736
|
os_name = sys.platform
|
3656
3737
|
if "dar" in os_name:
|
@@ -3663,7 +3744,8 @@ def get_os(full=False, verbose=False):
|
|
3663
3744
|
else:
|
3664
3745
|
print(f"{os_name}, returned 'None'")
|
3665
3746
|
return None
|
3666
|
-
|
3747
|
+
if not full:
|
3748
|
+
return get_os_type()
|
3667
3749
|
def get_os_info():
|
3668
3750
|
"""Get the detailed OS name, version, and other platform-specific details."""
|
3669
3751
|
|
@@ -4074,11 +4156,6 @@ def get_os(full=False, verbose=False):
|
|
4074
4156
|
return res
|
4075
4157
|
|
4076
4158
|
|
4077
|
-
import re
|
4078
|
-
import stat
|
4079
|
-
import platform
|
4080
|
-
|
4081
|
-
|
4082
4159
|
def listdir(
|
4083
4160
|
rootdir,
|
4084
4161
|
kind=None,
|
@@ -4695,57 +4772,64 @@ def is_image(fpath):
|
|
4695
4772
|
Returns:
|
4696
4773
|
bool: True if the file is a recognized image, False otherwise.
|
4697
4774
|
"""
|
4698
|
-
import
|
4775
|
+
from PIL import Image
|
4776
|
+
if isinstance(fpath,str):
|
4777
|
+
import mimetypes
|
4778
|
+
|
4779
|
+
# Known image MIME types
|
4780
|
+
image_mime_types = {
|
4781
|
+
"image/jpeg",
|
4782
|
+
"image/png",
|
4783
|
+
"image/gif",
|
4784
|
+
"image/bmp",
|
4785
|
+
"image/webp",
|
4786
|
+
"image/tiff",
|
4787
|
+
"image/x-icon",
|
4788
|
+
"image/svg+xml",
|
4789
|
+
"image/heic",
|
4790
|
+
"image/heif",
|
4791
|
+
}
|
4699
4792
|
|
4700
|
-
|
4701
|
-
|
4702
|
-
|
4703
|
-
|
4704
|
-
|
4705
|
-
|
4706
|
-
|
4707
|
-
|
4708
|
-
|
4709
|
-
|
4710
|
-
|
4711
|
-
|
4712
|
-
|
4793
|
+
# Known image file extensions
|
4794
|
+
image_extensions = {
|
4795
|
+
".jpg",
|
4796
|
+
".jpeg",
|
4797
|
+
".png",
|
4798
|
+
".gif",
|
4799
|
+
".bmp",
|
4800
|
+
".webp",
|
4801
|
+
".tif",
|
4802
|
+
".tiff",
|
4803
|
+
".ico",
|
4804
|
+
".svg",
|
4805
|
+
".heic",
|
4806
|
+
".heif",
|
4807
|
+
".fig",
|
4808
|
+
".jpg",
|
4809
|
+
}
|
4713
4810
|
|
4714
|
-
|
4715
|
-
|
4716
|
-
".jpg",
|
4717
|
-
".jpeg",
|
4718
|
-
".png",
|
4719
|
-
".gif",
|
4720
|
-
".bmp",
|
4721
|
-
".webp",
|
4722
|
-
".tif",
|
4723
|
-
".tiff",
|
4724
|
-
".ico",
|
4725
|
-
".svg",
|
4726
|
-
".heic",
|
4727
|
-
".heif",
|
4728
|
-
".fig",
|
4729
|
-
".jpg",
|
4730
|
-
}
|
4811
|
+
# Get MIME type using mimetypes
|
4812
|
+
mime_type, _ = mimetypes.guess_type(fpath)
|
4731
4813
|
|
4732
|
-
|
4733
|
-
|
4814
|
+
# Check MIME type
|
4815
|
+
if mime_type in image_mime_types:
|
4816
|
+
return True
|
4734
4817
|
|
4735
|
-
|
4736
|
-
|
4737
|
-
|
4818
|
+
# Fallback: Check file extension
|
4819
|
+
ext = os.path.splitext(fpath)[
|
4820
|
+
-1
|
4821
|
+
].lower() # Get the file extension and ensure lowercase
|
4822
|
+
if ext in image_extensions:
|
4823
|
+
return True
|
4738
4824
|
|
4739
|
-
|
4740
|
-
|
4741
|
-
|
4742
|
-
|
4743
|
-
if ext in image_extensions:
|
4825
|
+
return False
|
4826
|
+
|
4827
|
+
elif isinstance(fpath, Image.Image):
|
4828
|
+
# If the input is a PIL Image object
|
4744
4829
|
return True
|
4745
4830
|
|
4746
4831
|
return False
|
4747
4832
|
|
4748
|
-
|
4749
4833
|
def is_video(fpath):
|
4750
4834
|
"""
|
4751
4835
|
Determine if a given file is a video based on MIME type and file extension.
|
@@ -5055,6 +5139,105 @@ def str2list(str_):
|
|
5055
5139
|
[l.append(x) for x in str_]
|
5056
5140
|
return l
|
5057
5141
|
|
5142
|
+
def str2words(content, method="combined", custom_dict=None, sym_spell_params=None, use_threading=True):
|
5143
|
+
"""
|
5144
|
+
Ultimate text correction function supporting multiple methods,
|
5145
|
+
lists or strings, and domain-specific corrections.
|
5146
|
+
|
5147
|
+
Parameters:
|
5148
|
+
content (str or list): Input text or list of strings to correct.
|
5149
|
+
method (str): Correction method ('textblob', 'sym', 'combined').
|
5150
|
+
custom_dict (dict): Custom dictionary for domain-specific corrections.
|
5151
|
+
sym_spell_params (dict): Parameters for initializing SymSpell.
|
5152
|
+
|
5153
|
+
Returns:
|
5154
|
+
str or list: Corrected text or list of corrected strings.
|
5155
|
+
"""
|
5156
|
+
from textblob import TextBlob
|
5157
|
+
from symspellpy import SymSpell, Verbosity
|
5158
|
+
from functools import lru_cache
|
5159
|
+
import pkg_resources
|
5160
|
+
from concurrent.futures import ThreadPoolExecutor
|
5161
|
+
|
5162
|
+
def initialize_symspell(max_edit_distance=2, prefix_length=7):
|
5163
|
+
"""Initialize SymSpell for advanced spelling correction."""
|
5164
|
+
sym_spell = SymSpell(max_edit_distance, prefix_length)
|
5165
|
+
dictionary_path = pkg_resources.resource_filename(
|
5166
|
+
"symspellpy",
|
5167
|
+
# "frequency_bigramdictionary_en_243_342.txt",
|
5168
|
+
"frequency_dictionary_en_82_765.txt",
|
5169
|
+
)
|
5170
|
+
|
5171
|
+
sym_spell.load_dictionary(dictionary_path, term_index=0, count_index=1)
|
5172
|
+
return sym_spell
|
5173
|
+
|
5174
|
+
def segment_words(text, sym_spell):
|
5175
|
+
"""Segment concatenated words into separate words."""
|
5176
|
+
segmented = sym_spell.word_segmentation(text)
|
5177
|
+
return segmented.corrected_string
|
5178
|
+
|
5179
|
+
@lru_cache(maxsize=1000) # Cache results for repeated corrections
|
5180
|
+
def advanced_correction(word, sym_spell):
|
5181
|
+
"""Correct a single word using SymSpell."""
|
5182
|
+
suggestions = sym_spell.lookup(word, Verbosity.CLOSEST, max_edit_distance=2)
|
5183
|
+
return suggestions[0].term if suggestions else word
|
5184
|
+
|
5185
|
+
def apply_custom_corrections(word, custom_dict):
|
5186
|
+
"""Apply domain-specific corrections using a custom dictionary."""
|
5187
|
+
return custom_dict.get(word.lower(), word)
|
5188
|
+
def preserve_case(original_word, corrected_word):
|
5189
|
+
"""
|
5190
|
+
Preserve the case of the original word in the corrected word.
|
5191
|
+
"""
|
5192
|
+
if original_word.isupper():
|
5193
|
+
return corrected_word.upper()
|
5194
|
+
elif original_word[0].isupper():
|
5195
|
+
return corrected_word.capitalize()
|
5196
|
+
else:
|
5197
|
+
return corrected_word.lower()
|
5198
|
+
def process_string(text, method, sym_spell=None, custom_dict=None):
|
5199
|
+
"""
|
5200
|
+
Process a single string for spelling corrections.
|
5201
|
+
Handles TextBlob, SymSpell, and custom corrections.
|
5202
|
+
"""
|
5203
|
+
if method in ("sym", "combined") and sym_spell:
|
5204
|
+
text = segment_words(text, sym_spell)
|
5205
|
+
|
5206
|
+
if method in ("textblob", "combined"):
|
5207
|
+
text = str(TextBlob(text).correct())
|
5208
|
+
|
5209
|
+
corrected_words = []
|
5210
|
+
for word in text.split():
|
5211
|
+
original_word = word
|
5212
|
+
if method in ("sym", "combined") and sym_spell:
|
5213
|
+
word = advanced_correction(word, sym_spell)
|
5214
|
+
|
5215
|
+
# Step 3: Apply custom corrections
|
5216
|
+
if custom_dict:
|
5217
|
+
word = apply_custom_corrections(word, custom_dict)
|
5218
|
+
# Preserve original case
|
5219
|
+
word = preserve_case(original_word, word)
|
5220
|
+
corrected_words.append(word)
|
5221
|
+
|
5222
|
+
return " ".join(corrected_words)
|
5223
|
+
|
5224
|
+
# Initialize SymSpell if needed
|
5225
|
+
sym_spell = None
|
5226
|
+
if method in ("sym", "combined"):
|
5227
|
+
if not sym_spell_params:
|
5228
|
+
sym_spell_params = {"max_edit_distance": 2, "prefix_length": 7}
|
5229
|
+
sym_spell = initialize_symspell(**sym_spell_params)
|
5230
|
+
|
5231
|
+
# Process lists or strings
|
5232
|
+
if isinstance(content, list):
|
5233
|
+
if use_threading:
|
5234
|
+
with ThreadPoolExecutor() as executor:
|
5235
|
+
corrected_content = list(executor.map(lambda x: process_string(x, method, sym_spell, custom_dict), content))
|
5236
|
+
return corrected_content
|
5237
|
+
else:
|
5238
|
+
return [process_string(item, method, sym_spell, custom_dict) for item in content]
|
5239
|
+
else:
|
5240
|
+
return process_string(content, method, sym_spell, custom_dict)
|
5058
5241
|
|
5059
5242
|
def load_img(fpath):
|
5060
5243
|
"""
|
@@ -5078,7 +5261,7 @@ def load_img(fpath):
|
|
5078
5261
|
raise OSError(f"Unable to open file '{fpath}' or it is not a valid image file.")
|
5079
5262
|
|
5080
5263
|
|
5081
|
-
def apply_filter(img, *args):
|
5264
|
+
def apply_filter(img, *args,verbose=True):
|
5082
5265
|
# def apply_filter(img, filter_name, filter_value=None):
|
5083
5266
|
"""
|
5084
5267
|
Apply the specified filter to the image.
|
@@ -5092,7 +5275,7 @@ def apply_filter(img, *args):
|
|
5092
5275
|
from PIL import ImageFilter
|
5093
5276
|
|
5094
5277
|
def correct_filter_name(filter_name):
|
5095
|
-
if "
|
5278
|
+
if all(["b" in filter_name.lower(),"ur" in filter_name.lower(), "box" not in filter_name.lower()]):
|
5096
5279
|
return "BLUR"
|
5097
5280
|
elif "cont" in filter_name.lower():
|
5098
5281
|
return "Contour"
|
@@ -5156,10 +5339,11 @@ def apply_filter(img, *args):
|
|
5156
5339
|
|
5157
5340
|
for arg in args:
|
5158
5341
|
if isinstance(arg, str):
|
5159
|
-
filter_name = arg
|
5160
|
-
filter_name = correct_filter_name(filter_name)
|
5342
|
+
filter_name = correct_filter_name(arg)
|
5161
5343
|
else:
|
5162
5344
|
filter_value = arg
|
5345
|
+
if verbose:
|
5346
|
+
print(f'processing {filter_name}')
|
5163
5347
|
filter_name = filter_name.upper() # Ensure filter name is uppercase
|
5164
5348
|
|
5165
5349
|
# Supported filters
|
@@ -5203,7 +5387,7 @@ def apply_filter(img, *args):
|
|
5203
5387
|
bands = filter_value if filter_value is not None else None
|
5204
5388
|
return img.filter(supported_filters[filter_name](bands))
|
5205
5389
|
else:
|
5206
|
-
if filter_value is not None:
|
5390
|
+
if filter_value is not None and verbose:
|
5207
5391
|
print(
|
5208
5392
|
f"{filter_name} doesn't require a value for {filter_value}, but it remains unaffected"
|
5209
5393
|
)
|
@@ -5220,6 +5404,8 @@ def detect_angle(image, by="median", template=None):
|
|
5220
5404
|
import cv2
|
5221
5405
|
|
5222
5406
|
# Convert to grayscale
|
5407
|
+
if np.array(image).shape[-1]>3:
|
5408
|
+
image=np.array(image)[:,:,:3]
|
5223
5409
|
gray_image = rgb2gray(image)
|
5224
5410
|
|
5225
5411
|
# Detect edges using Canny edge detector
|
@@ -5231,9 +5417,10 @@ def detect_angle(image, by="median", template=None):
|
|
5231
5417
|
if not lines and any(["me" in by, "pca" in by]):
|
5232
5418
|
print("No lines detected. Adjust the edge detection parameters.")
|
5233
5419
|
return 0
|
5234
|
-
|
5420
|
+
methods=['mean','median','pca','gradient orientation','template matching','moments','fft']
|
5421
|
+
by=strcmp(by, methods)[0]
|
5235
5422
|
# Hough Transform-based angle detection (Median/Mean)
|
5236
|
-
if "me" in by:
|
5423
|
+
if "me" in by.lower():
|
5237
5424
|
angles = []
|
5238
5425
|
for line in lines:
|
5239
5426
|
(x0, y0), (x1, y1) = line
|
@@ -5256,7 +5443,7 @@ def detect_angle(image, by="median", template=None):
|
|
5256
5443
|
return rotation_angle
|
5257
5444
|
|
5258
5445
|
# PCA-based angle detection
|
5259
|
-
elif "pca" in by:
|
5446
|
+
elif "pca" in by.lower():
|
5260
5447
|
y, x = np.nonzero(edges)
|
5261
5448
|
if len(x) == 0:
|
5262
5449
|
return 0
|
@@ -5266,14 +5453,14 @@ def detect_angle(image, by="median", template=None):
|
|
5266
5453
|
return angle
|
5267
5454
|
|
5268
5455
|
# Gradient Orientation-based angle detection
|
5269
|
-
elif "gra" in by:
|
5456
|
+
elif "gra" in by.lower():
|
5270
5457
|
gx, gy = np.gradient(gray_image)
|
5271
5458
|
angles = np.arctan2(gy, gx) * 180 / np.pi
|
5272
5459
|
hist, bin_edges = np.histogram(angles, bins=360, range=(-180, 180))
|
5273
5460
|
return bin_edges[np.argmax(hist)]
|
5274
5461
|
|
5275
5462
|
# Template Matching-based angle detection
|
5276
|
-
elif "temp" in by:
|
5463
|
+
elif "temp" in by.lower():
|
5277
5464
|
if template is None:
|
5278
5465
|
# Automatically extract a template from the center of the image
|
5279
5466
|
height, width = gray_image.shape
|
@@ -5296,7 +5483,7 @@ def detect_angle(image, by="median", template=None):
|
|
5296
5483
|
return best_angle
|
5297
5484
|
|
5298
5485
|
# Image Moments-based angle detection
|
5299
|
-
elif "mo" in by:
|
5486
|
+
elif "mo" in by.lower():
|
5300
5487
|
moments = measure.moments_central(gray_image)
|
5301
5488
|
angle = (
|
5302
5489
|
0.5
|
@@ -5307,7 +5494,7 @@ def detect_angle(image, by="median", template=None):
|
|
5307
5494
|
return angle
|
5308
5495
|
|
5309
5496
|
# Fourier Transform-based angle detection
|
5310
|
-
elif "fft" in by:
|
5497
|
+
elif "fft" in by.lower():
|
5311
5498
|
f = fft2(gray_image)
|
5312
5499
|
fshift = fftshift(f)
|
5313
5500
|
magnitude_spectrum = np.log(np.abs(fshift) + 1)
|
@@ -5317,11 +5504,21 @@ def detect_angle(image, by="median", template=None):
|
|
5317
5504
|
return angle
|
5318
5505
|
|
5319
5506
|
else:
|
5320
|
-
print(f"Unknown method {by}")
|
5507
|
+
print(f"Unknown method {by}: supported methods: {methods}")
|
5321
5508
|
return 0
|
5322
5509
|
|
5323
5510
|
|
5324
|
-
def imgsets(img,
|
5511
|
+
def imgsets(img,
|
5512
|
+
auto:bool=True,
|
5513
|
+
size=None,
|
5514
|
+
figsize=None,
|
5515
|
+
dpi:int=200,
|
5516
|
+
show_axis:bool=False,
|
5517
|
+
plot_:bool=True,
|
5518
|
+
verbose:bool=False,
|
5519
|
+
model:str="isnet-general-use",
|
5520
|
+
**kwargs,
|
5521
|
+
):
|
5325
5522
|
"""
|
5326
5523
|
Apply various enhancements and filters to an image using PIL's ImageEnhance and ImageFilter modules.
|
5327
5524
|
|
@@ -5355,6 +5552,9 @@ def imgsets(img, **kwargs):
|
|
5355
5552
|
Note:
|
5356
5553
|
The "color" and "enhance" enhancements are not implemented in this function.
|
5357
5554
|
"""
|
5555
|
+
|
5556
|
+
import matplotlib.pyplot as plt
|
5557
|
+
from PIL import ImageEnhance, ImageOps,Image
|
5358
5558
|
supported_filters = [
|
5359
5559
|
"BLUR",
|
5360
5560
|
"CONTOUR",
|
@@ -5374,62 +5574,92 @@ def imgsets(img, **kwargs):
|
|
5374
5574
|
"BOX_BLUR",
|
5375
5575
|
"MEDIAN_FILTER",
|
5376
5576
|
]
|
5377
|
-
|
5378
|
-
|
5379
|
-
|
5380
|
-
|
5381
|
-
|
5382
|
-
|
5383
|
-
|
5384
|
-
|
5385
|
-
|
5386
|
-
|
5387
|
-
|
5388
|
-
|
5389
|
-
|
5390
|
-
|
5391
|
-
|
5392
|
-
|
5393
|
-
|
5394
|
-
|
5395
|
-
|
5396
|
-
|
5397
|
-
|
5398
|
-
|
5577
|
+
# *Rembg is a tool to remove images background.
|
5578
|
+
# https://github.com/danielgatis/rembg
|
5579
|
+
rem_models = {
|
5580
|
+
"u2net": "general use cases.",
|
5581
|
+
"u2netp": "A lightweight version of u2net model.",
|
5582
|
+
"u2net_human_seg": "human segmentation.",
|
5583
|
+
"u2net_cloth_seg": "Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.",
|
5584
|
+
"silueta": "Same as u2net but the size is reduced to 43Mb.",
|
5585
|
+
"isnet-general-use": "A new pre-trained model for general use cases.",
|
5586
|
+
"isnet-anime": "A high-accuracy segmentation for anime character.",
|
5587
|
+
"sam": "any use cases.",
|
5588
|
+
"birefnet-general": "general use cases.",
|
5589
|
+
"birefnet-general-lite": "A light pre-trained model for general use cases.",
|
5590
|
+
"birefnet-portrait": "human portraits.",
|
5591
|
+
"birefnet-dis": "dichotomous image segmentation (DIS).",
|
5592
|
+
"birefnet-hrsod": "high-resolution salient object detection (HRSOD).",
|
5593
|
+
"birefnet-cod": "concealed object detection (COD).",
|
5594
|
+
"birefnet-massive": "A pre-trained model with massive dataset.",
|
5595
|
+
}
|
5596
|
+
models_support_rem=list(rem_models.keys())
|
5597
|
+
|
5598
|
+
str_usage="""
|
5599
|
+
imgsets(dir_img, auto=1, color=1.5, plot_=0)
|
5600
|
+
imgsets(dir_img, color=2)
|
5601
|
+
imgsets(dir_img, pad=(300, 300), bgcolor=(73, 162, 127), plot_=0)
|
5602
|
+
imgsets(dir_img, contrast=0, color=1.2, plot_=0)
|
5603
|
+
imgsets(get_clip(), flip="tb")# flip top and bottom
|
5604
|
+
imgsets(get_clip(), contrast=1, rm=[100, 5, 2]) #'foreground_threshold', 'background_threshold' and 'erode_structure_size'
|
5605
|
+
imgsets(dir_img, rm="birefnet-portrait") # with using custom model
|
5606
|
+
"""
|
5607
|
+
if run_once_within():
|
5608
|
+
print(str_usage)
|
5399
5609
|
|
5610
|
+
def gamma_correction(image, gamma=1.0, v_max=255):
|
5611
|
+
# adjust gama value
|
5612
|
+
inv_gamma = 1.0 / gamma
|
5613
|
+
lut = [int((i / float(v_max)) ** inv_gamma * int(v_max)) for i in range(int(v_max))]
|
5614
|
+
return lut #image.point(lut)
|
5400
5615
|
def auto_enhance(img):
|
5401
5616
|
"""
|
5402
|
-
Automatically enhances the image based on its characteristics
|
5617
|
+
Automatically enhances the image based on its characteristics, including brightness,
|
5618
|
+
contrast, color range, sharpness, and gamma correction.
|
5619
|
+
|
5403
5620
|
Args:
|
5404
5621
|
img (PIL.Image): The input image.
|
5622
|
+
|
5405
5623
|
Returns:
|
5406
|
-
dict: A dictionary containing the optimal enhancement values.
|
5624
|
+
dict: A dictionary containing the optimal enhancement values applied.
|
5625
|
+
PIL.Image: The enhanced image.
|
5407
5626
|
"""
|
5627
|
+
from PIL import Image, ImageEnhance, ImageOps, ImageFilter
|
5628
|
+
import numpy as np
|
5408
5629
|
# Determine the bit depth based on the image mode
|
5409
|
-
|
5410
|
-
|
5411
|
-
|
5412
|
-
|
5413
|
-
|
5630
|
+
try:
|
5631
|
+
if img.mode in ["1", "L", "P", "RGB", "YCbCr", "LAB", "HSV"]:
|
5632
|
+
bit_depth = 8
|
5633
|
+
elif img.mode in ["RGBA", "CMYK"]:
|
5634
|
+
bit_depth = 8
|
5635
|
+
elif img.mode in ["I", "F"]:
|
5636
|
+
bit_depth = 16
|
5637
|
+
else:
|
5638
|
+
raise ValueError("Unsupported image mode")
|
5639
|
+
except:
|
5414
5640
|
bit_depth = 8
|
5415
|
-
|
5416
|
-
|
5417
|
-
|
5418
|
-
|
5419
|
-
|
5420
|
-
|
5641
|
+
|
5642
|
+
# Initialize enhancement factors
|
5643
|
+
enhancements = {
|
5644
|
+
"brightness": 1.0,
|
5645
|
+
"contrast": 0,# autocontrasted
|
5646
|
+
"color": 1.35,
|
5647
|
+
"sharpness": 1.0,
|
5648
|
+
"gamma": 1.0
|
5649
|
+
}
|
5650
|
+
|
5651
|
+
# Calculate brightness and contrast for each channel
|
5421
5652
|
num_channels = len(img.getbands())
|
5422
5653
|
brightness_factors = []
|
5423
5654
|
contrast_factors = []
|
5424
5655
|
for channel in range(num_channels):
|
5425
5656
|
channel_histogram = img.split()[channel].histogram()
|
5426
|
-
|
5427
|
-
|
5428
|
-
)
|
5657
|
+
total_pixels = sum(channel_histogram)
|
5658
|
+
brightness = sum(i * w for i, w in enumerate(channel_histogram)) / total_pixels
|
5429
5659
|
channel_min, channel_max = img.split()[channel].getextrema()
|
5430
5660
|
contrast = channel_max - channel_min
|
5431
5661
|
# Adjust calculations based on bit depth
|
5432
|
-
normalization_factor = 2**bit_depth - 1
|
5662
|
+
normalization_factor = 2**bit_depth - 1
|
5433
5663
|
brightness_factor = (
|
5434
5664
|
1.0 + (brightness - normalization_factor / 2) / normalization_factor
|
5435
5665
|
)
|
@@ -5438,37 +5668,62 @@ def imgsets(img, **kwargs):
|
|
5438
5668
|
)
|
5439
5669
|
brightness_factors.append(brightness_factor)
|
5440
5670
|
contrast_factors.append(contrast_factor)
|
5441
|
-
# Calculate the average brightness and contrast factors across channels
|
5442
|
-
avg_brightness_factor = sum(brightness_factors) / num_channels
|
5443
|
-
avg_contrast_factor = sum(contrast_factors) / num_channels
|
5444
|
-
return {"brightness": avg_brightness_factor, "contrast": avg_contrast_factor}
|
5445
5671
|
|
5446
|
-
|
5447
|
-
|
5672
|
+
# Calculate average brightness and contrast factors across channels
|
5673
|
+
enhancements["brightness"] = sum(brightness_factors) / num_channels
|
5674
|
+
# Adjust brightness and contrast
|
5675
|
+
img = ImageEnhance.Brightness(img).enhance(enhancements["brightness"])
|
5676
|
+
|
5677
|
+
# # Automatic color enhancement (saturation)
|
5678
|
+
# if img.mode == "RGB":
|
5679
|
+
# color_enhancer = ImageEnhance.Color(img)
|
5680
|
+
# color_histogram = np.array(img.histogram()).reshape(3, -1)
|
5681
|
+
# avg_saturation = np.mean([np.std(channel) for channel in color_histogram]) / normalization_factor
|
5682
|
+
# print(avg_saturation)
|
5683
|
+
# enhancements["color"] = min(0, max(0.5, 1.0 + avg_saturation)) # Clamp to a reasonable range
|
5684
|
+
# # img = color_enhancer.enhance(enhancements["color"])
|
5685
|
+
|
5686
|
+
# Adjust sharpness
|
5687
|
+
sharpness_enhancer = ImageEnhance.Sharpness(img)
|
5688
|
+
# Use edge detection to estimate sharpness need
|
5689
|
+
edges = img.filter(ImageFilter.FIND_EDGES).convert("L")
|
5690
|
+
avg_edge_intensity = np.mean(np.array(edges))
|
5691
|
+
enhancements["sharpness"] = min(2.0, max(0.5, 1.0 + avg_edge_intensity / normalization_factor))
|
5692
|
+
# img = sharpness_enhancer.enhance(enhancements["sharpness"])
|
5693
|
+
|
5694
|
+
# # Apply gamma correction
|
5695
|
+
# def gamma_correction(image, gamma):
|
5696
|
+
# inv_gamma = 1.0 / gamma
|
5697
|
+
# lut = [min(255, max(0, int((i / 255.0) ** inv_gamma * 255))) for i in range(256)]
|
5698
|
+
# return image.point(lut)
|
5699
|
+
|
5700
|
+
# avg_brightness = np.mean(np.array(img.convert("L"))) / 255
|
5701
|
+
# enhancements["gamma"] = min(2.0, max(0.5, 1.0 if avg_brightness > 0.5 else 1.2 - avg_brightness))
|
5702
|
+
# img = gamma_correction(img, enhancements["gamma"])
|
5703
|
+
|
5704
|
+
# Return the enhancements and the enhanced image
|
5705
|
+
return enhancements
|
5706
|
+
|
5448
5707
|
|
5449
5708
|
# Load image if input is a file path
|
5450
5709
|
if isinstance(img, str):
|
5451
5710
|
img = load_img(img)
|
5452
|
-
img_update = img.copy()
|
5453
|
-
# Auto-enhance image if requested
|
5454
|
-
|
5455
|
-
auto = kwargs.get("auto", False)
|
5456
|
-
show = kwargs.get("show", True)
|
5457
|
-
show_axis = kwargs.get("show_axis", False)
|
5458
|
-
size = kwargs.get("size", None)
|
5459
|
-
figsize = kwargs.get("figsize", None)
|
5460
|
-
dpi = kwargs.get("dpi", 100)
|
5711
|
+
img_update = img.copy()
|
5461
5712
|
|
5462
5713
|
if auto:
|
5463
5714
|
kwargs = {**auto_enhance(img_update), **kwargs}
|
5464
|
-
|
5715
|
+
params=["sharp","color","contrast","bright","crop","rotate",'size',"resize",
|
5716
|
+
"thumbnail","cover","contain","filter","fit","pad",
|
5717
|
+
"rem","rm","back","bg_color","cut",'gamma','flip']
|
5465
5718
|
for k, value in kwargs.items():
|
5719
|
+
k = strcmp(k, params)[0] # correct the param name
|
5466
5720
|
if "shar" in k.lower():
|
5467
5721
|
enhancer = ImageEnhance.Sharpness(img_update)
|
5468
5722
|
img_update = enhancer.enhance(value)
|
5469
5723
|
elif all(
|
5470
5724
|
["col" in k.lower(), "bg" not in k.lower(), "background" not in k.lower()]
|
5471
5725
|
):
|
5726
|
+
# *color
|
5472
5727
|
enhancer = ImageEnhance.Color(img_update)
|
5473
5728
|
img_update = enhancer.enhance(value)
|
5474
5729
|
elif "contr" in k.lower():
|
@@ -5476,8 +5731,11 @@ def imgsets(img, **kwargs):
|
|
5476
5731
|
enhancer = ImageEnhance.Contrast(img_update)
|
5477
5732
|
img_update = enhancer.enhance(value)
|
5478
5733
|
else:
|
5479
|
-
|
5480
|
-
|
5734
|
+
try:
|
5735
|
+
img_update = ImageOps.autocontrast(img_update)
|
5736
|
+
print("autocontrasted")
|
5737
|
+
except Exception as e:
|
5738
|
+
print(f"Failed 'autocontrasted':{e}")
|
5481
5739
|
elif "bri" in k.lower():
|
5482
5740
|
enhancer = ImageEnhance.Brightness(img_update)
|
5483
5741
|
img_update = enhancer.enhance(value)
|
@@ -5488,7 +5746,13 @@ def imgsets(img, **kwargs):
|
|
5488
5746
|
value = detect_angle(img_update, by=value)
|
5489
5747
|
print(f"rotated by {value}°")
|
5490
5748
|
img_update = img_update.rotate(value)
|
5491
|
-
|
5749
|
+
elif 'flip' in k.lower():
|
5750
|
+
if 'l' in value and 'r' in value:
|
5751
|
+
# left/right
|
5752
|
+
img_update = img_update.transpose(Image.FLIP_LEFT_RIGHT)
|
5753
|
+
elif any(['u' in value and'd' in value, 't' in value and 'b' in value]):
|
5754
|
+
# up/down or top/bottom
|
5755
|
+
img_update = img_update.transpose(Image.FLIP_TOP_BOTTOM)
|
5492
5756
|
elif "si" in k.lower():
|
5493
5757
|
if isinstance(value, tuple):
|
5494
5758
|
value = list(value)
|
@@ -5500,36 +5764,44 @@ def imgsets(img, **kwargs):
|
|
5500
5764
|
img_update = ImageOps.cover(img_update, size=value)
|
5501
5765
|
elif "contain" in k.lower():
|
5502
5766
|
img_update = ImageOps.contain(img_update, size=value)
|
5503
|
-
elif "
|
5767
|
+
elif "fi" in k.lower() and "t" in k.lower(): # filter
|
5504
5768
|
if isinstance(value, dict):
|
5769
|
+
if verbose:
|
5770
|
+
print(f"supported filter: {supported_filters}")
|
5505
5771
|
for filter_name, filter_value in value.items():
|
5506
|
-
img_update = apply_filter(img_update, filter_name, filter_value)
|
5772
|
+
img_update = apply_filter(img_update, filter_name, filter_value,verbose=verbose)
|
5507
5773
|
else:
|
5508
5774
|
img_update = ImageOps.fit(img_update, size=value)
|
5509
5775
|
elif "pad" in k.lower():
|
5776
|
+
# *ImageOps.pad ensures that the resized image has the exact size specified by the size parameter while maintaining the aspect ratio.
|
5777
|
+
# size: A tuple specifying the target size (width, height).
|
5510
5778
|
img_update = ImageOps.pad(img_update, size=value)
|
5511
5779
|
elif "rem" in k.lower() or "rm" in k.lower() or "back" in k.lower():
|
5512
5780
|
from rembg import remove, new_session
|
5513
|
-
|
5781
|
+
if verbose:
|
5782
|
+
preview(rem_models)
|
5783
|
+
model=strcmp(model, models_support_rem)[0]
|
5784
|
+
session = new_session(model)
|
5514
5785
|
if isinstance(value, bool):
|
5515
|
-
session = new_session("isnet-general-use")
|
5516
5786
|
img_update = remove(img_update, session=session)
|
5517
5787
|
elif value and isinstance(value, (int, float, list)):
|
5518
|
-
|
5788
|
+
if verbose:
|
5789
|
+
print("https://github.com/danielgatis/rembg/blob/main/USAGE.md")
|
5790
|
+
print(f"rm=True # using default setting;\nrm=(240,10,10)\n'foreground_threshold'(240) and 'background_threshold' (10) values used to determine foreground and background pixels. \nThe 'erode_structure_size'(10) parameter specifies the size of the erosion structure to be applied to the mask.")
|
5519
5791
|
if isinstance(value, int):
|
5520
5792
|
value = [value]
|
5521
5793
|
if len(value) < 2:
|
5522
5794
|
img_update = remove(
|
5523
5795
|
img_update,
|
5524
5796
|
alpha_matting=True,
|
5525
|
-
alpha_matting_background_threshold=value,
|
5797
|
+
alpha_matting_background_threshold=value, session=session
|
5526
5798
|
)
|
5527
5799
|
elif 2 <= len(value) < 3:
|
5528
5800
|
img_update = remove(
|
5529
5801
|
img_update,
|
5530
5802
|
alpha_matting=True,
|
5531
5803
|
alpha_matting_background_threshold=value[0],
|
5532
|
-
alpha_matting_foreground_threshold=value[1],
|
5804
|
+
alpha_matting_foreground_threshold=value[1], session=session
|
5533
5805
|
)
|
5534
5806
|
elif 3 <= len(value) < 4:
|
5535
5807
|
img_update = remove(
|
@@ -5537,17 +5809,15 @@ def imgsets(img, **kwargs):
|
|
5537
5809
|
alpha_matting=True,
|
5538
5810
|
alpha_matting_background_threshold=value[0],
|
5539
5811
|
alpha_matting_foreground_threshold=value[1],
|
5540
|
-
alpha_matting_erode_size=value[2],
|
5812
|
+
alpha_matting_erode_size=value[2], session=session
|
5541
5813
|
)
|
5542
5814
|
elif isinstance(value, tuple): # replace the background color
|
5543
5815
|
if len(value) == 3:
|
5544
5816
|
value += (255,)
|
5545
|
-
img_update = remove(img_update, bgcolor=value)
|
5817
|
+
img_update = remove(img_update, bgcolor=value, session=session)
|
5546
5818
|
elif isinstance(value, str):
|
5547
|
-
|
5548
|
-
|
5549
|
-
else:
|
5550
|
-
img_update = remove(img_update)
|
5819
|
+
# use custom model
|
5820
|
+
img_update = remove(img_update, session=new_session(strcmp(value, models_support_rem)[0]))
|
5551
5821
|
elif "bg" in k.lower() and "color" in k.lower():
|
5552
5822
|
from rembg import remove
|
5553
5823
|
|
@@ -5557,8 +5827,11 @@ def imgsets(img, **kwargs):
|
|
5557
5827
|
if len(value) == 3:
|
5558
5828
|
value += (255,)
|
5559
5829
|
img_update = remove(img_update, bgcolor=value)
|
5830
|
+
|
5831
|
+
# elif "ga" in k.lower() and "m" in k.lower():
|
5832
|
+
# img_update = gamma_correction(img_update, gamma=value)
|
5560
5833
|
# Display the image if requested
|
5561
|
-
if
|
5834
|
+
if plot_:
|
5562
5835
|
if figsize is None:
|
5563
5836
|
plt.figure(dpi=dpi)
|
5564
5837
|
else:
|
@@ -9944,13 +10217,17 @@ def get_loc(input_data, user_agent="0413@mygmail.com)", verbose=True):
|
|
9944
10217
|
# Case 1: Input is a city name (string)
|
9945
10218
|
if isinstance(input_data, str) and not re.match(r"^\d+(\.\d+)?$", input_data):
|
9946
10219
|
location = geolocator.geocode(input_data)
|
9947
|
-
|
9948
|
-
|
9949
|
-
|
9950
|
-
|
9951
|
-
|
9952
|
-
|
9953
|
-
|
10220
|
+
try:
|
10221
|
+
if verbose:
|
10222
|
+
print(
|
10223
|
+
f"Latitude and Longitude for {input_data}: {location.latitude}, {location.longitude}"
|
10224
|
+
)
|
10225
|
+
else:
|
10226
|
+
print(f"Could not find {input_data}.")
|
10227
|
+
return location
|
10228
|
+
except Exception as e:
|
10229
|
+
print(f'Error: {e}')
|
10230
|
+
return
|
9954
10231
|
|
9955
10232
|
# Case 2: Input is latitude and longitude (float or tuple)
|
9956
10233
|
elif isinstance(input_data, (float, tuple)):
|
@@ -10144,3 +10421,311 @@ def depass(encrypted_code: str, method: str = "AES", key: str = None):
|
|
10144
10421
|
raise ValueError("SHA256 is a hash function and cannot be decrypted.")
|
10145
10422
|
else:
|
10146
10423
|
raise ValueError("Unsupported decryption method")
|
10424
|
+
|
10425
|
+
def get_clip(dir_save=None):
|
10426
|
+
"""
|
10427
|
+
Master function to extract content from the clipboard (text, URL, or image).
|
10428
|
+
|
10429
|
+
Parameters:
|
10430
|
+
dir_save (str, optional): If an image is found, save it to this path.
|
10431
|
+
|
10432
|
+
Returns:
|
10433
|
+
dict: A dictionary with extracted content:
|
10434
|
+
{
|
10435
|
+
"type": "text" | "url" | "image" | "none",
|
10436
|
+
"content": <str|Image|None>,
|
10437
|
+
"saved_to": <str|None> # Path if an image is saved
|
10438
|
+
}
|
10439
|
+
"""
|
10440
|
+
result = {"type": "none", "content": None, "saved_to": None}
|
10441
|
+
|
10442
|
+
try:
|
10443
|
+
import pyperclip
|
10444
|
+
from PIL import ImageGrab, Image
|
10445
|
+
import validators
|
10446
|
+
# 1. Check for text in the clipboard
|
10447
|
+
clipboard_content = pyperclip.paste()
|
10448
|
+
if clipboard_content:
|
10449
|
+
if validators.url(clipboard_content.strip()):
|
10450
|
+
result["type"] = "url"
|
10451
|
+
result["content"] = clipboard_content.strip()
|
10452
|
+
|
10453
|
+
else:
|
10454
|
+
result["type"] = "text"
|
10455
|
+
result["content"] = clipboard_content.strip()
|
10456
|
+
return clipboard_content.strip()
|
10457
|
+
|
10458
|
+
# 2. Check for image in the clipboard
|
10459
|
+
image = ImageGrab.grabclipboard()
|
10460
|
+
if isinstance(image, Image.Image):
|
10461
|
+
result["type"] = "image"
|
10462
|
+
result["content"] = image
|
10463
|
+
if dir_save:
|
10464
|
+
image.save(dir_save)
|
10465
|
+
result["saved_to"] = dir_save
|
10466
|
+
print(f"Image saved to {dir_save}.")
|
10467
|
+
else:
|
10468
|
+
print("Image detected in clipboard but not saved.")
|
10469
|
+
return image
|
10470
|
+
print("No valid text, URL, or image found in clipboard.")
|
10471
|
+
return result
|
10472
|
+
|
10473
|
+
except Exception as e:
|
10474
|
+
print(f"An error occurred: {e}")
|
10475
|
+
return result
|
10476
|
+
|
10477
|
+
def keyboard(*args, action='press', n_click=1,interval=0,verbose=False,**kwargs):
|
10478
|
+
"""
|
10479
|
+
Simulates keyboard input using pyautogui.
|
10480
|
+
|
10481
|
+
Parameters:
|
10482
|
+
input_key (str): The key to simulate. Check the list of supported keys with verbose=True.
|
10483
|
+
action (str): The action to perform. Options are 'press', 'keyDown', or 'keyUp'.
|
10484
|
+
n_click (int): Number of times to press the key (only for 'press' action).
|
10485
|
+
interval (float): Time interval between key presses for 'press' action.
|
10486
|
+
verbose (bool): Print detailed output, including supported keys and debug info.
|
10487
|
+
kwargs: Additional arguments (reserved for future extensions).
|
10488
|
+
|
10489
|
+
keyboard("command", "d", action="shorcut")
|
10490
|
+
"""
|
10491
|
+
import pyautogui
|
10492
|
+
input_key = args
|
10493
|
+
|
10494
|
+
actions = ['press','keyDown','keyUp', 'hold','release', 'hotkey','shortcut']
|
10495
|
+
action = strcmp(action,actions)[0]
|
10496
|
+
keyboard_keys_=['\t', '\n', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(',
|
10497
|
+
')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7',
|
10498
|
+
'8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`',
|
10499
|
+
'a', 'b', 'c', 'd', 'e','f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
|
10500
|
+
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~',
|
10501
|
+
'accept', 'add', 'alt', 'altleft', 'altright', 'apps', 'backspace',
|
10502
|
+
'browserback', 'browserfavorites', 'browserforward', 'browserhome',
|
10503
|
+
'browserrefresh', 'browsersearch', 'browserstop', 'capslock', 'clear',
|
10504
|
+
'convert', 'ctrl', 'ctrlleft', 'ctrlright', 'decimal', 'del', 'delete',
|
10505
|
+
'divide', 'down', 'end', 'enter', 'esc', 'escape', 'execute', 'f1', 'f10',
|
10506
|
+
'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f2', 'f20',
|
10507
|
+
'f21', 'f22', 'f23', 'f24', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9',
|
10508
|
+
'final', 'fn', 'hanguel', 'hangul', 'hanja', 'help', 'home', 'insert', 'junja',
|
10509
|
+
'kana', 'kanji', 'launchapp1', 'launchapp2', 'launchmail',
|
10510
|
+
'launchmediaselect', 'left', 'modechange', 'multiply', 'nexttrack',
|
10511
|
+
'nonconvert', 'num0', 'num1', 'num2', 'num3', 'num4', 'num5', 'num6',
|
10512
|
+
'num7', 'num8', 'num9', 'numlock', 'pagedown', 'pageup', 'pause', 'pgdn',
|
10513
|
+
'pgup', 'playpause', 'prevtrack', 'print', 'printscreen', 'prntscrn',
|
10514
|
+
'prtsc', 'prtscr', 'return', 'right', 'scrolllock', 'select', 'separator',
|
10515
|
+
'shift', 'shiftleft', 'shiftright', 'sleep', 'space', 'stop', 'subtract', 'tab',
|
10516
|
+
'up', 'volumedown', 'volumemute', 'volumeup', 'win', 'winleft', 'winright', 'yen',
|
10517
|
+
'command', 'option', 'optionleft', 'optionright']
|
10518
|
+
if verbose:
|
10519
|
+
print(f"supported keys: {keyboard_keys_}")
|
10520
|
+
|
10521
|
+
if action not in ['hotkey','shortcut']:
|
10522
|
+
if not isinstance(input_key, list):
|
10523
|
+
input_key=list(input_key)
|
10524
|
+
input_key = [strcmp(i, keyboard_keys_)[0] for i in input_key ]
|
10525
|
+
|
10526
|
+
# correct action
|
10527
|
+
cmd_keys = ['command', 'option', 'optionleft', 'optionright','win', 'winleft', 'winright','ctrl', 'ctrlleft', 'ctrlright']
|
10528
|
+
try:
|
10529
|
+
if any([i in cmd_keys for i in input_key]):
|
10530
|
+
action='hotkey'
|
10531
|
+
except:
|
10532
|
+
pass
|
10533
|
+
|
10534
|
+
print(f"\n{action}: {input_key}")
|
10535
|
+
# keyboard
|
10536
|
+
if action in ["press"]:
|
10537
|
+
# pyautogui.press(input_key, presses=n_click,interval=interval)
|
10538
|
+
for _ in range(n_click):
|
10539
|
+
for key in input_key:
|
10540
|
+
pyautogui.press(key)
|
10541
|
+
pyautogui.sleep(interval)
|
10542
|
+
elif action in ['keyDown','hold']:
|
10543
|
+
# pyautogui.keyDown(input_key)
|
10544
|
+
for _ in range(n_click):
|
10545
|
+
for key in input_key:
|
10546
|
+
pyautogui.keyDown(key)
|
10547
|
+
pyautogui.sleep(interval)
|
10548
|
+
|
10549
|
+
elif action in ['keyUp','release']:
|
10550
|
+
# pyautogui.keyUp(input_key)
|
10551
|
+
for _ in range(n_click):
|
10552
|
+
for key in input_key:
|
10553
|
+
pyautogui.keyUp(key)
|
10554
|
+
pyautogui.sleep(interval)
|
10555
|
+
|
10556
|
+
elif action in ['hotkey','shortcut']:
|
10557
|
+
pyautogui.hotkey(input_key)
|
10558
|
+
|
10559
|
+
def mouse(
|
10560
|
+
*args, # loc
|
10561
|
+
action: str = "move",
|
10562
|
+
duration: float = 0.5,
|
10563
|
+
loc_type: str = "absolute", # 'absolute', 'relative'
|
10564
|
+
region: tuple = None, # (tuple, optional): A region (x, y, width, height) to search for the image.
|
10565
|
+
image_path: str = None,
|
10566
|
+
wait:float = 0,
|
10567
|
+
text: str = None,
|
10568
|
+
confidence: float = 0.8,
|
10569
|
+
button: str = "left",
|
10570
|
+
n_click: int = 1, # number of clicks
|
10571
|
+
interval: float = 0.25, # time between clicks
|
10572
|
+
scroll_amount: int = -500,
|
10573
|
+
fail_safe: bool = True,
|
10574
|
+
grayscale: bool = False,
|
10575
|
+
**kwargs,
|
10576
|
+
):
|
10577
|
+
"""
|
10578
|
+
Master function to handle pyautogui actions.
|
10579
|
+
|
10580
|
+
Parameters:
|
10581
|
+
action (str): The action to perform ('click', 'double_click', 'type', 'drag', 'scroll', 'move', 'locate', etc.).
|
10582
|
+
image_path (str, optional): Path to the image for 'locate' or 'click' actions.
|
10583
|
+
text (str, optional): Text to type for 'type' action.
|
10584
|
+
confidence (float, optional): Confidence level for image recognition (default 0.8).
|
10585
|
+
duration (float, optional): Duration for smooth movements in seconds (default 0.5).
|
10586
|
+
region (tuple, optional): A region (x, y, width, height) to search for the image.
|
10587
|
+
button (str, optional): Mouse button to use ('left', 'right', 'middle').
|
10588
|
+
n_click (int, optional): Number of times to click for 'click' actions.
|
10589
|
+
interval (float, optional): Interval between clicks for 'click' actions.
|
10590
|
+
offset (tuple, optional): Horizontal offset from the located image. y_offset (int, optional): Vertical offset from the located image.
|
10591
|
+
scroll_amount (int, optional): Amount to scroll (positive for up, negative for down).
|
10592
|
+
fail_safe (bool, optional): Enable/disable pyautogui's fail-safe feature.
|
10593
|
+
grayscale (bool, optional): Search for the image in grayscale mode.
|
10594
|
+
|
10595
|
+
Returns:
|
10596
|
+
tuple or None: Returns coordinates for 'locate' actions, otherwise None.
|
10597
|
+
"""
|
10598
|
+
import pyautogui
|
10599
|
+
import time
|
10600
|
+
|
10601
|
+
pyautogui.FAILSAFE = fail_safe # Enable/disable fail-safe
|
10602
|
+
loc_type = "absolute" if "abs" in loc_type else "relative"
|
10603
|
+
if len(args) == 1:
|
10604
|
+
if isinstance(args[0], str):
|
10605
|
+
image_path = args[0]
|
10606
|
+
x_offset, y_offset = None, None
|
10607
|
+
else:
|
10608
|
+
x_offset, y_offset = args
|
10609
|
+
|
10610
|
+
elif len(args) == 2:
|
10611
|
+
x_offset, y_offset = args
|
10612
|
+
elif len(args) == 3:
|
10613
|
+
x_offset, y_offset, action = args
|
10614
|
+
elif len(args) == 4:
|
10615
|
+
x_offset, y_offset, action, duration = args
|
10616
|
+
else:
|
10617
|
+
x_offset, y_offset = None, None
|
10618
|
+
|
10619
|
+
what_action = [
|
10620
|
+
"locate",
|
10621
|
+
"click",
|
10622
|
+
"double_click",
|
10623
|
+
"triple_click",
|
10624
|
+
"input",
|
10625
|
+
"write",
|
10626
|
+
"type",
|
10627
|
+
"drag",
|
10628
|
+
"move",
|
10629
|
+
"scroll",
|
10630
|
+
"down",
|
10631
|
+
"up",
|
10632
|
+
"hold",
|
10633
|
+
"press",
|
10634
|
+
"release"
|
10635
|
+
]
|
10636
|
+
action = strcmp(action, what_action)[0]
|
10637
|
+
# get the locations
|
10638
|
+
location = None
|
10639
|
+
if any([x_offset is None, y_offset is None]):
|
10640
|
+
if region is None:
|
10641
|
+
w,h=pyautogui.size()
|
10642
|
+
region=(0,0,w,h)
|
10643
|
+
print(region)
|
10644
|
+
try:
|
10645
|
+
print(image_path)
|
10646
|
+
location = pyautogui.locateOnScreen(
|
10647
|
+
image_path, confidence=confidence, region=region, grayscale=grayscale
|
10648
|
+
)
|
10649
|
+
print(pyautogui.center(location))
|
10650
|
+
except Exception as e:
|
10651
|
+
location = None
|
10652
|
+
|
10653
|
+
# try:
|
10654
|
+
if location:
|
10655
|
+
x, y = pyautogui.center(location)
|
10656
|
+
x += x_offset if x_offset else 0
|
10657
|
+
y += y_offset if y_offset else 0
|
10658
|
+
x_offset, y_offset = x,y
|
10659
|
+
print(action)
|
10660
|
+
if action in ['locate']:
|
10661
|
+
x, y = pyautogui.position()
|
10662
|
+
elif action in ["click", "double_click","triple_click"]:
|
10663
|
+
# if location:
|
10664
|
+
# x, y = pyautogui.center(location)
|
10665
|
+
# x += x_offset
|
10666
|
+
# y += y_offset
|
10667
|
+
# pyautogui.moveTo(x, y, duration=duration)
|
10668
|
+
# if action == "click":
|
10669
|
+
# pyautogui.click(x=x, y=y, clicks=n_click, interval=interval, button=button)
|
10670
|
+
# elif action == "double_click":
|
10671
|
+
# pyautogui.doubleClick(x=x, y=y, interval=interval, button=button)
|
10672
|
+
# elif action=='triple_click':
|
10673
|
+
# pyautogui.tripleClick(x=x,y=y,interval=interval, button=button)
|
10674
|
+
# else:
|
10675
|
+
if action == "click":
|
10676
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10677
|
+
time.sleep(wait)
|
10678
|
+
pyautogui.click(x=x_offset, y=y_offset, clicks=n_click, interval=interval, button=button)
|
10679
|
+
elif action == "double_click":
|
10680
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10681
|
+
time.sleep(wait)
|
10682
|
+
pyautogui.doubleClick(x=x_offset, y=y_offset, interval=interval, button=button)
|
10683
|
+
elif action=='triple_click':
|
10684
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10685
|
+
time.sleep(wait)
|
10686
|
+
pyautogui.tripleClick(x=x_offset, y=y_offset, interval=interval, button=button)
|
10687
|
+
|
10688
|
+
elif action in ["type", "write", "input"]:
|
10689
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10690
|
+
time.sleep(wait)
|
10691
|
+
if text is not None:
|
10692
|
+
pyautogui.typewrite(text, interval=interval)
|
10693
|
+
else:
|
10694
|
+
raise ValueError("Text must be provided for the 'type' action.")
|
10695
|
+
|
10696
|
+
elif action == "drag":
|
10697
|
+
if loc_type == "absolute":
|
10698
|
+
pyautogui.dragTo(x_offset, y_offset, duration=duration, button=button)
|
10699
|
+
else:
|
10700
|
+
pyautogui.dragRel(x_offset, y_offset, duration=duration, button=button)
|
10701
|
+
|
10702
|
+
elif action in ["move"]:
|
10703
|
+
if loc_type == "absolute":
|
10704
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10705
|
+
else:
|
10706
|
+
pyautogui.moveRel(x_offset, y_offset, duration=duration)
|
10707
|
+
|
10708
|
+
elif action == "scroll":
|
10709
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10710
|
+
time.sleep(wait)
|
10711
|
+
pyautogui.scroll(scroll_amount)
|
10712
|
+
|
10713
|
+
elif action in ["down",'hold','press']:
|
10714
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10715
|
+
time.sleep(wait)
|
10716
|
+
pyautogui.mouseDown(x_offset, y_offset, button=button, duration=duration)
|
10717
|
+
|
10718
|
+
elif action in ['up','release']:
|
10719
|
+
pyautogui.moveTo(x_offset, y_offset, duration=duration)
|
10720
|
+
time.sleep(wait)
|
10721
|
+
pyautogui.mouseUp(x_offset, y_offset, button=button, duration=duration)
|
10722
|
+
|
10723
|
+
else:
|
10724
|
+
raise ValueError(f"Unsupported action: {action}")
|
10725
|
+
|
10726
|
+
# except pyautogui.ImageNotFoundException:
|
10727
|
+
# print(
|
10728
|
+
# "Image not found. Ensure the image is visible and parameters are correct."
|
10729
|
+
# )
|
10730
|
+
# except Exception as e:
|
10731
|
+
# print(f"An error occurred: {e}")
|