py2ls 0.2.4.1__py3-none-any.whl → 0.2.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py2ls/data/usages_pd.json CHANGED
@@ -1,56 +1,1417 @@
1
1
  {
2
- "pd.read_pickle": "pd.read_pickle(filepath_or_buffer,compression='infer',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_pickle.html",
3
- "df.to_pickle": "df.to_pickle(path,*,compression='infer',protocol=5,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_pickle.html",
4
- "pd.read_table": "pd.read_table(filepath_or_buffer,*,sep=<no_default>,delimiter=None,header='infer',names=<no_default>,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,skiprows=None,skipfooter=0,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=<no_default>,skip_blank_lines=True,parse_dates=False,infer_datetime_format=<no_default>,keep_date_col=<no_default>,date_parser=<no_default>,date_format=None,dayfirst=False,cache_dates=True,iterator=False,chunksize=None,compression='infer',thousands=None,decimal='.',lineterminator=None,quotechar='\"',quoting=0,doublequote=True,escapechar=None,comment=None,encoding=None,encoding_errors='strict',dialect=None,on_bad_lines='error',delim_whitespace=<no_default>,low_memory=True,memory_map=False,float_precision=None,storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_table.html",
5
- "pd.read_csv": "pd.read_csv(filepath_or_buffer,*,sep=<no_default>,delimiter=None,header='infer',names=<no_default>,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,skiprows=None,skipfooter=0,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=<no_default>,skip_blank_lines=True,parse_dates=None,infer_datetime_format=<no_default>,keep_date_col=<no_default>,date_parser=<no_default>,date_format=None,dayfirst=False,cache_dates=True,iterator=False,chunksize=None,compression='infer',thousands=None,decimal='.',lineterminator=None,quotechar='\"',quoting=0,doublequote=True,escapechar=None,comment=None,encoding=None,encoding_errors='strict',dialect=None,on_bad_lines='error',delim_whitespace=<no_default>,low_memory=True,memory_map=False,float_precision=None,storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_csv.html",
2
+ "Rolling.count": "Rolling.count(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.count.html#pandas.core.window.rolling.Rolling.count",
3
+ "Rolling.sum": "Rolling.sum(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.sum.html#pandas.core.window.rolling.Rolling.sum",
4
+ "Rolling.mean": "Rolling.mean(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.mean.html#pandas.core.window.rolling.Rolling.mean",
5
+ "Rolling.median": "Rolling.median(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.median.html#pandas.core.window.rolling.Rolling.median",
6
+ "Rolling.var": "Rolling.var(ddof=1,numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.var.html#pandas.core.window.rolling.Rolling.var",
7
+ "Rolling.std": "Rolling.std(ddof=1,numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.std.html#pandas.core.window.rolling.Rolling.std",
8
+ "Rolling.min": "Rolling.min(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.min.html#pandas.core.window.rolling.Rolling.min",
9
+ "Rolling.max": "Rolling.max(numeric_only=False,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.max.html#pandas.core.window.rolling.Rolling.max",
10
+ "Rolling.corr": "Rolling.corr(other=None,pairwise=None,ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.corr.html#pandas.core.window.rolling.Rolling.corr",
11
+ "Rolling.cov": "Rolling.cov(other=None,pairwise=None,ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.cov.html#pandas.core.window.rolling.Rolling.cov",
12
+ "Rolling.skew": "Rolling.skew(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.skew.html#pandas.core.window.rolling.Rolling.skew",
13
+ "Rolling.kurt": "Rolling.kurt(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.kurt.html#pandas.core.window.rolling.Rolling.kurt",
14
+ "Rolling.apply": "Rolling.apply(func,raw=False,engine=None,engine_kwargs=None,args=None,kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.apply.html#pandas.core.window.rolling.Rolling.apply",
15
+ "Rolling.aggregate": "Rolling.aggregate(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.aggregate.html#pandas.core.window.rolling.Rolling.aggregate",
16
+ "Rolling.quantile": "Rolling.quantile(q,interpolation='linear',numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.quantile.html#pandas.core.window.rolling.Rolling.quantile",
17
+ "Rolling.sem": "Rolling.sem(ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.sem.html#pandas.core.window.rolling.Rolling.sem",
18
+ "Rolling.rank": "Rolling.rank(method='average',ascending=True,pct=False,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.rank.html#pandas.core.window.rolling.Rolling.rank",
19
+ "Window.mean": "Window.mean(numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Window.mean.html#pandas.core.window.rolling.Window.mean",
20
+ "Window.sum": "Window.sum(numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Window.sum.html#pandas.core.window.rolling.Window.sum",
21
+ "Window.var": "Window.var(ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Window.var.html#pandas.core.window.rolling.Window.var",
22
+ "Window.std": "Window.std(ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Window.std.html#pandas.core.window.rolling.Window.std",
23
+ "Expanding.count": "Expanding.count(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.count.html#pandas.core.window.expanding.Expanding.count",
24
+ "Expanding.sum": "Expanding.sum(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.sum.html#pandas.core.window.expanding.Expanding.sum",
25
+ "Expanding.mean": "Expanding.mean(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.mean.html#pandas.core.window.expanding.Expanding.mean",
26
+ "Expanding.median": "Expanding.median(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.median.html#pandas.core.window.expanding.Expanding.median",
27
+ "Expanding.var": "Expanding.var(ddof=1,numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.var.html#pandas.core.window.expanding.Expanding.var",
28
+ "Expanding.std": "Expanding.std(ddof=1,numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.std.html#pandas.core.window.expanding.Expanding.std",
29
+ "Expanding.min": "Expanding.min(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.min.html#pandas.core.window.expanding.Expanding.min",
30
+ "Expanding.max": "Expanding.max(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.max.html#pandas.core.window.expanding.Expanding.max",
31
+ "Expanding.corr": "Expanding.corr(other=None,pairwise=None,ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.corr.html#pandas.core.window.expanding.Expanding.corr",
32
+ "Expanding.cov": "Expanding.cov(other=None,pairwise=None,ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.cov.html#pandas.core.window.expanding.Expanding.cov",
33
+ "Expanding.skew": "Expanding.skew(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.skew.html#pandas.core.window.expanding.Expanding.skew",
34
+ "Expanding.kurt": "Expanding.kurt(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.kurt.html#pandas.core.window.expanding.Expanding.kurt",
35
+ "Expanding.apply": "Expanding.apply(func,raw=False,engine=None,engine_kwargs=None,args=None,kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.apply.html#pandas.core.window.expanding.Expanding.apply",
36
+ "Expanding.aggregate": "Expanding.aggregate(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.aggregate.html#pandas.core.window.expanding.Expanding.aggregate",
37
+ "Expanding.quantile": "Expanding.quantile(q,interpolation='linear',numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.quantile.html#pandas.core.window.expanding.Expanding.quantile",
38
+ "Expanding.sem": "Expanding.sem(ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.sem.html#pandas.core.window.expanding.Expanding.sem",
39
+ "Expanding.rank": "Expanding.rank(method='average',ascending=True,pct=False,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.expanding.Expanding.rank.html#pandas.core.window.expanding.Expanding.rank",
40
+ "ExponentialMovingWindow.mean": "ExponentialMovingWindow.mean(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.mean.html#pandas.core.window.ewm.ExponentialMovingWindow.mean",
41
+ "ExponentialMovingWindow.sum": "ExponentialMovingWindow.sum(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.sum.html#pandas.core.window.ewm.ExponentialMovingWindow.sum",
42
+ "ExponentialMovingWindow.std": "ExponentialMovingWindow.std(bias=False,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.std.html#pandas.core.window.ewm.ExponentialMovingWindow.std",
43
+ "ExponentialMovingWindow.var": "ExponentialMovingWindow.var(bias=False,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.var.html#pandas.core.window.ewm.ExponentialMovingWindow.var",
44
+ "ExponentialMovingWindow.corr": "ExponentialMovingWindow.corr(other=None,pairwise=None,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.corr.html#pandas.core.window.ewm.ExponentialMovingWindow.corr",
45
+ "ExponentialMovingWindow.cov": "ExponentialMovingWindow.cov(other=None,pairwise=None,bias=False,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.cov.html#pandas.core.window.ewm.ExponentialMovingWindow.cov",
46
+ "pandas.api.indexers.BaseIndexer": "pandas.api.indexers.BaseIndexer(index_array=None,window_size=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.indexers.BaseIndexer.html#pandas.api.indexers.BaseIndexer",
47
+ "pandas.api.indexers.FixedForwardWindowIndexer": "pandas.api.indexers.FixedForwardWindowIndexer(index_array=None,window_size=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.indexers.FixedForwardWindowIndexer.html#pandas.api.indexers.FixedForwardWindowIndexer",
48
+ "pandas.api.indexers.VariableOffsetWindowIndexer": "pandas.api.indexers.VariableOffsetWindowIndexer(index_array=None,window_size=0,index=None,offset=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.indexers.VariableOffsetWindowIndexer.html#pandas.api.indexers.VariableOffsetWindowIndexer",
49
+ "df.rolling": "df.rolling(window,min_periods=None,center=False,win_type=None,on=None,axis=<no_default>,closed=None,step=None,method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rolling.html#pandas.DataFrame.rolling",
50
+ "Series.rolling": "Series.rolling(window,min_periods=None,center=False,win_type=None,on=None,axis=<no_default>,closed=None,step=None,method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rolling.html#pandas.Series.rolling",
51
+ "df.expanding": "df.expanding(min_periods=1,axis=<no_default>,method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.expanding.html#pandas.DataFrame.expanding",
52
+ "Series.expanding": "Series.expanding(min_periods=1,axis=<no_default>,method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.expanding.html#pandas.Series.expanding",
53
+ "df.ewm": "df.ewm(com=None,span=None,halflife=None,alpha=None,min_periods=0,adjust=True,ignore_na=False,axis=<no_default>,times=None,method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html#pandas.DataFrame.ewm",
54
+ "Series.ewm": "Series.ewm(com=None,span=None,halflife=None,alpha=None,min_periods=0,adjust=True,ignore_na=False,axis=<no_default>,times=None,method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.ewm.html#pandas.Series.ewm",
55
+ "dfGroupBy.__iter__": "dfGroupBy.__iter__()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.__iter__.html#pandas.core.groupby.DataFrameGroupBy.__iter__",
56
+ "SeriesGroupBy.__iter__": "SeriesGroupBy.__iter__()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.__iter__.html#pandas.core.groupby.SeriesGroupBy.__iter__",
57
+ "DataFrameGroupBy.groups": "DataFrameGroupBy.groups\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.groups.html#pandas.core.groupby.DataFrameGroupBy.groups",
58
+ "SeriesGroupBy.groups": "SeriesGroupBy.groups\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.groups.html#pandas.core.groupby.SeriesGroupBy.groups",
59
+ "DataFrameGroupBy.indices": "DataFrameGroupBy.indices\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.indices.html#pandas.core.groupby.DataFrameGroupBy.indices",
60
+ "SeriesGroupBy.indices": "SeriesGroupBy.indices\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.indices.html#pandas.core.groupby.SeriesGroupBy.indices",
61
+ "dfGroupBy.get_group": "dfGroupBy.get_group(name,obj=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.get_group.html#pandas.core.groupby.DataFrameGroupBy.get_group",
62
+ "SeriesGroupBy.get_group": "SeriesGroupBy.get_group(name,obj=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.get_group.html#pandas.core.groupby.SeriesGroupBy.get_group",
63
+ "pandas.Grouper": "pandas.Grouper(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Grouper.html#pandas.Grouper",
64
+ "pandas.NamedAgg": "pandas.NamedAgg(column,aggfunc)\nhttps://pandas.pydata.org/docs/reference/api/pandas.NamedAgg.html#pandas.NamedAgg",
65
+ "SeriesGroupBy.apply": "SeriesGroupBy.apply(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.apply.html#pandas.core.groupby.SeriesGroupBy.apply",
66
+ "dfGroupBy.apply": "dfGroupBy.apply(func,*args,include_groups=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.apply.html#pandas.core.groupby.DataFrameGroupBy.apply",
67
+ "SeriesGroupBy.agg": "SeriesGroupBy.agg(func=None,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.agg.html#pandas.core.groupby.SeriesGroupBy.agg",
68
+ "dfGroupBy.agg": "dfGroupBy.agg(func=None,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.agg.html#pandas.core.groupby.DataFrameGroupBy.agg",
69
+ "SeriesGroupBy.aggregate": "SeriesGroupBy.aggregate(func=None,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.aggregate.html#pandas.core.groupby.SeriesGroupBy.aggregate",
70
+ "dfGroupBy.aggregate": "dfGroupBy.aggregate(func=None,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.aggregate.html#pandas.core.groupby.DataFrameGroupBy.aggregate",
71
+ "SeriesGroupBy.transform": "SeriesGroupBy.transform(func,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.transform.html#pandas.core.groupby.SeriesGroupBy.transform",
72
+ "dfGroupBy.transform": "dfGroupBy.transform(func,*args,engine=None,engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.transform.html#pandas.core.groupby.DataFrameGroupBy.transform",
73
+ "SeriesGroupBy.pipe": "SeriesGroupBy.pipe(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.pipe.html#pandas.core.groupby.SeriesGroupBy.pipe",
74
+ "dfGroupBy.pipe": "dfGroupBy.pipe(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.pipe.html#pandas.core.groupby.DataFrameGroupBy.pipe",
75
+ "dfGroupBy.filter": "dfGroupBy.filter(func,dropna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.filter.html#pandas.core.groupby.DataFrameGroupBy.filter",
76
+ "SeriesGroupBy.filter": "SeriesGroupBy.filter(func,dropna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.filter.html#pandas.core.groupby.SeriesGroupBy.filter",
77
+ "dfGroupBy.all": "dfGroupBy.all(skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.all.html#pandas.core.groupby.DataFrameGroupBy.all",
78
+ "dfGroupBy.any": "dfGroupBy.any(skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.any.html#pandas.core.groupby.DataFrameGroupBy.any",
79
+ "dfGroupBy.bfill": "dfGroupBy.bfill(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.bfill.html#pandas.core.groupby.DataFrameGroupBy.bfill",
80
+ "dfGroupBy.corr": "dfGroupBy.corr(method='pearson',min_periods=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.corr.html#pandas.core.groupby.DataFrameGroupBy.corr",
81
+ "dfGroupBy.corrwith": "dfGroupBy.corrwith(other,axis=<no_default>,drop=False,method='pearson',numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.corrwith.html#pandas.core.groupby.DataFrameGroupBy.corrwith",
82
+ "dfGroupBy.count": "dfGroupBy.count()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.count.html#pandas.core.groupby.DataFrameGroupBy.count",
83
+ "dfGroupBy.cov": "dfGroupBy.cov(min_periods=None,ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.cov.html#pandas.core.groupby.DataFrameGroupBy.cov",
84
+ "dfGroupBy.cumcount": "dfGroupBy.cumcount(ascending=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.cumcount.html#pandas.core.groupby.DataFrameGroupBy.cumcount",
85
+ "dfGroupBy.cummax": "dfGroupBy.cummax(axis=<no_default>,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.cummax.html#pandas.core.groupby.DataFrameGroupBy.cummax",
86
+ "dfGroupBy.cummin": "dfGroupBy.cummin(axis=<no_default>,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.cummin.html#pandas.core.groupby.DataFrameGroupBy.cummin",
87
+ "dfGroupBy.cumprod": "dfGroupBy.cumprod(axis=<no_default>,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.cumprod.html#pandas.core.groupby.DataFrameGroupBy.cumprod",
88
+ "dfGroupBy.cumsum": "dfGroupBy.cumsum(axis=<no_default>,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.cumsum.html#pandas.core.groupby.DataFrameGroupBy.cumsum",
89
+ "dfGroupBy.describe": "dfGroupBy.describe(percentiles=None,include=None,exclude=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.describe.html#pandas.core.groupby.DataFrameGroupBy.describe",
90
+ "dfGroupBy.diff": "dfGroupBy.diff(periods=1,axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.diff.html#pandas.core.groupby.DataFrameGroupBy.diff",
91
+ "dfGroupBy.ffill": "dfGroupBy.ffill(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.ffill.html#pandas.core.groupby.DataFrameGroupBy.ffill",
92
+ "dfGroupBy.fillna": "dfGroupBy.fillna(value=None,method=None,axis=<no_default>,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.fillna.html#pandas.core.groupby.DataFrameGroupBy.fillna",
93
+ "dfGroupBy.first": "dfGroupBy.first(numeric_only=False,min_count=-1,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.first.html#pandas.core.groupby.DataFrameGroupBy.first",
94
+ "dfGroupBy.head": "dfGroupBy.head(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.head.html#pandas.core.groupby.DataFrameGroupBy.head",
95
+ "dfGroupBy.idxmax": "dfGroupBy.idxmax(axis=<no_default>,skipna=True,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.idxmax.html#pandas.core.groupby.DataFrameGroupBy.idxmax",
96
+ "dfGroupBy.idxmin": "dfGroupBy.idxmin(axis=<no_default>,skipna=True,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.idxmin.html#pandas.core.groupby.DataFrameGroupBy.idxmin",
97
+ "dfGroupBy.last": "dfGroupBy.last(numeric_only=False,min_count=-1,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.last.html#pandas.core.groupby.DataFrameGroupBy.last",
98
+ "dfGroupBy.max": "dfGroupBy.max(numeric_only=False,min_count=-1,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.max.html#pandas.core.groupby.DataFrameGroupBy.max",
99
+ "dfGroupBy.mean": "dfGroupBy.mean(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.mean.html#pandas.core.groupby.DataFrameGroupBy.mean",
100
+ "dfGroupBy.median": "dfGroupBy.median(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.median.html#pandas.core.groupby.DataFrameGroupBy.median",
101
+ "dfGroupBy.min": "dfGroupBy.min(numeric_only=False,min_count=-1,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.min.html#pandas.core.groupby.DataFrameGroupBy.min",
102
+ "dfGroupBy.ngroup": "dfGroupBy.ngroup(ascending=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.ngroup.html#pandas.core.groupby.DataFrameGroupBy.ngroup",
103
+ "DataFrameGroupBy.nth": "DataFrameGroupBy.nth\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.nth.html#pandas.core.groupby.DataFrameGroupBy.nth",
104
+ "dfGroupBy.nunique": "dfGroupBy.nunique(dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.nunique.html#pandas.core.groupby.DataFrameGroupBy.nunique",
105
+ "dfGroupBy.ohlc": "dfGroupBy.ohlc()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.ohlc.html#pandas.core.groupby.DataFrameGroupBy.ohlc",
106
+ "dfGroupBy.pct_change": "dfGroupBy.pct_change(periods=1,fill_method=<no_default>,limit=<no_default>,freq=None,axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.pct_change.html#pandas.core.groupby.DataFrameGroupBy.pct_change",
107
+ "dfGroupBy.prod": "dfGroupBy.prod(numeric_only=False,min_count=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.prod.html#pandas.core.groupby.DataFrameGroupBy.prod",
108
+ "dfGroupBy.quantile": "dfGroupBy.quantile(q=0.5,interpolation='linear',numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.quantile.html#pandas.core.groupby.DataFrameGroupBy.quantile",
109
+ "dfGroupBy.rank": "dfGroupBy.rank(method='average',ascending=True,na_option='keep',pct=False,axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.rank.html#pandas.core.groupby.DataFrameGroupBy.rank",
110
+ "dfGroupBy.resample": "dfGroupBy.resample(rule,*args,include_groups=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.resample.html#pandas.core.groupby.DataFrameGroupBy.resample",
111
+ "dfGroupBy.rolling": "dfGroupBy.rolling(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.rolling.html#pandas.core.groupby.DataFrameGroupBy.rolling",
112
+ "dfGroupBy.sample": "dfGroupBy.sample(n=None,frac=None,replace=False,weights=None,random_state=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.sample.html#pandas.core.groupby.DataFrameGroupBy.sample",
113
+ "dfGroupBy.sem": "dfGroupBy.sem(ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.sem.html#pandas.core.groupby.DataFrameGroupBy.sem",
114
+ "dfGroupBy.shift": "dfGroupBy.shift(periods=1,freq=None,axis=<no_default>,fill_value=<no_default>,suffix=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.shift.html#pandas.core.groupby.DataFrameGroupBy.shift",
115
+ "dfGroupBy.size": "dfGroupBy.size()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.size.html#pandas.core.groupby.DataFrameGroupBy.size",
116
+ "dfGroupBy.skew": "dfGroupBy.skew(axis=<no_default>,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.skew.html#pandas.core.groupby.DataFrameGroupBy.skew",
117
+ "dfGroupBy.std": "dfGroupBy.std(ddof=1,engine=None,engine_kwargs=None,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.std.html#pandas.core.groupby.DataFrameGroupBy.std",
118
+ "dfGroupBy.sum": "dfGroupBy.sum(numeric_only=False,min_count=0,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.sum.html#pandas.core.groupby.DataFrameGroupBy.sum",
119
+ "dfGroupBy.var": "dfGroupBy.var(ddof=1,engine=None,engine_kwargs=None,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.var.html#pandas.core.groupby.DataFrameGroupBy.var",
120
+ "dfGroupBy.tail": "dfGroupBy.tail(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.tail.html#pandas.core.groupby.DataFrameGroupBy.tail",
121
+ "dfGroupBy.take": "dfGroupBy.take(indices,axis=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.take.html#pandas.core.groupby.DataFrameGroupBy.take",
122
+ "dfGroupBy.value_counts": "dfGroupBy.value_counts(subset=None,normalize=False,sort=True,ascending=False,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.value_counts.html#pandas.core.groupby.DataFrameGroupBy.value_counts",
123
+ "SeriesGroupBy.all": "SeriesGroupBy.all(skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.all.html#pandas.core.groupby.SeriesGroupBy.all",
124
+ "SeriesGroupBy.any": "SeriesGroupBy.any(skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.any.html#pandas.core.groupby.SeriesGroupBy.any",
125
+ "SeriesGroupBy.bfill": "SeriesGroupBy.bfill(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.bfill.html#pandas.core.groupby.SeriesGroupBy.bfill",
126
+ "SeriesGroupBy.corr": "SeriesGroupBy.corr(other,method='pearson',min_periods=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.corr.html#pandas.core.groupby.SeriesGroupBy.corr",
127
+ "SeriesGroupBy.count": "SeriesGroupBy.count()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.count.html#pandas.core.groupby.SeriesGroupBy.count",
128
+ "SeriesGroupBy.cov": "SeriesGroupBy.cov(other,min_periods=None,ddof=1)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.cov.html#pandas.core.groupby.SeriesGroupBy.cov",
129
+ "SeriesGroupBy.cumcount": "SeriesGroupBy.cumcount(ascending=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.cumcount.html#pandas.core.groupby.SeriesGroupBy.cumcount",
130
+ "SeriesGroupBy.cummax": "SeriesGroupBy.cummax(axis=<no_default>,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.cummax.html#pandas.core.groupby.SeriesGroupBy.cummax",
131
+ "SeriesGroupBy.cummin": "SeriesGroupBy.cummin(axis=<no_default>,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.cummin.html#pandas.core.groupby.SeriesGroupBy.cummin",
132
+ "SeriesGroupBy.cumprod": "SeriesGroupBy.cumprod(axis=<no_default>,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.cumprod.html#pandas.core.groupby.SeriesGroupBy.cumprod",
133
+ "SeriesGroupBy.cumsum": "SeriesGroupBy.cumsum(axis=<no_default>,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.cumsum.html#pandas.core.groupby.SeriesGroupBy.cumsum",
134
+ "SeriesGroupBy.describe": "SeriesGroupBy.describe(percentiles=None,include=None,exclude=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.describe.html#pandas.core.groupby.SeriesGroupBy.describe",
135
+ "SeriesGroupBy.diff": "SeriesGroupBy.diff(periods=1,axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.diff.html#pandas.core.groupby.SeriesGroupBy.diff",
136
+ "SeriesGroupBy.ffill": "SeriesGroupBy.ffill(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.ffill.html#pandas.core.groupby.SeriesGroupBy.ffill",
137
+ "SeriesGroupBy.fillna": "SeriesGroupBy.fillna(value=None,method=None,axis=<no_default>,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.fillna.html#pandas.core.groupby.SeriesGroupBy.fillna",
138
+ "SeriesGroupBy.first": "SeriesGroupBy.first(numeric_only=False,min_count=-1,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.first.html#pandas.core.groupby.SeriesGroupBy.first",
139
+ "SeriesGroupBy.head": "SeriesGroupBy.head(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.head.html#pandas.core.groupby.SeriesGroupBy.head",
140
+ "SeriesGroupBy.last": "SeriesGroupBy.last(numeric_only=False,min_count=-1,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.last.html#pandas.core.groupby.SeriesGroupBy.last",
141
+ "SeriesGroupBy.idxmax": "SeriesGroupBy.idxmax(axis=<no_default>,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.idxmax.html#pandas.core.groupby.SeriesGroupBy.idxmax",
142
+ "SeriesGroupBy.idxmin": "SeriesGroupBy.idxmin(axis=<no_default>,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.idxmin.html#pandas.core.groupby.SeriesGroupBy.idxmin",
143
+ "SeriesGroupBy.is_monotonic_increasing": "SeriesGroupBy.is_monotonic_increasing\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing.html#pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing",
144
+ "SeriesGroupBy.is_monotonic_decreasing": "SeriesGroupBy.is_monotonic_decreasing\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing.html#pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing",
145
+ "SeriesGroupBy.max": "SeriesGroupBy.max(numeric_only=False,min_count=-1,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.max.html#pandas.core.groupby.SeriesGroupBy.max",
146
+ "SeriesGroupBy.mean": "SeriesGroupBy.mean(numeric_only=False,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.mean.html#pandas.core.groupby.SeriesGroupBy.mean",
147
+ "SeriesGroupBy.median": "SeriesGroupBy.median(numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.median.html#pandas.core.groupby.SeriesGroupBy.median",
148
+ "SeriesGroupBy.min": "SeriesGroupBy.min(numeric_only=False,min_count=-1,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.min.html#pandas.core.groupby.SeriesGroupBy.min",
149
+ "SeriesGroupBy.ngroup": "SeriesGroupBy.ngroup(ascending=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.ngroup.html#pandas.core.groupby.SeriesGroupBy.ngroup",
150
+ "SeriesGroupBy.nlargest": "SeriesGroupBy.nlargest(n=5,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.nlargest.html#pandas.core.groupby.SeriesGroupBy.nlargest",
151
+ "SeriesGroupBy.nsmallest": "SeriesGroupBy.nsmallest(n=5,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.nsmallest.html#pandas.core.groupby.SeriesGroupBy.nsmallest",
152
+ "SeriesGroupBy.nth": "SeriesGroupBy.nth\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.nth.html#pandas.core.groupby.SeriesGroupBy.nth",
153
+ "SeriesGroupBy.nunique": "SeriesGroupBy.nunique(dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.nunique.html#pandas.core.groupby.SeriesGroupBy.nunique",
154
+ "SeriesGroupBy.unique": "SeriesGroupBy.unique()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.unique.html#pandas.core.groupby.SeriesGroupBy.unique",
155
+ "SeriesGroupBy.ohlc": "SeriesGroupBy.ohlc()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.ohlc.html#pandas.core.groupby.SeriesGroupBy.ohlc",
156
+ "SeriesGroupBy.pct_change": "SeriesGroupBy.pct_change(periods=1,fill_method=<no_default>,limit=<no_default>,freq=None,axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.pct_change.html#pandas.core.groupby.SeriesGroupBy.pct_change",
157
+ "SeriesGroupBy.prod": "SeriesGroupBy.prod(numeric_only=False,min_count=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.prod.html#pandas.core.groupby.SeriesGroupBy.prod",
158
+ "SeriesGroupBy.quantile": "SeriesGroupBy.quantile(q=0.5,interpolation='linear',numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.quantile.html#pandas.core.groupby.SeriesGroupBy.quantile",
159
+ "SeriesGroupBy.rank": "SeriesGroupBy.rank(method='average',ascending=True,na_option='keep',pct=False,axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.rank.html#pandas.core.groupby.SeriesGroupBy.rank",
160
+ "SeriesGroupBy.resample": "SeriesGroupBy.resample(rule,*args,include_groups=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.resample.html#pandas.core.groupby.SeriesGroupBy.resample",
161
+ "SeriesGroupBy.rolling": "SeriesGroupBy.rolling(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.rolling.html#pandas.core.groupby.SeriesGroupBy.rolling",
162
+ "SeriesGroupBy.sample": "SeriesGroupBy.sample(n=None,frac=None,replace=False,weights=None,random_state=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.sample.html#pandas.core.groupby.SeriesGroupBy.sample",
163
+ "SeriesGroupBy.sem": "SeriesGroupBy.sem(ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.sem.html#pandas.core.groupby.SeriesGroupBy.sem",
164
+ "SeriesGroupBy.shift": "SeriesGroupBy.shift(periods=1,freq=None,axis=<no_default>,fill_value=<no_default>,suffix=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.shift.html#pandas.core.groupby.SeriesGroupBy.shift",
165
+ "SeriesGroupBy.size": "SeriesGroupBy.size()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.size.html#pandas.core.groupby.SeriesGroupBy.size",
166
+ "SeriesGroupBy.skew": "SeriesGroupBy.skew(axis=<no_default>,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.skew.html#pandas.core.groupby.SeriesGroupBy.skew",
167
+ "SeriesGroupBy.std": "SeriesGroupBy.std(ddof=1,engine=None,engine_kwargs=None,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.std.html#pandas.core.groupby.SeriesGroupBy.std",
168
+ "SeriesGroupBy.sum": "SeriesGroupBy.sum(numeric_only=False,min_count=0,engine=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.sum.html#pandas.core.groupby.SeriesGroupBy.sum",
169
+ "SeriesGroupBy.var": "SeriesGroupBy.var(ddof=1,engine=None,engine_kwargs=None,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.var.html#pandas.core.groupby.SeriesGroupBy.var",
170
+ "SeriesGroupBy.tail": "SeriesGroupBy.tail(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.tail.html#pandas.core.groupby.SeriesGroupBy.tail",
171
+ "SeriesGroupBy.take": "SeriesGroupBy.take(indices,axis=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.take.html#pandas.core.groupby.SeriesGroupBy.take",
172
+ "SeriesGroupBy.value_counts": "SeriesGroupBy.value_counts(normalize=False,sort=True,ascending=False,bins=None,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.value_counts.html#pandas.core.groupby.SeriesGroupBy.value_counts",
173
+ "dfGroupBy.boxplot": "dfGroupBy.boxplot(subplots=True,column=None,fontsize=None,rot=0,grid=True,ax=None,figsize=None,layout=None,sharex=False,sharey=True,backend=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.boxplot.html#pandas.core.groupby.DataFrameGroupBy.boxplot",
174
+ "dfGroupBy.hist": "dfGroupBy.hist(column=None,by=None,grid=True,xlabelsize=None,xrot=None,ylabelsize=None,yrot=None,ax=None,sharex=False,sharey=False,figsize=None,layout=None,bins=10,backend=None,legend=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.hist.html#pandas.core.groupby.DataFrameGroupBy.hist",
175
+ "SeriesGroupBy.hist": "SeriesGroupBy.hist(by=None,ax=None,grid=True,xlabelsize=None,xrot=None,ylabelsize=None,yrot=None,figsize=None,bins=10,backend=None,legend=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.hist.html#pandas.core.groupby.SeriesGroupBy.hist",
176
+ "DataFrameGroupBy.plot": "DataFrameGroupBy.plot\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.plot.html#pandas.core.groupby.DataFrameGroupBy.plot",
177
+ "SeriesGroupBy.plot": "SeriesGroupBy.plot\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.groupby.SeriesGroupBy.plot.html#pandas.core.groupby.SeriesGroupBy.plot",
178
+ "df.groupby": "df.groupby(by=None,axis=<no_default>,level=None,as_index=True,sort=True,group_keys=True,observed=<no_default>,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby",
179
+ "Series.groupby": "Series.groupby(by=None,axis=0,level=None,as_index=True,sort=True,group_keys=True,observed=<no_default>,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.groupby.html#pandas.Series.groupby",
180
+ "Resampler.__iter__": "Resampler.__iter__()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.__iter__.html#pandas.core.resample.Resampler.__iter__",
181
+ "Resampler.groups": "Resampler.groups\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.groups.html#pandas.core.resample.Resampler.groups",
182
+ "Resampler.indices": "Resampler.indices\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.indices.html#pandas.core.resample.Resampler.indices",
183
+ "Resampler.get_group": "Resampler.get_group(name,obj=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.get_group.html#pandas.core.resample.Resampler.get_group",
184
+ "Resampler.apply": "Resampler.apply(func=None,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.apply.html#pandas.core.resample.Resampler.apply",
185
+ "finalResampler.aggregate": "finalResampler.aggregate(func=None,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.aggregate.html#pandas.core.resample.Resampler.aggregate",
186
+ "finalResampler.transform": "finalResampler.transform(arg,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.transform.html#pandas.core.resample.Resampler.transform",
187
+ "finalResampler.pipe": "finalResampler.pipe(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.pipe.html#pandas.core.resample.Resampler.pipe",
188
+ "finalResampler.ffill": "finalResampler.ffill(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.ffill.html#pandas.core.resample.Resampler.ffill",
189
+ "finalResampler.bfill": "finalResampler.bfill(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.bfill.html#pandas.core.resample.Resampler.bfill",
190
+ "finalResampler.nearest": "finalResampler.nearest(limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.nearest.html#pandas.core.resample.Resampler.nearest",
191
+ "finalResampler.fillna": "finalResampler.fillna(method,limit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.fillna.html#pandas.core.resample.Resampler.fillna",
192
+ "finalResampler.asfreq": "finalResampler.asfreq(fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.asfreq.html#pandas.core.resample.Resampler.asfreq",
193
+ "finalResampler.interpolate": "finalResampler.interpolate(method='linear',*,axis=0,limit=None,inplace=False,limit_direction='forward',limit_area=None,downcast=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.interpolate.html#pandas.core.resample.Resampler.interpolate",
194
+ "finalResampler.count": "finalResampler.count()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.count.html#pandas.core.resample.Resampler.count",
195
+ "finalResampler.nunique": "finalResampler.nunique(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.nunique.html#pandas.core.resample.Resampler.nunique",
196
+ "finalResampler.first": "finalResampler.first(numeric_only=False,min_count=0,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.first.html#pandas.core.resample.Resampler.first",
197
+ "finalResampler.last": "finalResampler.last(numeric_only=False,min_count=0,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.last.html#pandas.core.resample.Resampler.last",
198
+ "finalResampler.max": "finalResampler.max(numeric_only=False,min_count=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.max.html#pandas.core.resample.Resampler.max",
199
+ "finalResampler.mean": "finalResampler.mean(numeric_only=False,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.mean.html#pandas.core.resample.Resampler.mean",
200
+ "finalResampler.median": "finalResampler.median(numeric_only=False,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.median.html#pandas.core.resample.Resampler.median",
201
+ "finalResampler.min": "finalResampler.min(numeric_only=False,min_count=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.min.html#pandas.core.resample.Resampler.min",
202
+ "finalResampler.ohlc": "finalResampler.ohlc(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.ohlc.html#pandas.core.resample.Resampler.ohlc",
203
+ "finalResampler.prod": "finalResampler.prod(numeric_only=False,min_count=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.prod.html#pandas.core.resample.Resampler.prod",
204
+ "finalResampler.size": "finalResampler.size()\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.size.html#pandas.core.resample.Resampler.size",
205
+ "finalResampler.sem": "finalResampler.sem(ddof=1,numeric_only=False,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.sem.html#pandas.core.resample.Resampler.sem",
206
+ "finalResampler.std": "finalResampler.std(ddof=1,numeric_only=False,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.std.html#pandas.core.resample.Resampler.std",
207
+ "finalResampler.sum": "finalResampler.sum(numeric_only=False,min_count=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.sum.html#pandas.core.resample.Resampler.sum",
208
+ "finalResampler.var": "finalResampler.var(ddof=1,numeric_only=False,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.var.html#pandas.core.resample.Resampler.var",
209
+ "finalResampler.quantile": "finalResampler.quantile(q=0.5,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.quantile.html#pandas.core.resample.Resampler.quantile",
210
+ "df.resample": "df.resample(rule,axis=<no_default>,closed=None,label=None,convention=<no_default>,kind=<no_default>,on=None,level=None,origin='start_day',offset=None,group_keys=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html#pandas.DataFrame.resample",
211
+ "Series.resample": "Series.resample(rule,axis=<no_default>,closed=None,label=None,convention=<no_default>,kind=<no_default>,on=None,level=None,origin='start_day',offset=None,group_keys=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.resample.html#pandas.Series.resample",
212
+ "pandas.io.formats.style.Styler": "pandas.io.formats.style.Styler(data,precision=None,table_styles=None,uuid=None,caption=None,table_attributes=None,cell_ids=True,na_rep=None,uuid_len=5,decimal=None,thousands=None,escape=None,formatter=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.html#pandas.io.formats.style.Styler",
213
+ "methodStyler.from_custom_template": "methodStyler.from_custom_template(searchpath,html_table=None,html_style=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.from_custom_template.html#pandas.io.formats.style.Styler.from_custom_template",
214
+ "Styler.env=<jinja2.environment.Environmentobject>": "Styler.env=<jinja2.environment.Environmentobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.env.html#pandas.io.formats.style.Styler.env",
215
+ "Styler.template_html=<Template'html.tpl'>": "Styler.template_html=<Template'html.tpl'>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.template_html.html#pandas.io.formats.style.Styler.template_html",
216
+ "Styler.template_html_style=<Template'html_style.tpl'>": "Styler.template_html_style=<Template'html_style.tpl'>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.template_html_style.html#pandas.io.formats.style.Styler.template_html_style",
217
+ "Styler.template_html_table=<Template'html_table.tpl'>": "Styler.template_html_table=<Template'html_table.tpl'>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.template_html_table.html#pandas.io.formats.style.Styler.template_html_table",
218
+ "Styler.template_latex=<Template'latex.tpl'>": "Styler.template_latex=<Template'latex.tpl'>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.template_latex.html#pandas.io.formats.style.Styler.template_latex",
219
+ "Styler.template_string=<Template'string.tpl'>": "Styler.template_string=<Template'string.tpl'>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.template_string.html#pandas.io.formats.style.Styler.template_string",
220
+ "Styler.loader=<jinja2.loaders.PackageLoaderobject>": "Styler.loader=<jinja2.loaders.PackageLoaderobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.loader.html#pandas.io.formats.style.Styler.loader",
221
+ "Styler.apply": "Styler.apply(func,axis=0,subset=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.apply.html#pandas.io.formats.style.Styler.apply",
222
+ "Styler.map": "Styler.map(func,subset=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.map.html#pandas.io.formats.style.Styler.map",
223
+ "Styler.apply_index": "Styler.apply_index(func,axis=0,level=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.apply_index.html#pandas.io.formats.style.Styler.apply_index",
224
+ "Styler.map_index": "Styler.map_index(func,axis=0,level=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.map_index.html#pandas.io.formats.style.Styler.map_index",
225
+ "Styler.format": "Styler.format(formatter=None,subset=None,na_rep=None,precision=None,decimal='.',thousands=None,escape=None,hyperlinks=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.format.html#pandas.io.formats.style.Styler.format",
226
+ "Styler.format_index": "Styler.format_index(formatter=None,axis=0,level=None,na_rep=None,precision=None,decimal='.',thousands=None,escape=None,hyperlinks=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.format_index.html#pandas.io.formats.style.Styler.format_index",
227
+ "Styler.relabel_index": "Styler.relabel_index(labels,axis=0,level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.relabel_index.html#pandas.io.formats.style.Styler.relabel_index",
228
+ "Styler.hide": "Styler.hide(subset=None,axis=0,level=None,names=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.hide.html#pandas.io.formats.style.Styler.hide",
229
+ "Styler.concat": "Styler.concat(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.concat.html#pandas.io.formats.style.Styler.concat",
230
+ "Styler.set_td_classes": "Styler.set_td_classes(classes)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_td_classes.html#pandas.io.formats.style.Styler.set_td_classes",
231
+ "Styler.set_table_styles": "Styler.set_table_styles(table_styles=None,axis=0,overwrite=True,css_class_names=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_table_styles.html#pandas.io.formats.style.Styler.set_table_styles",
232
+ "Styler.set_table_attributes": "Styler.set_table_attributes(attributes)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_table_attributes.html#pandas.io.formats.style.Styler.set_table_attributes",
233
+ "Styler.set_tooltips": "Styler.set_tooltips(ttips,props=None,css_class=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_tooltips.html#pandas.io.formats.style.Styler.set_tooltips",
234
+ "Styler.set_caption": "Styler.set_caption(caption)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_caption.html#pandas.io.formats.style.Styler.set_caption",
235
+ "Styler.set_sticky": "Styler.set_sticky(axis=0,pixel_size=None,levels=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_sticky.html#pandas.io.formats.style.Styler.set_sticky",
236
+ "Styler.set_properties": "Styler.set_properties(subset=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_properties.html#pandas.io.formats.style.Styler.set_properties",
237
+ "Styler.set_uuid": "Styler.set_uuid(uuid)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.set_uuid.html#pandas.io.formats.style.Styler.set_uuid",
238
+ "Styler.clear": "Styler.clear()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.clear.html#pandas.io.formats.style.Styler.clear",
239
+ "Styler.pipe": "Styler.pipe(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.pipe.html#pandas.io.formats.style.Styler.pipe",
240
+ "Styler.highlight_null": "Styler.highlight_null(color='red',subset=None,props=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.highlight_null.html#pandas.io.formats.style.Styler.highlight_null",
241
+ "Styler.highlight_max": "Styler.highlight_max(subset=None,color='yellow',axis=0,props=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.highlight_max.html#pandas.io.formats.style.Styler.highlight_max",
242
+ "Styler.highlight_min": "Styler.highlight_min(subset=None,color='yellow',axis=0,props=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.highlight_min.html#pandas.io.formats.style.Styler.highlight_min",
243
+ "Styler.highlight_between": "Styler.highlight_between(subset=None,color='yellow',axis=0,left=None,right=None,inclusive='both',props=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.highlight_between.html#pandas.io.formats.style.Styler.highlight_between",
244
+ "Styler.highlight_quantile": "Styler.highlight_quantile(subset=None,color='yellow',axis=0,q_left=0.0,q_right=1.0,interpolation='linear',inclusive='both',props=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.highlight_quantile.html#pandas.io.formats.style.Styler.highlight_quantile",
245
+ "Styler.background_gradient": "Styler.background_gradient(cmap='PuBu',low=0,high=0,axis=0,subset=None,text_color_threshold=0.408,vmin=None,vmax=None,gmap=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.background_gradient.html#pandas.io.formats.style.Styler.background_gradient",
246
+ "Styler.text_gradient": "Styler.text_gradient(cmap='PuBu',low=0,high=0,axis=0,subset=None,vmin=None,vmax=None,gmap=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.text_gradient.html#pandas.io.formats.style.Styler.text_gradient",
247
+ "Styler.bar": "Styler.bar(subset=None,axis=0,*,color=None,cmap=None,width=100,height=100,align='mid',vmin=None,vmax=None,props='width:10em;')\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.bar.html#pandas.io.formats.style.Styler.bar",
248
+ "Styler.to_html": "Styler.to_html(buf=None,*,table_uuid=None,table_attributes=None,sparse_index=None,sparse_columns=None,bold_headers=False,caption=None,max_rows=None,max_columns=None,encoding=None,doctype_html=False,exclude_styles=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_html.html#pandas.io.formats.style.Styler.to_html",
249
+ "Styler.to_latex": "Styler.to_latex(buf=None,*,column_format=None,position=None,position_float=None,hrules=None,clines=None,label=None,caption=None,sparse_index=None,sparse_columns=None,multirow_align=None,multicol_align=None,siunitx=False,environment=None,encoding=None,convert_css=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_latex.html#pandas.io.formats.style.Styler.to_latex",
250
+ "Styler.to_excel": "Styler.to_excel(excel_writer,sheet_name='Sheet1',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,startrow=0,startcol=0,engine=None,merge_cells=True,encoding=None,inf_rep='inf',verbose=True,freeze_panes=None,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_excel.html#pandas.io.formats.style.Styler.to_excel",
251
+ "Styler.to_string": "Styler.to_string(buf=None,*,encoding=None,sparse_index=None,sparse_columns=None,max_rows=None,max_columns=None,delimiter='')\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_string.html#pandas.io.formats.style.Styler.to_string",
252
+ "Styler.export": "Styler.export()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.export.html#pandas.io.formats.style.Styler.export",
253
+ "Styler.use": "Styler.use(styles)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.use.html#pandas.io.formats.style.Styler.use",
254
+ "DataFrame.style": "DataFrame.style\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.style.html#pandas.DataFrame.style",
255
+ "pd.plotting.andrews_curves": "pd.plotting.andrews_curves(frame,class_column,ax=None,samples=200,color=None,colormap=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.andrews_curves.html#pandas.plotting.andrews_curves",
256
+ "pd.plotting.autocorrelation_plot": "pd.plotting.autocorrelation_plot(series,ax=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.autocorrelation_plot.html#pandas.plotting.autocorrelation_plot",
257
+ "pd.plotting.bootstrap_plot": "pd.plotting.bootstrap_plot(series,fig=None,size=50,samples=500,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.bootstrap_plot.html#pandas.plotting.bootstrap_plot",
258
+ "pd.plotting.boxplot": "pd.plotting.boxplot(data,column=None,by=None,ax=None,fontsize=None,rot=0,grid=True,figsize=None,layout=None,return_type=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.boxplot.html#pandas.plotting.boxplot",
259
+ "pd.plotting.deregister_matplotlib_converters": "pd.plotting.deregister_matplotlib_converters()\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.deregister_matplotlib_converters.html#pandas.plotting.deregister_matplotlib_converters",
260
+ "pd.plotting.lag_plot": "pd.plotting.lag_plot(series,lag=1,ax=None,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.lag_plot.html#pandas.plotting.lag_plot",
261
+ "pd.plotting.parallel_coordinates": "pd.plotting.parallel_coordinates(frame,class_column,cols=None,ax=None,color=None,use_columns=False,xticks=None,colormap=None,axvlines=True,axvlines_kwds=None,sort_labels=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.parallel_coordinates.html#pandas.plotting.parallel_coordinates",
262
+ "pd.plotting.plot_params={'xaxis.compat':False}": "pd.plotting.plot_params={'xaxis.compat':False}\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.plot_params.html#pandas.plotting.plot_params",
263
+ "pd.plotting.radviz": "pd.plotting.radviz(frame,class_column,ax=None,color=None,colormap=None,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.radviz.html#pandas.plotting.radviz",
264
+ "pd.plotting.register_matplotlib_converters": "pd.plotting.register_matplotlib_converters()\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.register_matplotlib_converters.html#pandas.plotting.register_matplotlib_converters",
265
+ "pd.plotting.scatter_matrix": "pd.plotting.scatter_matrix(frame,alpha=0.5,figsize=None,ax=None,grid=False,diagonal='hist',marker='.',density_kwds=None,hist_kwds=None,range_padding=0.05,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.scatter_matrix.html#pandas.plotting.scatter_matrix",
266
+ "pd.plotting.table": "pd.plotting.table(ax,data,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.plotting.table.html#pandas.plotting.table",
267
+ "pd.describe_option": "pd.describe_option(pat,_print_desc=False)=<pd._config.config.CallableDynamicDocobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.describe_option.html#pandas.describe_option",
268
+ "pd.reset_option": "pd.reset_option(pat)=<pd._config.config.CallableDynamicDocobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.reset_option.html#pandas.reset_option",
269
+ "pd.get_option": "pd.get_option(pat)=<pd._config.config.CallableDynamicDocobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.get_option.html#pandas.get_option",
270
+ "pd.set_option": "pd.set_option(pat,value)=<pd._config.config.CallableDynamicDocobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.set_option.html#pandas.set_option",
271
+ "pandas.option_context": "pandas.option_context(*args)\nhttps://pandas.pydata.org/docs/reference/api/pandas.option_context.html#pandas.option_context",
272
+ "pd.set_eng_float_format": "pd.set_eng_float_format(accuracy=3,use_eng_prefix=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.set_eng_float_format.html#pandas.set_eng_float_format",
273
+ "pd.api.extensions.register_extension_dtype": "pd.api.extensions.register_extension_dtype(cls)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.extensions.register_extension_dtype.html#pandas.api.extensions.register_extension_dtype",
274
+ "pd.api.extensions.register_dataframe_accessor": "pd.api.extensions.register_dataframe_accessor(name)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor",
275
+ "pd.api.extensions.register_series_accessor": "pd.api.extensions.register_series_accessor(name)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.extensions.register_series_accessor.html#pandas.api.extensions.register_series_accessor",
276
+ "pd.api.extensions.register_index_accessor": "pd.api.extensions.register_index_accessor(name)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.extensions.register_index_accessor.html#pandas.api.extensions.register_index_accessor",
277
+ "pandas.api.extensions.ExtensionDtype": "pandas.api.extensions.ExtensionDtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.extensions.ExtensionDtype.html#pandas.api.extensions.ExtensionDtype",
278
+ "pandas.api.extensions.ExtensionArray": "pandas.api.extensions.ExtensionArray\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray",
279
+ "pandas.arrays.NumpyExtensionArray": "pandas.arrays.NumpyExtensionArray(values,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.NumpyExtensionArray.html#pandas.arrays.NumpyExtensionArray",
280
+ "pd.api.indexers.check_array_indexer": "pd.api.indexers.check_array_indexer(array,indexer)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.indexers.check_array_indexer.html#pandas.api.indexers.check_array_indexer",
281
+ "pd.testing.assert_frame_equal": "pd.testing.assert_frame_equal(left,right,check_dtype=True,check_index_type='equiv',check_column_type='equiv',check_frame_type=True,check_names=True,by_blocks=False,check_exact=<no_default>,check_datetimelike_compat=False,check_categorical=True,check_like=False,check_freq=True,check_flags=True,rtol=<no_default>,atol=<no_default>,obj='DataFrame')\nhttps://pandas.pydata.org/docs/reference/api/pandas.testing.assert_frame_equal.html#pandas.testing.assert_frame_equal",
282
+ "pd.testing.assert_series_equal": "pd.testing.assert_series_equal(left,right,check_dtype=True,check_index_type='equiv',check_series_type=True,check_names=True,check_exact=<no_default>,check_datetimelike_compat=False,check_categorical=True,check_category_order=True,check_freq=True,check_flags=True,rtol=<no_default>,atol=<no_default>,obj='Series',*,check_index=True,check_like=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.testing.assert_series_equal.html#pandas.testing.assert_series_equal",
283
+ "pd.testing.assert_index_equal": "pd.testing.assert_index_equal(left,right,exact='equiv',check_names=True,check_exact=True,check_categorical=True,check_order=True,rtol=1e-05,atol=1e-08,obj='Index')\nhttps://pandas.pydata.org/docs/reference/api/pandas.testing.assert_index_equal.html#pandas.testing.assert_index_equal",
284
+ "pd.testing.assert_extension_array_equal": "pd.testing.assert_extension_array_equal(left,right,check_dtype=True,index_values=None,check_exact=<no_default>,rtol=<no_default>,atol=<no_default>,obj='ExtensionArray')\nhttps://pandas.pydata.org/docs/reference/api/pandas.testing.assert_extension_array_equal.html#pandas.testing.assert_extension_array_equal",
285
+ "exceptionpandas.errors.AbstractMethodError": "exceptionpandas.errors.AbstractMethodError(class_instance,methodtype='method')\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.AbstractMethodError.html#pandas.errors.AbstractMethodError",
286
+ "exceptionpandas.errors.AttributeConflictWarning": "exceptionpandas.errors.AttributeConflictWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.AttributeConflictWarning.html#pandas.errors.AttributeConflictWarning",
287
+ "exceptionpandas.errors.CategoricalConversionWarning": "exceptionpandas.errors.CategoricalConversionWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.CategoricalConversionWarning.html#pandas.errors.CategoricalConversionWarning",
288
+ "exceptionpandas.errors.ChainedAssignmentError": "exceptionpandas.errors.ChainedAssignmentError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.ChainedAssignmentError.html#pandas.errors.ChainedAssignmentError",
289
+ "exceptionpandas.errors.ClosedFileError": "exceptionpandas.errors.ClosedFileError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.ClosedFileError.html#pandas.errors.ClosedFileError",
290
+ "exceptionpandas.errors.CSSWarning": "exceptionpandas.errors.CSSWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.CSSWarning.html#pandas.errors.CSSWarning",
291
+ "exceptionpandas.errors.DatabaseError": "exceptionpandas.errors.DatabaseError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.DatabaseError.html#pandas.errors.DatabaseError",
292
+ "exceptionpandas.errors.DataError": "exceptionpandas.errors.DataError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.DataError.html#pandas.errors.DataError",
293
+ "exceptionpandas.errors.DtypeWarning": "exceptionpandas.errors.DtypeWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.DtypeWarning.html#pandas.errors.DtypeWarning",
294
+ "exceptionpandas.errors.DuplicateLabelError": "exceptionpandas.errors.DuplicateLabelError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.DuplicateLabelError.html#pandas.errors.DuplicateLabelError",
295
+ "exceptionpandas.errors.EmptyDataError": "exceptionpandas.errors.EmptyDataError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.EmptyDataError.html#pandas.errors.EmptyDataError",
296
+ "exceptionpandas.errors.IncompatibilityWarning": "exceptionpandas.errors.IncompatibilityWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.IncompatibilityWarning.html#pandas.errors.IncompatibilityWarning",
297
+ "exceptionpandas.errors.IndexingError": "exceptionpandas.errors.IndexingError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.IndexingError.html#pandas.errors.IndexingError",
298
+ "exceptionpandas.errors.InvalidColumnName": "exceptionpandas.errors.InvalidColumnName\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.InvalidColumnName.html#pandas.errors.InvalidColumnName",
299
+ "exceptionpandas.errors.InvalidComparison": "exceptionpandas.errors.InvalidComparison\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.InvalidComparison.html#pandas.errors.InvalidComparison",
300
+ "exceptionpandas.errors.InvalidIndexError": "exceptionpandas.errors.InvalidIndexError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.InvalidIndexError.html#pandas.errors.InvalidIndexError",
301
+ "exceptionpandas.errors.InvalidVersion": "exceptionpandas.errors.InvalidVersion\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.InvalidVersion.html#pandas.errors.InvalidVersion",
302
+ "exceptionpandas.errors.IntCastingNaNError": "exceptionpandas.errors.IntCastingNaNError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.IntCastingNaNError.html#pandas.errors.IntCastingNaNError",
303
+ "exceptionpandas.errors.LossySetitemError": "exceptionpandas.errors.LossySetitemError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.LossySetitemError.html#pandas.errors.LossySetitemError",
304
+ "exceptionpandas.errors.MergeError": "exceptionpandas.errors.MergeError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.MergeError.html#pandas.errors.MergeError",
305
+ "exceptionpandas.errors.NoBufferPresent": "exceptionpandas.errors.NoBufferPresent\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.NoBufferPresent.html#pandas.errors.NoBufferPresent",
306
+ "exceptionpandas.errors.NullFrequencyError": "exceptionpandas.errors.NullFrequencyError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.NullFrequencyError.html#pandas.errors.NullFrequencyError",
307
+ "exceptionpandas.errors.NumbaUtilError": "exceptionpandas.errors.NumbaUtilError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.NumbaUtilError.html#pandas.errors.NumbaUtilError",
308
+ "exceptionpandas.errors.NumExprClobberingError": "exceptionpandas.errors.NumExprClobberingError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.NumExprClobberingError.html#pandas.errors.NumExprClobberingError",
309
+ "exceptionpandas.errors.OptionError": "exceptionpandas.errors.OptionError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.OptionError.html#pandas.errors.OptionError",
310
+ "exceptionpandas.errors.OutOfBoundsDatetime": "exceptionpandas.errors.OutOfBoundsDatetime\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.OutOfBoundsDatetime.html#pandas.errors.OutOfBoundsDatetime",
311
+ "exceptionpandas.errors.OutOfBoundsTimedelta": "exceptionpandas.errors.OutOfBoundsTimedelta\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.OutOfBoundsTimedelta.html#pandas.errors.OutOfBoundsTimedelta",
312
+ "exceptionpandas.errors.ParserError": "exceptionpandas.errors.ParserError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.ParserError.html#pandas.errors.ParserError",
313
+ "exceptionpandas.errors.ParserWarning": "exceptionpandas.errors.ParserWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.ParserWarning.html#pandas.errors.ParserWarning",
314
+ "exceptionpandas.errors.PerformanceWarning": "exceptionpandas.errors.PerformanceWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.PerformanceWarning.html#pandas.errors.PerformanceWarning",
315
+ "exceptionpandas.errors.PossibleDataLossError": "exceptionpandas.errors.PossibleDataLossError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.PossibleDataLossError.html#pandas.errors.PossibleDataLossError",
316
+ "exceptionpandas.errors.PossiblePrecisionLoss": "exceptionpandas.errors.PossiblePrecisionLoss\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.PossiblePrecisionLoss.html#pandas.errors.PossiblePrecisionLoss",
317
+ "exceptionpandas.errors.PyperclipException": "exceptionpandas.errors.PyperclipException\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.PyperclipException.html#pandas.errors.PyperclipException",
318
+ "exceptionpandas.errors.PyperclipWindowsException": "exceptionpandas.errors.PyperclipWindowsException(message)\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.PyperclipWindowsException.html#pandas.errors.PyperclipWindowsException",
319
+ "exceptionpandas.errors.SettingWithCopyError": "exceptionpandas.errors.SettingWithCopyError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.SettingWithCopyError.html#pandas.errors.SettingWithCopyError",
320
+ "exceptionpandas.errors.SettingWithCopyWarning": "exceptionpandas.errors.SettingWithCopyWarning\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.SettingWithCopyWarning.html#pandas.errors.SettingWithCopyWarning",
321
+ "exceptionpandas.errors.SpecificationError": "exceptionpandas.errors.SpecificationError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.SpecificationError.html#pandas.errors.SpecificationError",
322
+ "exceptionpandas.errors.UndefinedVariableError": "exceptionpandas.errors.UndefinedVariableError(name,is_local=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.UndefinedVariableError.html#pandas.errors.UndefinedVariableError",
323
+ "exceptionpandas.errors.UnsortedIndexError": "exceptionpandas.errors.UnsortedIndexError\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.UnsortedIndexError.html#pandas.errors.UnsortedIndexError",
324
+ "exceptionpandas.errors.UnsupportedFunctionCall": "exceptionpandas.errors.UnsupportedFunctionCall\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.UnsupportedFunctionCall.html#pandas.errors.UnsupportedFunctionCall",
325
+ "exceptionpandas.errors.ValueLabelTypeMismatch": "exceptionpandas.errors.ValueLabelTypeMismatch\nhttps://pandas.pydata.org/docs/reference/api/pandas.errors.ValueLabelTypeMismatch.html#pandas.errors.ValueLabelTypeMismatch",
326
+ "pd.show_versions": "pd.show_versions(as_json=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.show_versions.html#pandas.show_versions",
327
+ "pd.test": "pd.test(extra_args=None,run_doctests=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.test.html#pandas.test",
328
+ "pd.NA": "pd.NA\nhttps://pandas.pydata.org/docs/reference/api/pandas.NA.html#pandas.NA",
329
+ "pd.NaT": "pd.NaT\nhttps://pandas.pydata.org/docs/reference/api/pandas.NaT.html#pandas.NaT",
330
+ "pd.read_pickle": "pd.read_pickle(filepath_or_buffer,compression='infer',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_pickle.html#pandas.read_pickle",
331
+ "df.to_pickle": "df.to_pickle(path,*,compression='infer',protocol=5,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_pickle.html#pandas.DataFrame.to_pickle",
332
+ "pd.read_table": "pd.read_table(filepath_or_buffer,*,sep=<no_default>,delimiter=None,header='infer',names=<no_default>,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,skiprows=None,skipfooter=0,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=<no_default>,skip_blank_lines=True,parse_dates=False,infer_datetime_format=<no_default>,keep_date_col=<no_default>,date_parser=<no_default>,date_format=None,dayfirst=False,cache_dates=True,iterator=False,chunksize=None,compression='infer',thousands=None,decimal='.',lineterminator=None,quotechar='\"',quoting=0,doublequote=True,escapechar=None,comment=None,encoding=None,encoding_errors='strict',dialect=None,on_bad_lines='error',delim_whitespace=<no_default>,low_memory=True,memory_map=False,float_precision=None,storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_table.html#pandas.read_table",
333
+ "pd.read_csv": "pd.read_csv(filepath_or_buffer,*,sep=<no_default>,delimiter=None,header='infer',names=<no_default>,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,skiprows=None,skipfooter=0,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=<no_default>,skip_blank_lines=True,parse_dates=None,infer_datetime_format=<no_default>,keep_date_col=<no_default>,date_parser=<no_default>,date_format=None,dayfirst=False,cache_dates=True,iterator=False,chunksize=None,compression='infer',thousands=None,decimal='.',lineterminator=None,quotechar='\"',quoting=0,doublequote=True,escapechar=None,comment=None,encoding=None,encoding_errors='strict',dialect=None,on_bad_lines='error',delim_whitespace=<no_default>,low_memory=True,memory_map=False,float_precision=None,storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv",
6
334
  "df.to_csv": "df.to_csv(path_or_buf=None,*,sep=',',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,mode='w',encoding=None,compression='infer',quoting=None,quotechar='\"',lineterminator=None,chunksize=None,date_format=None,doublequote=True,escapechar=None,decimal='.',errors='strict',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv",
7
- "pd.read_fwf": "pd.read_fwf(filepath_or_buffer,*,colspecs='infer',widths=None,infer_nrows=100,dtype_backend=<no_default>,iterator=False,chunksize=None,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_fwf.html",
335
+ "pd.read_fwf": "pd.read_fwf(filepath_or_buffer,*,colspecs='infer',widths=None,infer_nrows=100,dtype_backend=<no_default>,iterator=False,chunksize=None,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_fwf.html#pandas.read_fwf",
8
336
  "pd.read_clipboard": "pd.read_clipboard(sep='\\\\s+',dtype_backend=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_clipboard.html#pandas.read_clipboard",
9
- "pd.read_excel": "pd.read_excel(io,sheet_name=0,*,header=0,names=None,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,parse_dates=False,date_parser=<no_default>,date_format=None,thousands=None,decimal='.',comment=None,skipfooter=0,storage_options=None,dtype_backend=<no_default>,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_excel.html",
10
- "df.to_excel": "df.to_excel(excel_writer,*,sheet_name='Sheet1',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,startrow=0,startcol=0,engine=None,merge_cells=True,inf_rep='inf',freeze_panes=None,storage_options=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html",
11
- "pandas.ExcelFile": "pandas.ExcelFile(path_or_buffer,engine=None,storage_options=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.html",
12
- "ExcelFile.book": "ExcelFile.book\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.book.html",
13
- "ExcelFile.sheet_names": "ExcelFile.sheet_names\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.sheet_names.html",
14
- "ExcelFile.parse": "ExcelFile.parse(sheet_name=0,header=0,names=None,index_col=None,usecols=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,parse_dates=False,date_parser=<no_default>,date_format=None,thousands=None,comment=None,skipfooter=0,dtype_backend=<no_default>,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.parse.html",
15
- "Styler.to_excel": "Styler.to_excel(excel_writer,sheet_name='Sheet1',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,startrow=0,startcol=0,engine=None,merge_cells=True,encoding=None,inf_rep='inf',verbose=True,freeze_panes=None,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_excel.html",
16
- "pandas.ExcelWriter": "pandas.ExcelWriter(path,engine=None,date_format=None,datetime_format=None,mode='w',storage_options=None,if_sheet_exists=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelWriter.html",
17
- "pd.read_json": "pd.read_json(path_or_buf,*,orient=None,typ='frame',dtype=None,convert_axes=None,convert_dates=True,keep_default_dates=True,precise_float=False,date_unit=None,encoding=None,encoding_errors='strict',lines=False,chunksize=None,compression='infer',nrows=None,storage_options=None,dtype_backend=<no_default>,engine='ujson')\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_json.html",
18
- "pd.json_normalize": "pd.json_normalize(data,record_path=None,meta=None,meta_prefix=None,record_prefix=None,errors='raise',sep='.',max_level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html",
19
- "df.to_json": "df.to_json(path_or_buf=None,*,orient=None,date_format=None,double_precision=10,force_ascii=True,date_unit='ms',default_handler=None,lines=False,compression='infer',index=None,indent=None,storage_options=None,mode='w')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html",
20
- "pd.io.json.build_table_schema": "pd.io.json.build_table_schema(data,index=True,primary_key=None,version=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.json.build_table_schema.html",
21
- "pd.read_html": "pd.read_html(io,*,match='.+',flavor=None,header=None,index_col=None,skiprows=None,attrs=None,parse_dates=False,thousands=',',encoding=None,decimal='.',converters=None,na_values=None,keep_default_na=True,displayed_only=True,extract_links=None,dtype_backend=<no_default>,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_html.html",
22
- "df.to_html": "df.to_html(buf=None,*,columns=None,col_space=None,header=True,index=True,na_rep='NaN',formatters=None,float_format=None,sparsify=None,index_names=True,justify=None,max_rows=None,max_cols=None,show_dimensions=False,decimal='.',bold_rows=True,classes=None,escape=True,notebook=False,border=None,table_id=None,render_links=False,encoding=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_html.html",
23
- "Styler.to_html": "Styler.to_html(buf=None,*,table_uuid=None,table_attributes=None,sparse_index=None,sparse_columns=None,bold_headers=False,caption=None,max_rows=None,max_columns=None,encoding=None,doctype_html=False,exclude_styles=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_html.html",
24
- "pd.read_xml": "pd.read_xml(path_or_buffer,*,xpath='./*',namespaces=None,elems_only=False,attrs_only=False,names=None,dtype=None,converters=None,parse_dates=None,encoding='utf-8',parser='lxml',stylesheet=None,iterparse=None,compression='infer',storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_xml.html",
25
- "df.to_xml": "df.to_xml(path_or_buffer=None,*,index=True,root_name='data',row_name='row',na_rep=None,attr_cols=None,elem_cols=None,namespaces=None,prefix=None,encoding='utf-8',xml_declaration=True,pretty_print=True,parser='lxml',stylesheet=None,compression='infer',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_xml.html",
26
- "df.to_latex": "df.to_latex(buf=None,*,columns=None,header=True,index=True,na_rep='NaN',formatters=None,float_format=None,sparsify=None,index_names=True,bold_rows=False,column_format=None,longtable=None,escape=None,encoding=None,decimal='.',multicolumn=None,multicolumn_format=None,multirow=None,caption=None,label=None,position=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html",
27
- "Styler.to_latex": "Styler.to_latex(buf=None,*,column_format=None,position=None,position_float=None,hrules=None,clines=None,label=None,caption=None,sparse_index=None,sparse_columns=None,multirow_align=None,multicol_align=None,siunitx=False,environment=None,encoding=None,convert_css=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.to_latex.html",
28
- "pd.read_hdf": "pd.read_hdf(path_or_buf,key=None,mode='r',errors='strict',where=None,start=None,stop=None,columns=None,iterator=False,chunksize=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_hdf.html",
29
- "HDFStore.put": "HDFStore.put(key,value,format=None,index=True,append=False,complib=None,complevel=None,min_itemsize=None,nan_rep=None,data_columns=None,encoding=None,errors='strict',track_times=True,dropna=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.put.html",
30
- "HDFStore.append": "HDFStore.append(key,value,format=None,axes=None,index=True,append=True,complib=None,complevel=None,columns=None,min_itemsize=None,nan_rep=None,chunksize=None,expectedrows=None,dropna=None,data_columns=None,encoding=None,errors='strict')\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.append.html",
31
- "HDFStore.get": "HDFStore.get(key)\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.get.html",
32
- "HDFStore.select": "HDFStore.select(key,where=None,start=None,stop=None,columns=None,iterator=False,chunksize=None,auto_close=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.select.html",
33
- "HDFStore.info": "HDFStore.info()\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.info.html",
34
- "HDFStore.keys": "HDFStore.keys(include='pandas')\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.keys.html",
35
- "HDFStore.groups": "HDFStore.groups()\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.groups.html",
36
- "HDFStore.walk": "HDFStore.walk(where='/')\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.walk.html",
37
- "pd.read_feather": "pd.read_feather(path,columns=None,use_threads=True,storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_feather.html",
38
- "df.to_feather": "df.to_feather(path,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_feather.html",
39
- "pd.read_parquet": "pd.read_parquet(path,engine='auto',columns=None,storage_options=None,use_nullable_dtypes=<no_default>,dtype_backend=<no_default>,filesystem=None,filters=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_parquet.html",
40
- "df.to_parquet": "df.to_parquet(path=None,*,engine='auto',compression='snappy',index=None,partition_cols=None,storage_options=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html",
41
- "pd.read_orc": "pd.read_orc(path,columns=None,dtype_backend=<no_default>,filesystem=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_orc.html",
42
- "df.to_orc": "df.to_orc(path=None,*,engine='pyarrow',index=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_orc.html",
43
- "pd.read_sas": "pd.read_sas(filepath_or_buffer,*,format=None,index=None,encoding=None,chunksize=None,iterator=False,compression='infer')\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sas.html",
44
- "pd.read_spss": "pd.read_spss(path,usecols=None,convert_categoricals=True,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_spss.html",
45
- "pd.read_sql_table": "pd.read_sql_table(table_name,con,schema=None,index_col=None,coerce_float=True,parse_dates=None,columns=None,chunksize=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sql_table.html",
46
- "pd.read_sql_query": "pd.read_sql_query(sql,con,index_col=None,coerce_float=True,params=None,parse_dates=None,chunksize=None,dtype=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sql_query.html",
47
- "pd.read_sql": "pd.read_sql(sql,con,index_col=None,coerce_float=True,params=None,parse_dates=None,columns=None,chunksize=None,dtype_backend=<no_default>,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sql.html",
48
- "df.to_sql": "df.to_sql(name,con,*,schema=None,if_exists='fail',index=True,index_label=None,chunksize=None,dtype=None,method=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_sql.html",
49
- "pd.read_gbq": "pd.read_gbq(query,project_id=None,index_col=None,col_order=None,reauth=False,auth_local_webserver=True,dialect=None,location=None,configuration=None,credentials=None,use_bqstorage_api=None,max_results=None,progress_bar_type=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_gbq.html",
50
- "pd.read_stata": "pd.read_stata(filepath_or_buffer,*,convert_dates=True,convert_categoricals=True,index_col=None,convert_missing=False,preserve_dtypes=True,columns=None,order_categoricals=True,chunksize=None,iterator=False,compression='infer',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_stata.html",
51
- "df.to_stata": "df.to_stata(path,*,convert_dates=None,write_index=True,byteorder=None,time_stamp=None,data_label=None,variable_labels=None,version=114,convert_strl=None,compression='infer',storage_options=None,value_labels=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_stata.html",
52
- "StataReader.data_label": "StataReader.data_label\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataReader.data_label.html",
53
- "StataReader.value_labels": "StataReader.value_labels()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataReader.value_labels.html",
54
- "StataReader.variable_labels": "StataReader.variable_labels()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataReader.variable_labels.html",
55
- "StataWriter.write_file": "StataWriter.write_file()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataWriter.write_file.html"
337
+ "df.to_clipboard": "df.to_clipboard(*,excel=True,sep=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_clipboard.html#pandas.DataFrame.to_clipboard",
338
+ "pd.read_excel": "pd.read_excel(io,sheet_name=0,*,header=0,names=None,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,parse_dates=False,date_parser=<no_default>,date_format=None,thousands=None,decimal='.',comment=None,skipfooter=0,storage_options=None,dtype_backend=<no_default>,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_excel.html#pandas.read_excel",
339
+ "df.to_excel": "df.to_excel(excel_writer,*,sheet_name='Sheet1',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,startrow=0,startcol=0,engine=None,merge_cells=True,inf_rep='inf',freeze_panes=None,storage_options=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html#pandas.DataFrame.to_excel",
340
+ "pandas.ExcelFile": "pandas.ExcelFile(path_or_buffer,engine=None,storage_options=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.html#pandas.ExcelFile",
341
+ "ExcelFile.book": "ExcelFile.book\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.book.html#pandas.ExcelFile.book",
342
+ "ExcelFile.sheet_names": "ExcelFile.sheet_names\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.sheet_names.html#pandas.ExcelFile.sheet_names",
343
+ "ExcelFile.parse": "ExcelFile.parse(sheet_name=0,header=0,names=None,index_col=None,usecols=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,parse_dates=False,date_parser=<no_default>,date_format=None,thousands=None,comment=None,skipfooter=0,dtype_backend=<no_default>,**kwds)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.parse.html#pandas.ExcelFile.parse",
344
+ "pandas.ExcelWriter": "pandas.ExcelWriter(path,engine=None,date_format=None,datetime_format=None,mode='w',storage_options=None,if_sheet_exists=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ExcelWriter.html#pandas.ExcelWriter",
345
+ "pd.read_json": "pd.read_json(path_or_buf,*,orient=None,typ='frame',dtype=None,convert_axes=None,convert_dates=True,keep_default_dates=True,precise_float=False,date_unit=None,encoding=None,encoding_errors='strict',lines=False,chunksize=None,compression='infer',nrows=None,storage_options=None,dtype_backend=<no_default>,engine='ujson')\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_json.html#pandas.read_json",
346
+ "pd.json_normalize": "pd.json_normalize(data,record_path=None,meta=None,meta_prefix=None,record_prefix=None,errors='raise',sep='.',max_level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html#pandas.json_normalize",
347
+ "df.to_json": "df.to_json(path_or_buf=None,*,orient=None,date_format=None,double_precision=10,force_ascii=True,date_unit='ms',default_handler=None,lines=False,compression='infer',index=None,indent=None,storage_options=None,mode='w')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json",
348
+ "pd.io.json.build_table_schema": "pd.io.json.build_table_schema(data,index=True,primary_key=None,version=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.json.build_table_schema.html#pandas.io.json.build_table_schema",
349
+ "pd.read_html": "pd.read_html(io,*,match='.+',flavor=None,header=None,index_col=None,skiprows=None,attrs=None,parse_dates=False,thousands=',',encoding=None,decimal='.',converters=None,na_values=None,keep_default_na=True,displayed_only=True,extract_links=None,dtype_backend=<no_default>,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_html.html#pandas.read_html",
350
+ "df.to_html": "df.to_html(buf=None,*,columns=None,col_space=None,header=True,index=True,na_rep='NaN',formatters=None,float_format=None,sparsify=None,index_names=True,justify=None,max_rows=None,max_cols=None,show_dimensions=False,decimal='.',bold_rows=True,classes=None,escape=True,notebook=False,border=None,table_id=None,render_links=False,encoding=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_html.html#pandas.DataFrame.to_html",
351
+ "pd.read_xml": "pd.read_xml(path_or_buffer,*,xpath='./*',namespaces=None,elems_only=False,attrs_only=False,names=None,dtype=None,converters=None,parse_dates=None,encoding='utf-8',parser='lxml',stylesheet=None,iterparse=None,compression='infer',storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_xml.html#pandas.read_xml",
352
+ "df.to_xml": "df.to_xml(path_or_buffer=None,*,index=True,root_name='data',row_name='row',na_rep=None,attr_cols=None,elem_cols=None,namespaces=None,prefix=None,encoding='utf-8',xml_declaration=True,pretty_print=True,parser='lxml',stylesheet=None,compression='infer',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_xml.html#pandas.DataFrame.to_xml",
353
+ "df.to_latex": "df.to_latex(buf=None,*,columns=None,header=True,index=True,na_rep='NaN',formatters=None,float_format=None,sparsify=None,index_names=True,bold_rows=False,column_format=None,longtable=None,escape=None,encoding=None,decimal='.',multicolumn=None,multicolumn_format=None,multirow=None,caption=None,label=None,position=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html#pandas.DataFrame.to_latex",
354
+ "pd.read_hdf": "pd.read_hdf(path_or_buf,key=None,mode='r',errors='strict',where=None,start=None,stop=None,columns=None,iterator=False,chunksize=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_hdf.html#pandas.read_hdf",
355
+ "HDFStore.put": "HDFStore.put(key,value,format=None,index=True,append=False,complib=None,complevel=None,min_itemsize=None,nan_rep=None,data_columns=None,encoding=None,errors='strict',track_times=True,dropna=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.put.html#pandas.HDFStore.put",
356
+ "HDFStore.append": "HDFStore.append(key,value,format=None,axes=None,index=True,append=True,complib=None,complevel=None,columns=None,min_itemsize=None,nan_rep=None,chunksize=None,expectedrows=None,dropna=None,data_columns=None,encoding=None,errors='strict')\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.append.html#pandas.HDFStore.append",
357
+ "HDFStore.get": "HDFStore.get(key)\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.get.html#pandas.HDFStore.get",
358
+ "HDFStore.select": "HDFStore.select(key,where=None,start=None,stop=None,columns=None,iterator=False,chunksize=None,auto_close=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.select.html#pandas.HDFStore.select",
359
+ "HDFStore.info": "HDFStore.info()\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.info.html#pandas.HDFStore.info",
360
+ "HDFStore.keys": "HDFStore.keys(include='pandas')\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.keys.html#pandas.HDFStore.keys",
361
+ "HDFStore.groups": "HDFStore.groups()\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.groups.html#pandas.HDFStore.groups",
362
+ "HDFStore.walk": "HDFStore.walk(where='/')\nhttps://pandas.pydata.org/docs/reference/api/pandas.HDFStore.walk.html#pandas.HDFStore.walk",
363
+ "pd.read_feather": "pd.read_feather(path,columns=None,use_threads=True,storage_options=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_feather.html#pandas.read_feather",
364
+ "df.to_feather": "df.to_feather(path,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_feather.html#pandas.DataFrame.to_feather",
365
+ "pd.read_parquet": "pd.read_parquet(path,engine='auto',columns=None,storage_options=None,use_nullable_dtypes=<no_default>,dtype_backend=<no_default>,filesystem=None,filters=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_parquet.html#pandas.read_parquet",
366
+ "df.to_parquet": "df.to_parquet(path=None,*,engine='auto',compression='snappy',index=None,partition_cols=None,storage_options=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html#pandas.DataFrame.to_parquet",
367
+ "pd.read_orc": "pd.read_orc(path,columns=None,dtype_backend=<no_default>,filesystem=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_orc.html#pandas.read_orc",
368
+ "df.to_orc": "df.to_orc(path=None,*,engine='pyarrow',index=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_orc.html#pandas.DataFrame.to_orc",
369
+ "pd.read_sas": "pd.read_sas(filepath_or_buffer,*,format=None,index=None,encoding=None,chunksize=None,iterator=False,compression='infer')\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sas.html#pandas.read_sas",
370
+ "pd.read_spss": "pd.read_spss(path,usecols=None,convert_categoricals=True,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_spss.html#pandas.read_spss",
371
+ "pd.read_sql_table": "pd.read_sql_table(table_name,con,schema=None,index_col=None,coerce_float=True,parse_dates=None,columns=None,chunksize=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sql_table.html#pandas.read_sql_table",
372
+ "pd.read_sql_query": "pd.read_sql_query(sql,con,index_col=None,coerce_float=True,params=None,parse_dates=None,chunksize=None,dtype=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sql_query.html#pandas.read_sql_query",
373
+ "pd.read_sql": "pd.read_sql(sql,con,index_col=None,coerce_float=True,params=None,parse_dates=None,columns=None,chunksize=None,dtype_backend=<no_default>,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_sql.html#pandas.read_sql",
374
+ "df.to_sql": "df.to_sql(name,con,*,schema=None,if_exists='fail',index=True,index_label=None,chunksize=None,dtype=None,method=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_sql.html#pandas.DataFrame.to_sql",
375
+ "pd.read_gbq": "pd.read_gbq(query,project_id=None,index_col=None,col_order=None,reauth=False,auth_local_webserver=True,dialect=None,location=None,configuration=None,credentials=None,use_bqstorage_api=None,max_results=None,progress_bar_type=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_gbq.html#pandas.read_gbq",
376
+ "pd.read_stata": "pd.read_stata(filepath_or_buffer,*,convert_dates=True,convert_categoricals=True,index_col=None,convert_missing=False,preserve_dtypes=True,columns=None,order_categoricals=True,chunksize=None,iterator=False,compression='infer',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.read_stata.html#pandas.read_stata",
377
+ "df.to_stata": "df.to_stata(path,*,convert_dates=None,write_index=True,byteorder=None,time_stamp=None,data_label=None,variable_labels=None,version=114,convert_strl=None,compression='infer',storage_options=None,value_labels=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_stata.html#pandas.DataFrame.to_stata",
378
+ "StataReader.data_label": "StataReader.data_label\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataReader.data_label.html#pandas.io.stata.StataReader.data_label",
379
+ "StataReader.value_labels": "StataReader.value_labels()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataReader.value_labels.html#pandas.io.stata.StataReader.value_labels",
380
+ "StataReader.variable_labels": "StataReader.variable_labels()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataReader.variable_labels.html#pandas.io.stata.StataReader.variable_labels",
381
+ "StataWriter.write_file": "StataWriter.write_file()\nhttps://pandas.pydata.org/docs/reference/api/pandas.io.stata.StataWriter.write_file.html#pandas.io.stata.StataWriter.write_file",
382
+ "pandas.DataFrame": "pandas.DataFrame(data=None,index=None,columns=None,dtype=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame",
383
+ "pandas.Series": "pandas.Series(data=None,index=None,dtype=None,name=None,copy=None,fastpath=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series",
384
+ "pd.melt": "pd.melt(frame,id_vars=None,value_vars=None,var_name=None,value_name='value',col_level=None,ignore_index=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.melt.html#pandas.melt",
385
+ "pd.pivot": "pd.pivot(data,*,columns,index=<no_default>,values=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.pivot.html#pandas.pivot",
386
+ "pd.pivot_table": "pd.pivot_table(data,values=None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna=True,margins_name='All',observed=<no_default>,sort=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.pivot_table.html#pandas.pivot_table",
387
+ "pd.crosstab": "pd.crosstab(index,columns,values=None,rownames=None,colnames=None,aggfunc=None,margins=False,margins_name='All',dropna=True,normalize=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.crosstab.html#pandas.crosstab",
388
+ "pd.cut": "pd.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False,duplicates='raise',ordered=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.cut.html#pandas.cut",
389
+ "pd.qcut": "pd.qcut(x,q,labels=None,retbins=False,precision=3,duplicates='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.qcut.html#pandas.qcut",
390
+ "pd.merge": "pd.merge(left,right,how='inner',on=None,left_on=None,right_on=None,left_index=False,right_index=False,sort=False,suffixes=('_x','_y'),copy=None,indicator=False,validate=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.merge.html#pandas.merge",
391
+ "pd.merge_ordered": "pd.merge_ordered(left,right,on=None,left_on=None,right_on=None,left_by=None,right_by=None,fill_method=None,suffixes=('_x','_y'),how='outer')\nhttps://pandas.pydata.org/docs/reference/api/pandas.merge_ordered.html#pandas.merge_ordered",
392
+ "pd.merge_asof": "pd.merge_asof(left,right,on=None,left_on=None,right_on=None,left_index=False,right_index=False,by=None,left_by=None,right_by=None,suffixes=('_x','_y'),tolerance=None,allow_exact_matches=True,direction='backward')\nhttps://pandas.pydata.org/docs/reference/api/pandas.merge_asof.html#pandas.merge_asof",
393
+ "pd.concat": "pd.concat(objs,*,axis=0,join='outer',ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False,sort=False,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.concat.html#pandas.concat",
394
+ "pd.get_dummies": "pd.get_dummies(data,prefix=None,prefix_sep='_',dummy_na=False,columns=None,sparse=False,drop_first=False,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html#pandas.get_dummies",
395
+ "pd.from_dummies": "pd.from_dummies(data,sep=None,default_category=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.from_dummies.html#pandas.from_dummies",
396
+ "pd.factorize": "pd.factorize(values,sort=False,use_na_sentinel=True,size_hint=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.factorize.html#pandas.factorize",
397
+ "pd.unique": "pd.unique(values)\nhttps://pandas.pydata.org/docs/reference/api/pandas.unique.html#pandas.unique",
398
+ "pd.lreshape": "pd.lreshape(data,groups,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.lreshape.html#pandas.lreshape",
399
+ "pd.wide_to_long": "pd.wide_to_long(df,stubnames,i,j,sep='',suffix='\\\\d+')\nhttps://pandas.pydata.org/docs/reference/api/pandas.wide_to_long.html#pandas.wide_to_long",
400
+ "pd.isna": "pd.isna(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.isna.html#pandas.isna",
401
+ "pd.isnull": "pd.isnull(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.isnull.html#pandas.isnull",
402
+ "pd.notna": "pd.notna(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.notna.html#pandas.notna",
403
+ "pd.notnull": "pd.notnull(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.notnull.html#pandas.notnull",
404
+ "pd.to_numeric": "pd.to_numeric(arg,errors='raise',downcast=None,dtype_backend=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.to_numeric.html#pandas.to_numeric",
405
+ "pd.to_datetime": "pd.to_datetime(arg,errors='raise',dayfirst=False,yearfirst=False,utc=False,format=None,exact=<no_default>,unit=None,infer_datetime_format=<no_default>,origin='unix',cache=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html#pandas.to_datetime",
406
+ "pd.to_timedelta": "pd.to_timedelta(arg,unit=None,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.to_timedelta.html#pandas.to_timedelta",
407
+ "pd.date_range": "pd.date_range(start=None,end=None,periods=None,freq=None,tz=None,normalize=False,name=None,inclusive='both',*,unit=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.date_range.html#pandas.date_range",
408
+ "pd.bdate_range": "pd.bdate_range(start=None,end=None,periods=None,freq='B',tz=None,normalize=True,name=None,weekmask=None,holidays=None,inclusive='both',**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.bdate_range.html#pandas.bdate_range",
409
+ "pd.period_range": "pd.period_range(start=None,end=None,periods=None,freq=None,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.period_range.html#pandas.period_range",
410
+ "pd.timedelta_range": "pd.timedelta_range(start=None,end=None,periods=None,freq=None,name=None,closed=None,*,unit=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.timedelta_range.html#pandas.timedelta_range",
411
+ "pd.infer_freq": "pd.infer_freq(index)\nhttps://pandas.pydata.org/docs/reference/api/pandas.infer_freq.html#pandas.infer_freq",
412
+ "pd.interval_range": "pd.interval_range(start=None,end=None,periods=None,freq=None,name=None,closed='right')\nhttps://pandas.pydata.org/docs/reference/api/pandas.interval_range.html#pandas.interval_range",
413
+ "pd.eval": "pd.eval(expr,parser='pd',engine=None,local_dict=None,global_dict=None,resolvers=(),level=0,target=None,inplace=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.eval.html#pandas.eval",
414
+ "pd.tseries.api.guess_datetime_format": "pd.tseries.api.guess_datetime_format(dt_str,dayfirst=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.tseries.api.guess_datetime_format.html#pandas.tseries.api.guess_datetime_format",
415
+ "pd.util.hash_array": "pd.util.hash_array(vals,encoding='utf8',hash_key='0123456789123456',categorize=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.util.hash_array.html#pandas.util.hash_array",
416
+ "pd.util.hash_pd_object": "pd.util.hash_pd_object(obj,index=True,encoding='utf8',hash_key='0123456789123456',categorize=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.util.hash_pandas_object.html#pandas.util.hash_pandas_object",
417
+ "pd.api.interchange.from_dataframe": "pd.api.interchange.from_dataframe(df,allow_copy=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.interchange.from_dataframe.html#pandas.api.interchange.from_dataframe",
418
+ "Series.index": "Series.index\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.index.html#pandas.Series.index",
419
+ "Series.array": "Series.array\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.array.html#pandas.Series.array",
420
+ "Series.values": "Series.values\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.values.html#pandas.Series.values",
421
+ "Series.dtype": "Series.dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dtype.html#pandas.Series.dtype",
422
+ "Series.shape": "Series.shape\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.shape.html#pandas.Series.shape",
423
+ "Series.nbytes": "Series.nbytes\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.nbytes.html#pandas.Series.nbytes",
424
+ "Series.ndim": "Series.ndim\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.ndim.html#pandas.Series.ndim",
425
+ "Series.size": "Series.size\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.size.html#pandas.Series.size",
426
+ "Series.T": "Series.T\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.T.html#pandas.Series.T",
427
+ "Series.memory_usage": "Series.memory_usage(index=True,deep=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.memory_usage.html#pandas.Series.memory_usage",
428
+ "Series.hasnans": "Series.hasnans\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.hasnans.html#pandas.Series.hasnans",
429
+ "Series.empty": "Series.empty\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.empty.html#pandas.Series.empty",
430
+ "Series.dtypes": "Series.dtypes\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dtypes.html#pandas.Series.dtypes",
431
+ "Series.name": "Series.name\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.name.html#pandas.Series.name",
432
+ "Series.flags": "Series.flags\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.flags.html#pandas.Series.flags",
433
+ "Series.set_flags": "Series.set_flags(*,copy=False,allows_duplicate_labels=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.set_flags.html#pandas.Series.set_flags",
434
+ "Series.astype": "Series.astype(dtype,copy=None,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.astype.html#pandas.Series.astype",
435
+ "Series.convert_dtypes": "Series.convert_dtypes(infer_objects=True,convert_string=True,convert_integer=True,convert_boolean=True,convert_floating=True,dtype_backend='numpy_nullable')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.convert_dtypes.html#pandas.Series.convert_dtypes",
436
+ "Series.infer_objects": "Series.infer_objects(copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.infer_objects.html#pandas.Series.infer_objects",
437
+ "Series.copy": "Series.copy(deep=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.copy.html#pandas.Series.copy",
438
+ "Series.bool": "Series.bool()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.bool.html#pandas.Series.bool",
439
+ "Series.to_numpy": "Series.to_numpy(dtype=None,copy=False,na_value=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_numpy.html#pandas.Series.to_numpy",
440
+ "Series.to_period": "Series.to_period(freq=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_period.html#pandas.Series.to_period",
441
+ "Series.to_timestamp": "Series.to_timestamp(freq=None,how='start',copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_timestamp.html#pandas.Series.to_timestamp",
442
+ "Series.to_list": "Series.to_list()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_list.html#pandas.Series.to_list",
443
+ "Series.__array__": "Series.__array__(dtype=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.__array__.html#pandas.Series.__array__",
444
+ "Series.get": "Series.get(key,default=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.get.html#pandas.Series.get",
445
+ "Series.at": "Series.at\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.at.html#pandas.Series.at",
446
+ "Series.iat": "Series.iat\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.iat.html#pandas.Series.iat",
447
+ "Series.loc": "Series.loc\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.loc.html#pandas.Series.loc",
448
+ "Series.iloc": "Series.iloc\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.iloc.html#pandas.Series.iloc",
449
+ "Series.__iter__": "Series.__iter__()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.__iter__.html#pandas.Series.__iter__",
450
+ "Series.items": "Series.items()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.items.html#pandas.Series.items",
451
+ "Series.keys": "Series.keys()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.keys.html#pandas.Series.keys",
452
+ "Series.pop": "Series.pop(item)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.pop.html#pandas.Series.pop",
453
+ "Series.item": "Series.item()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.item.html#pandas.Series.item",
454
+ "Series.xs": "Series.xs(key,axis=0,level=None,drop_level=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.xs.html#pandas.Series.xs",
455
+ "Series.add": "Series.add(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.add.html#pandas.Series.add",
456
+ "Series.sub": "Series.sub(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sub.html#pandas.Series.sub",
457
+ "Series.mul": "Series.mul(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.mul.html#pandas.Series.mul",
458
+ "Series.div": "Series.div(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.div.html#pandas.Series.div",
459
+ "Series.truediv": "Series.truediv(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.truediv.html#pandas.Series.truediv",
460
+ "Series.floordiv": "Series.floordiv(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.floordiv.html#pandas.Series.floordiv",
461
+ "Series.mod": "Series.mod(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.mod.html#pandas.Series.mod",
462
+ "Series.pow": "Series.pow(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.pow.html#pandas.Series.pow",
463
+ "Series.radd": "Series.radd(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.radd.html#pandas.Series.radd",
464
+ "Series.rsub": "Series.rsub(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rsub.html#pandas.Series.rsub",
465
+ "Series.rmul": "Series.rmul(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rmul.html#pandas.Series.rmul",
466
+ "Series.rdiv": "Series.rdiv(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rdiv.html#pandas.Series.rdiv",
467
+ "Series.rtruediv": "Series.rtruediv(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rtruediv.html#pandas.Series.rtruediv",
468
+ "Series.rfloordiv": "Series.rfloordiv(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rfloordiv.html#pandas.Series.rfloordiv",
469
+ "Series.rmod": "Series.rmod(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rmod.html#pandas.Series.rmod",
470
+ "Series.rpow": "Series.rpow(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rpow.html#pandas.Series.rpow",
471
+ "Series.combine": "Series.combine(other,func,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.combine.html#pandas.Series.combine",
472
+ "Series.combine_first": "Series.combine_first(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.combine_first.html#pandas.Series.combine_first",
473
+ "Series.round": "Series.round(decimals=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.round.html#pandas.Series.round",
474
+ "Series.lt": "Series.lt(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.lt.html#pandas.Series.lt",
475
+ "Series.gt": "Series.gt(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.gt.html#pandas.Series.gt",
476
+ "Series.le": "Series.le(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.le.html#pandas.Series.le",
477
+ "Series.ge": "Series.ge(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.ge.html#pandas.Series.ge",
478
+ "Series.ne": "Series.ne(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.ne.html#pandas.Series.ne",
479
+ "Series.eq": "Series.eq(other,level=None,fill_value=None,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.eq.html#pandas.Series.eq",
480
+ "Series.product": "Series.product(axis=None,skipna=True,numeric_only=False,min_count=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.product.html#pandas.Series.product",
481
+ "Series.dot": "Series.dot(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dot.html#pandas.Series.dot",
482
+ "Series.apply": "Series.apply(func,convert_dtype=<no_default>,args=(),*,by_row='compat',**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.apply.html#pandas.Series.apply",
483
+ "Series.agg": "Series.agg(func=None,axis=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.agg.html#pandas.Series.agg",
484
+ "Series.aggregate": "Series.aggregate(func=None,axis=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.aggregate.html#pandas.Series.aggregate",
485
+ "Series.transform": "Series.transform(func,axis=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.transform.html#pandas.Series.transform",
486
+ "Series.map": "Series.map(arg,na_action=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.map.html#pandas.Series.map",
487
+ "Series.pipe": "Series.pipe(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.pipe.html#pandas.Series.pipe",
488
+ "Series.abs": "Series.abs()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.abs.html#pandas.Series.abs",
489
+ "Series.all": "Series.all(axis=0,bool_only=False,skipna=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.all.html#pandas.Series.all",
490
+ "Series.any": "Series.any(*,axis=0,bool_only=False,skipna=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.any.html#pandas.Series.any",
491
+ "Series.autocorr": "Series.autocorr(lag=1)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.autocorr.html#pandas.Series.autocorr",
492
+ "Series.between": "Series.between(left,right,inclusive='both')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.between.html#pandas.Series.between",
493
+ "Series.clip": "Series.clip(lower=None,upper=None,*,axis=None,inplace=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.clip.html#pandas.Series.clip",
494
+ "Series.corr": "Series.corr(other,method='pearson',min_periods=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.corr.html#pandas.Series.corr",
495
+ "Series.count": "Series.count()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.count.html#pandas.Series.count",
496
+ "Series.cov": "Series.cov(other,min_periods=None,ddof=1)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cov.html#pandas.Series.cov",
497
+ "Series.cummax": "Series.cummax(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cummax.html#pandas.Series.cummax",
498
+ "Series.cummin": "Series.cummin(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cummin.html#pandas.Series.cummin",
499
+ "Series.cumprod": "Series.cumprod(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cumprod.html#pandas.Series.cumprod",
500
+ "Series.cumsum": "Series.cumsum(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cumsum.html#pandas.Series.cumsum",
501
+ "Series.describe": "Series.describe(percentiles=None,include=None,exclude=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.describe.html#pandas.Series.describe",
502
+ "Series.diff": "Series.diff(periods=1)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.diff.html#pandas.Series.diff",
503
+ "Series.factorize": "Series.factorize(sort=False,use_na_sentinel=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.factorize.html#pandas.Series.factorize",
504
+ "Series.kurt": "Series.kurt(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.kurt.html#pandas.Series.kurt",
505
+ "Series.max": "Series.max(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.max.html#pandas.Series.max",
506
+ "Series.mean": "Series.mean(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.mean.html#pandas.Series.mean",
507
+ "Series.median": "Series.median(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.median.html#pandas.Series.median",
508
+ "Series.min": "Series.min(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.min.html#pandas.Series.min",
509
+ "Series.mode": "Series.mode(dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.mode.html#pandas.Series.mode",
510
+ "Series.nlargest": "Series.nlargest(n=5,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.nlargest.html#pandas.Series.nlargest",
511
+ "Series.nsmallest": "Series.nsmallest(n=5,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.nsmallest.html#pandas.Series.nsmallest",
512
+ "Series.pct_change": "Series.pct_change(periods=1,fill_method=<no_default>,limit=<no_default>,freq=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.pct_change.html#pandas.Series.pct_change",
513
+ "Series.prod": "Series.prod(axis=None,skipna=True,numeric_only=False,min_count=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.prod.html#pandas.Series.prod",
514
+ "Series.quantile": "Series.quantile(q=0.5,interpolation='linear')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.quantile.html#pandas.Series.quantile",
515
+ "Series.rank": "Series.rank(axis=0,method='average',numeric_only=False,na_option='keep',ascending=True,pct=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rank.html#pandas.Series.rank",
516
+ "Series.sem": "Series.sem(axis=None,skipna=True,ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sem.html#pandas.Series.sem",
517
+ "Series.skew": "Series.skew(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.skew.html#pandas.Series.skew",
518
+ "Series.std": "Series.std(axis=None,skipna=True,ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.std.html#pandas.Series.std",
519
+ "Series.sum": "Series.sum(axis=None,skipna=True,numeric_only=False,min_count=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sum.html#pandas.Series.sum",
520
+ "Series.var": "Series.var(axis=None,skipna=True,ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.var.html#pandas.Series.var",
521
+ "Series.kurtosis": "Series.kurtosis(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.kurtosis.html#pandas.Series.kurtosis",
522
+ "Series.unique": "Series.unique()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.unique.html#pandas.Series.unique",
523
+ "Series.nunique": "Series.nunique(dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.nunique.html#pandas.Series.nunique",
524
+ "Series.is_unique": "Series.is_unique\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.is_unique.html#pandas.Series.is_unique",
525
+ "Series.is_monotonic_increasing": "Series.is_monotonic_increasing\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.is_monotonic_increasing.html#pandas.Series.is_monotonic_increasing",
526
+ "Series.is_monotonic_decreasing": "Series.is_monotonic_decreasing\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.is_monotonic_decreasing.html#pandas.Series.is_monotonic_decreasing",
527
+ "Series.value_counts": "Series.value_counts(normalize=False,sort=True,ascending=False,bins=None,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html#pandas.Series.value_counts",
528
+ "Series.align": "Series.align(other,join='outer',axis=None,level=None,copy=None,fill_value=None,method=<no_default>,limit=<no_default>,fill_axis=<no_default>,broadcast_axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.align.html#pandas.Series.align",
529
+ "Series.case_when": "Series.case_when(caselist)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.case_when.html#pandas.Series.case_when",
530
+ "Series.drop": "Series.drop(labels=None,*,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.drop.html#pandas.Series.drop",
531
+ "Series.droplevel": "Series.droplevel(level,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.droplevel.html#pandas.Series.droplevel",
532
+ "Series.drop_duplicates": "Series.drop_duplicates(*,keep='first',inplace=False,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.drop_duplicates.html#pandas.Series.drop_duplicates",
533
+ "Series.duplicated": "Series.duplicated(keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.duplicated.html#pandas.Series.duplicated",
534
+ "Series.equals": "Series.equals(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.equals.html#pandas.Series.equals",
535
+ "Series.first": "Series.first(offset)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.first.html#pandas.Series.first",
536
+ "Series.head": "Series.head(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.head.html#pandas.Series.head",
537
+ "Series.idxmax": "Series.idxmax(axis=0,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.idxmax.html#pandas.Series.idxmax",
538
+ "Series.idxmin": "Series.idxmin(axis=0,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.idxmin.html#pandas.Series.idxmin",
539
+ "Series.isin": "Series.isin(values)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.isin.html#pandas.Series.isin",
540
+ "Series.last": "Series.last(offset)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.last.html#pandas.Series.last",
541
+ "Series.reindex": "Series.reindex(index=None,*,axis=None,method=None,copy=None,level=None,fill_value=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.reindex.html#pandas.Series.reindex",
542
+ "Series.reindex_like": "Series.reindex_like(other,method=None,copy=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.reindex_like.html#pandas.Series.reindex_like",
543
+ "Series.rename": "Series.rename(index=None,*,axis=None,copy=None,inplace=False,level=None,errors='ignore')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rename.html#pandas.Series.rename",
544
+ "Series.rename_axis": "Series.rename_axis(mapper=<no_default>,*,index=<no_default>,axis=0,copy=True,inplace=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.rename_axis.html#pandas.Series.rename_axis",
545
+ "Series.reset_index": "Series.reset_index(level=None,*,drop=False,name=<no_default>,inplace=False,allow_duplicates=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.reset_index.html#pandas.Series.reset_index",
546
+ "Series.sample": "Series.sample(n=None,frac=None,replace=False,weights=None,random_state=None,axis=None,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sample.html#pandas.Series.sample",
547
+ "Series.set_axis": "Series.set_axis(labels,*,axis=0,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.set_axis.html#pandas.Series.set_axis",
548
+ "Series.take": "Series.take(indices,axis=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.take.html#pandas.Series.take",
549
+ "Series.tail": "Series.tail(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.tail.html#pandas.Series.tail",
550
+ "Series.truncate": "Series.truncate(before=None,after=None,axis=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.truncate.html#pandas.Series.truncate",
551
+ "Series.where": "Series.where(cond,other=nan,*,inplace=False,axis=None,level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.where.html#pandas.Series.where",
552
+ "Series.mask": "Series.mask(cond,other=<no_default>,*,inplace=False,axis=None,level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.mask.html#pandas.Series.mask",
553
+ "Series.add_prefix": "Series.add_prefix(prefix,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.add_prefix.html#pandas.Series.add_prefix",
554
+ "Series.add_suffix": "Series.add_suffix(suffix,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.add_suffix.html#pandas.Series.add_suffix",
555
+ "Series.filter": "Series.filter(items=None,like=None,regex=None,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.filter.html#pandas.Series.filter",
556
+ "Series.backfill": "Series.backfill(*,axis=None,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.backfill.html#pandas.Series.backfill",
557
+ "Series.bfill": "Series.bfill(*,axis=None,inplace=False,limit=None,limit_area=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.bfill.html#pandas.Series.bfill",
558
+ "Series.dropna": "Series.dropna(*,axis=0,inplace=False,how=None,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dropna.html#pandas.Series.dropna",
559
+ "Series.ffill": "Series.ffill(*,axis=None,inplace=False,limit=None,limit_area=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.ffill.html#pandas.Series.ffill",
560
+ "Series.fillna": "Series.fillna(value=None,*,method=None,axis=None,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.fillna.html#pandas.Series.fillna",
561
+ "Series.interpolate": "Series.interpolate(method='linear',*,axis=0,limit=None,inplace=False,limit_direction=None,limit_area=None,downcast=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.interpolate.html#pandas.Series.interpolate",
562
+ "Series.isna": "Series.isna()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.isna.html#pandas.Series.isna",
563
+ "Series.isnull": "Series.isnull()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.isnull.html#pandas.Series.isnull",
564
+ "Series.notna": "Series.notna()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.notna.html#pandas.Series.notna",
565
+ "Series.notnull": "Series.notnull()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.notnull.html#pandas.Series.notnull",
566
+ "Series.pad": "Series.pad(*,axis=None,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.pad.html#pandas.Series.pad",
567
+ "Series.replace": "Series.replace(to_replace=None,value=<no_default>,*,inplace=False,limit=None,regex=False,method=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.replace.html#pandas.Series.replace",
568
+ "Series.argsort": "Series.argsort(axis=0,kind='quicksort',order=None,stable=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.argsort.html#pandas.Series.argsort",
569
+ "Series.argmin": "Series.argmin(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.argmin.html#pandas.Series.argmin",
570
+ "Series.argmax": "Series.argmax(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.argmax.html#pandas.Series.argmax",
571
+ "Series.reorder_levels": "Series.reorder_levels(order)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.reorder_levels.html#pandas.Series.reorder_levels",
572
+ "Series.sort_values": "Series.sort_values(*,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last',ignore_index=False,key=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sort_values.html#pandas.Series.sort_values",
573
+ "Series.sort_index": "Series.sort_index(*,axis=0,level=None,ascending=True,inplace=False,kind='quicksort',na_position='last',sort_remaining=True,ignore_index=False,key=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sort_index.html#pandas.Series.sort_index",
574
+ "Series.swaplevel": "Series.swaplevel(i=-2,j=-1,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.swaplevel.html#pandas.Series.swaplevel",
575
+ "Series.unstack": "Series.unstack(level=-1,fill_value=None,sort=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.unstack.html#pandas.Series.unstack",
576
+ "Series.explode": "Series.explode(ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.explode.html#pandas.Series.explode",
577
+ "Series.searchsorted": "Series.searchsorted(value,side='left',sorter=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.searchsorted.html#pandas.Series.searchsorted",
578
+ "Series.ravel": "Series.ravel(order='C')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.ravel.html#pandas.Series.ravel",
579
+ "Series.repeat": "Series.repeat(repeats,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.repeat.html#pandas.Series.repeat",
580
+ "Series.squeeze": "Series.squeeze(axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.squeeze.html#pandas.Series.squeeze",
581
+ "Series.view": "Series.view(dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.view.html#pandas.Series.view",
582
+ "Series.compare": "Series.compare(other,align_axis=1,keep_shape=False,keep_equal=False,result_names=('self','other'))\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.compare.html#pandas.Series.compare",
583
+ "Series.update": "Series.update(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.update.html#pandas.Series.update",
584
+ "Series.asfreq": "Series.asfreq(freq,method=None,how=None,normalize=False,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.asfreq.html#pandas.Series.asfreq",
585
+ "Series.asof": "Series.asof(where,subset=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.asof.html#pandas.Series.asof",
586
+ "Series.shift": "Series.shift(periods=1,freq=None,axis=0,fill_value=<no_default>,suffix=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.shift.html#pandas.Series.shift",
587
+ "Series.first_valid_index": "Series.first_valid_index()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.first_valid_index.html#pandas.Series.first_valid_index",
588
+ "Series.last_valid_index": "Series.last_valid_index()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.last_valid_index.html#pandas.Series.last_valid_index",
589
+ "Series.tz_convert": "Series.tz_convert(tz,axis=0,level=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.tz_convert.html#pandas.Series.tz_convert",
590
+ "Series.tz_localize": "Series.tz_localize(tz,axis=0,level=None,copy=None,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.tz_localize.html#pandas.Series.tz_localize",
591
+ "Series.at_time": "Series.at_time(time,asof=False,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.at_time.html#pandas.Series.at_time",
592
+ "Series.between_time": "Series.between_time(start_time,end_time,inclusive='both',axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.between_time.html#pandas.Series.between_time",
593
+ "Series.str": "Series.str()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.html#pandas.Series.str",
594
+ "Series.cat": "Series.cat()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html#pandas.Series.cat",
595
+ "Series.dt": "Series.dt()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.html#pandas.Series.dt",
596
+ "Series.sparse": "Series.sparse()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.html#pandas.Series.sparse",
597
+ "df.sparse": "df.sparse()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sparse.html#pandas.DataFrame.sparse",
598
+ "Index.str": "Index.str()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.str.html#pandas.Index.str",
599
+ "Series.dt.date": "Series.dt.date\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.date.html#pandas.Series.dt.date",
600
+ "Series.dt.time": "Series.dt.time\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.time.html#pandas.Series.dt.time",
601
+ "Series.dt.timetz": "Series.dt.timetz\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.timetz.html#pandas.Series.dt.timetz",
602
+ "Series.dt.year": "Series.dt.year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.year.html#pandas.Series.dt.year",
603
+ "Series.dt.month": "Series.dt.month\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.month.html#pandas.Series.dt.month",
604
+ "Series.dt.day": "Series.dt.day\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.day.html#pandas.Series.dt.day",
605
+ "Series.dt.hour": "Series.dt.hour\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.hour.html#pandas.Series.dt.hour",
606
+ "Series.dt.minute": "Series.dt.minute\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.minute.html#pandas.Series.dt.minute",
607
+ "Series.dt.second": "Series.dt.second\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.second.html#pandas.Series.dt.second",
608
+ "Series.dt.microsecond": "Series.dt.microsecond\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.microsecond.html#pandas.Series.dt.microsecond",
609
+ "Series.dt.nanosecond": "Series.dt.nanosecond\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.nanosecond.html#pandas.Series.dt.nanosecond",
610
+ "Series.dt.dayofweek": "Series.dt.dayofweek\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.dayofweek.html#pandas.Series.dt.dayofweek",
611
+ "Series.dt.day_of_week": "Series.dt.day_of_week\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.day_of_week.html#pandas.Series.dt.day_of_week",
612
+ "Series.dt.weekday": "Series.dt.weekday\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.weekday.html#pandas.Series.dt.weekday",
613
+ "Series.dt.dayofyear": "Series.dt.dayofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.dayofyear.html#pandas.Series.dt.dayofyear",
614
+ "Series.dt.day_of_year": "Series.dt.day_of_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.day_of_year.html#pandas.Series.dt.day_of_year",
615
+ "Series.dt.days_in_month": "Series.dt.days_in_month\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.days_in_month.html#pandas.Series.dt.days_in_month",
616
+ "Series.dt.quarter": "Series.dt.quarter\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.quarter.html#pandas.Series.dt.quarter",
617
+ "Series.dt.is_month_start": "Series.dt.is_month_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_month_start.html#pandas.Series.dt.is_month_start",
618
+ "Series.dt.is_month_end": "Series.dt.is_month_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_month_end.html#pandas.Series.dt.is_month_end",
619
+ "Series.dt.is_quarter_start": "Series.dt.is_quarter_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_quarter_start.html#pandas.Series.dt.is_quarter_start",
620
+ "Series.dt.is_quarter_end": "Series.dt.is_quarter_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_quarter_end.html#pandas.Series.dt.is_quarter_end",
621
+ "Series.dt.is_year_start": "Series.dt.is_year_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_year_start.html#pandas.Series.dt.is_year_start",
622
+ "Series.dt.is_year_end": "Series.dt.is_year_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_year_end.html#pandas.Series.dt.is_year_end",
623
+ "Series.dt.is_leap_year": "Series.dt.is_leap_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.is_leap_year.html#pandas.Series.dt.is_leap_year",
624
+ "Series.dt.daysinmonth": "Series.dt.daysinmonth\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.daysinmonth.html#pandas.Series.dt.daysinmonth",
625
+ "Series.dt.tz": "Series.dt.tz\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.tz.html#pandas.Series.dt.tz",
626
+ "Series.dt.freq": "Series.dt.freq\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.freq.html#pandas.Series.dt.freq",
627
+ "Series.dt.unit": "Series.dt.unit\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.unit.html#pandas.Series.dt.unit",
628
+ "Series.dt.isocalendar": "Series.dt.isocalendar()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.isocalendar.html#pandas.Series.dt.isocalendar",
629
+ "Series.dt.to_period": "Series.dt.to_period(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.to_period.html#pandas.Series.dt.to_period",
630
+ "Series.dt.to_pydatetime": "Series.dt.to_pydatetime()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.to_pydatetime.html#pandas.Series.dt.to_pydatetime",
631
+ "Series.dt.tz_localize": "Series.dt.tz_localize(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.tz_localize.html#pandas.Series.dt.tz_localize",
632
+ "Series.dt.tz_convert": "Series.dt.tz_convert(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.tz_convert.html#pandas.Series.dt.tz_convert",
633
+ "Series.dt.normalize": "Series.dt.normalize(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.normalize.html#pandas.Series.dt.normalize",
634
+ "Series.dt.strftime": "Series.dt.strftime(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.strftime.html#pandas.Series.dt.strftime",
635
+ "Series.dt.round": "Series.dt.round(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.round.html#pandas.Series.dt.round",
636
+ "Series.dt.floor": "Series.dt.floor(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.floor.html#pandas.Series.dt.floor",
637
+ "Series.dt.ceil": "Series.dt.ceil(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.ceil.html#pandas.Series.dt.ceil",
638
+ "Series.dt.month_name": "Series.dt.month_name(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.month_name.html#pandas.Series.dt.month_name",
639
+ "Series.dt.day_name": "Series.dt.day_name(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.day_name.html#pandas.Series.dt.day_name",
640
+ "Series.dt.as_unit": "Series.dt.as_unit(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.as_unit.html#pandas.Series.dt.as_unit",
641
+ "Series.dt.qyear": "Series.dt.qyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.qyear.html#pandas.Series.dt.qyear",
642
+ "Series.dt.start_time": "Series.dt.start_time\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.start_time.html#pandas.Series.dt.start_time",
643
+ "Series.dt.end_time": "Series.dt.end_time\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.end_time.html#pandas.Series.dt.end_time",
644
+ "Series.dt.days": "Series.dt.days\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.days.html#pandas.Series.dt.days",
645
+ "Series.dt.seconds": "Series.dt.seconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.seconds.html#pandas.Series.dt.seconds",
646
+ "Series.dt.microseconds": "Series.dt.microseconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.microseconds.html#pandas.Series.dt.microseconds",
647
+ "Series.dt.nanoseconds": "Series.dt.nanoseconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.nanoseconds.html#pandas.Series.dt.nanoseconds",
648
+ "Series.dt.components": "Series.dt.components\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.components.html#pandas.Series.dt.components",
649
+ "Series.dt.to_pytimedelta": "Series.dt.to_pytimedelta()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.to_pytimedelta.html#pandas.Series.dt.to_pytimedelta",
650
+ "Series.dt.total_seconds": "Series.dt.total_seconds(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.dt.total_seconds.html#pandas.Series.dt.total_seconds",
651
+ "Series.str.capitalize": "Series.str.capitalize()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.capitalize.html#pandas.Series.str.capitalize",
652
+ "Series.str.casefold": "Series.str.casefold()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.casefold.html#pandas.Series.str.casefold",
653
+ "Series.str.cat": "Series.str.cat(others=None,sep=None,na_rep=None,join='left')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.cat.html#pandas.Series.str.cat",
654
+ "Series.str.center": "Series.str.center(width,fillchar='')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.center.html#pandas.Series.str.center",
655
+ "Series.str.contains": "Series.str.contains(pat,case=True,flags=0,na=None,regex=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.contains.html#pandas.Series.str.contains",
656
+ "Series.str.count": "Series.str.count(pat,flags=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.count.html#pandas.Series.str.count",
657
+ "Series.str.decode": "Series.str.decode(encoding,errors='strict')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.decode.html#pandas.Series.str.decode",
658
+ "Series.str.encode": "Series.str.encode(encoding,errors='strict')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.encode.html#pandas.Series.str.encode",
659
+ "Series.str.endswith": "Series.str.endswith(pat,na=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.endswith.html#pandas.Series.str.endswith",
660
+ "Series.str.extract": "Series.str.extract(pat,flags=0,expand=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.extract.html#pandas.Series.str.extract",
661
+ "Series.str.extractall": "Series.str.extractall(pat,flags=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.extractall.html#pandas.Series.str.extractall",
662
+ "Series.str.find": "Series.str.find(sub,start=0,end=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.find.html#pandas.Series.str.find",
663
+ "Series.str.findall": "Series.str.findall(pat,flags=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.findall.html#pandas.Series.str.findall",
664
+ "Series.str.fullmatch": "Series.str.fullmatch(pat,case=True,flags=0,na=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.fullmatch.html#pandas.Series.str.fullmatch",
665
+ "Series.str.get": "Series.str.get(i)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.get.html#pandas.Series.str.get",
666
+ "Series.str.index": "Series.str.index(sub,start=0,end=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.index.html#pandas.Series.str.index",
667
+ "Series.str.join": "Series.str.join(sep)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.join.html#pandas.Series.str.join",
668
+ "Series.str.len": "Series.str.len()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.len.html#pandas.Series.str.len",
669
+ "Series.str.ljust": "Series.str.ljust(width,fillchar='')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.ljust.html#pandas.Series.str.ljust",
670
+ "Series.str.lower": "Series.str.lower()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.lower.html#pandas.Series.str.lower",
671
+ "Series.str.lstrip": "Series.str.lstrip(to_strip=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.lstrip.html#pandas.Series.str.lstrip",
672
+ "Series.str.match": "Series.str.match(pat,case=True,flags=0,na=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.match.html#pandas.Series.str.match",
673
+ "Series.str.normalize": "Series.str.normalize(form)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.normalize.html#pandas.Series.str.normalize",
674
+ "Series.str.pad": "Series.str.pad(width,side='left',fillchar='')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.pad.html#pandas.Series.str.pad",
675
+ "Series.str.partition": "Series.str.partition(sep='',expand=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.partition.html#pandas.Series.str.partition",
676
+ "Series.str.removeprefix": "Series.str.removeprefix(prefix)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.removeprefix.html#pandas.Series.str.removeprefix",
677
+ "Series.str.removesuffix": "Series.str.removesuffix(suffix)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.removesuffix.html#pandas.Series.str.removesuffix",
678
+ "Series.str.repeat": "Series.str.repeat(repeats)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.repeat.html#pandas.Series.str.repeat",
679
+ "Series.str.replace": "Series.str.replace(pat,repl,n=-1,case=None,flags=0,regex=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.replace.html#pandas.Series.str.replace",
680
+ "Series.str.rfind": "Series.str.rfind(sub,start=0,end=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.rfind.html#pandas.Series.str.rfind",
681
+ "Series.str.rindex": "Series.str.rindex(sub,start=0,end=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.rindex.html#pandas.Series.str.rindex",
682
+ "Series.str.rjust": "Series.str.rjust(width,fillchar='')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.rjust.html#pandas.Series.str.rjust",
683
+ "Series.str.rpartition": "Series.str.rpartition(sep='',expand=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.rpartition.html#pandas.Series.str.rpartition",
684
+ "Series.str.rstrip": "Series.str.rstrip(to_strip=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.rstrip.html#pandas.Series.str.rstrip",
685
+ "Series.str.slice": "Series.str.slice(start=None,stop=None,step=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.slice.html#pandas.Series.str.slice",
686
+ "Series.str.slice_replace": "Series.str.slice_replace(start=None,stop=None,repl=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.slice_replace.html#pandas.Series.str.slice_replace",
687
+ "Series.str.split": "Series.str.split(pat=None,*,n=-1,expand=False,regex=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.split.html#pandas.Series.str.split",
688
+ "Series.str.rsplit": "Series.str.rsplit(pat=None,*,n=-1,expand=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.rsplit.html#pandas.Series.str.rsplit",
689
+ "Series.str.startswith": "Series.str.startswith(pat,na=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.startswith.html#pandas.Series.str.startswith",
690
+ "Series.str.strip": "Series.str.strip(to_strip=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.strip.html#pandas.Series.str.strip",
691
+ "Series.str.swapcase": "Series.str.swapcase()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.swapcase.html#pandas.Series.str.swapcase",
692
+ "Series.str.title": "Series.str.title()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.title.html#pandas.Series.str.title",
693
+ "Series.str.translate": "Series.str.translate(table)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.translate.html#pandas.Series.str.translate",
694
+ "Series.str.upper": "Series.str.upper()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.upper.html#pandas.Series.str.upper",
695
+ "Series.str.wrap": "Series.str.wrap(width,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.wrap.html#pandas.Series.str.wrap",
696
+ "Series.str.zfill": "Series.str.zfill(width)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.zfill.html#pandas.Series.str.zfill",
697
+ "Series.str.isalnum": "Series.str.isalnum()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isalnum.html#pandas.Series.str.isalnum",
698
+ "Series.str.isalpha": "Series.str.isalpha()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isalpha.html#pandas.Series.str.isalpha",
699
+ "Series.str.isdigit": "Series.str.isdigit()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isdigit.html#pandas.Series.str.isdigit",
700
+ "Series.str.isspace": "Series.str.isspace()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isspace.html#pandas.Series.str.isspace",
701
+ "Series.str.islower": "Series.str.islower()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.islower.html#pandas.Series.str.islower",
702
+ "Series.str.isupper": "Series.str.isupper()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isupper.html#pandas.Series.str.isupper",
703
+ "Series.str.istitle": "Series.str.istitle()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.istitle.html#pandas.Series.str.istitle",
704
+ "Series.str.isnumeric": "Series.str.isnumeric()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isnumeric.html#pandas.Series.str.isnumeric",
705
+ "Series.str.isdecimal": "Series.str.isdecimal()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.isdecimal.html#pandas.Series.str.isdecimal",
706
+ "Series.str.get_dummies": "Series.str.get_dummies(sep='|')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.str.get_dummies.html#pandas.Series.str.get_dummies",
707
+ "Series.cat.categories": "Series.cat.categories\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.categories.html#pandas.Series.cat.categories",
708
+ "Series.cat.ordered": "Series.cat.ordered\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.ordered.html#pandas.Series.cat.ordered",
709
+ "Series.cat.codes": "Series.cat.codes\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.codes.html#pandas.Series.cat.codes",
710
+ "Series.cat.rename_categories": "Series.cat.rename_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.rename_categories.html#pandas.Series.cat.rename_categories",
711
+ "Series.cat.reorder_categories": "Series.cat.reorder_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.reorder_categories.html#pandas.Series.cat.reorder_categories",
712
+ "Series.cat.add_categories": "Series.cat.add_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.add_categories.html#pandas.Series.cat.add_categories",
713
+ "Series.cat.remove_categories": "Series.cat.remove_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.remove_categories.html#pandas.Series.cat.remove_categories",
714
+ "Series.cat.remove_unused_categories": "Series.cat.remove_unused_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.remove_unused_categories.html#pandas.Series.cat.remove_unused_categories",
715
+ "Series.cat.set_categories": "Series.cat.set_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.set_categories.html#pandas.Series.cat.set_categories",
716
+ "Series.cat.as_ordered": "Series.cat.as_ordered(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.as_ordered.html#pandas.Series.cat.as_ordered",
717
+ "Series.cat.as_unordered": "Series.cat.as_unordered(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.cat.as_unordered.html#pandas.Series.cat.as_unordered",
718
+ "Series.sparse.npoints": "Series.sparse.npoints\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.npoints.html#pandas.Series.sparse.npoints",
719
+ "Series.sparse.density": "Series.sparse.density\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.density.html#pandas.Series.sparse.density",
720
+ "Series.sparse.fill_value": "Series.sparse.fill_value\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.fill_value.html#pandas.Series.sparse.fill_value",
721
+ "Series.sparse.sp_values": "Series.sparse.sp_values\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.sp_values.html#pandas.Series.sparse.sp_values",
722
+ "methodSeries.sparse.from_coo": "methodSeries.sparse.from_coo(A,dense_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.from_coo.html#pandas.Series.sparse.from_coo",
723
+ "Series.sparse.to_coo": "Series.sparse.to_coo(row_levels=(0,),column_levels=(1,),sort_labels=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.sparse.to_coo.html#pandas.Series.sparse.to_coo",
724
+ "Series.list.flatten": "Series.list.flatten()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.list.flatten.html#pandas.Series.list.flatten",
725
+ "Series.list.len": "Series.list.len()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.list.len.html#pandas.Series.list.len",
726
+ "Series.list.__getitem__": "Series.list.__getitem__(key)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.list.__getitem__.html#pandas.Series.list.__getitem__",
727
+ "Series.struct.dtypes": "Series.struct.dtypes\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.struct.dtypes.html#pandas.Series.struct.dtypes",
728
+ "Series.struct.field": "Series.struct.field(name_or_index)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.struct.field.html#pandas.Series.struct.field",
729
+ "Series.struct.explode": "Series.struct.explode()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.struct.explode.html#pandas.Series.struct.explode",
730
+ "pandas.Flags": "pandas.Flags(obj,*,allows_duplicate_labels)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Flags.html#pandas.Flags",
731
+ "Series.attrs": "Series.attrs\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.attrs.html#pandas.Series.attrs",
732
+ "Series.plot": "Series.plot(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.html#pandas.Series.plot",
733
+ "Series.plot.area": "Series.plot.area(x=None,y=None,stacked=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.area.html#pandas.Series.plot.area",
734
+ "Series.plot.bar": "Series.plot.bar(x=None,y=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.bar.html#pandas.Series.plot.bar",
735
+ "Series.plot.barh": "Series.plot.barh(x=None,y=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.barh.html#pandas.Series.plot.barh",
736
+ "Series.plot.box": "Series.plot.box(by=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.box.html#pandas.Series.plot.box",
737
+ "Series.plot.density": "Series.plot.density(bw_method=None,ind=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.density.html#pandas.Series.plot.density",
738
+ "Series.plot.hist": "Series.plot.hist(by=None,bins=10,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.hist.html#pandas.Series.plot.hist",
739
+ "Series.plot.kde": "Series.plot.kde(bw_method=None,ind=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.kde.html#pandas.Series.plot.kde",
740
+ "Series.plot.line": "Series.plot.line(x=None,y=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.line.html#pandas.Series.plot.line",
741
+ "Series.plot.pie": "Series.plot.pie(**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.plot.pie.html#pandas.Series.plot.pie",
742
+ "Series.hist": "Series.hist(by=None,ax=None,grid=True,xlabelsize=None,xrot=None,ylabelsize=None,yrot=None,figsize=None,bins=10,backend=None,legend=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.hist.html#pandas.Series.hist",
743
+ "Series.to_pickle": "Series.to_pickle(path,*,compression='infer',protocol=5,storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_pickle.html#pandas.Series.to_pickle",
744
+ "Series.to_csv": "Series.to_csv(path_or_buf=None,*,sep=',',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,mode='w',encoding=None,compression='infer',quoting=None,quotechar='\"',lineterminator=None,chunksize=None,date_format=None,doublequote=True,escapechar=None,decimal='.',errors='strict',storage_options=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_csv.html#pandas.Series.to_csv",
745
+ "Series.to_dict": "Series.to_dict(*,into=<class'dict'>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_dict.html#pandas.Series.to_dict",
746
+ "Series.to_excel": "Series.to_excel(excel_writer,*,sheet_name='Sheet1',na_rep='',float_format=None,columns=None,header=True,index=True,index_label=None,startrow=0,startcol=0,engine=None,merge_cells=True,inf_rep='inf',freeze_panes=None,storage_options=None,engine_kwargs=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_excel.html#pandas.Series.to_excel",
747
+ "Series.to_frame": "Series.to_frame(name=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_frame.html#pandas.Series.to_frame",
748
+ "Series.to_xarray": "Series.to_xarray()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_xarray.html#pandas.Series.to_xarray",
749
+ "Series.to_hdf": "Series.to_hdf(path_or_buf,*,key,mode='a',complevel=None,complib=None,append=False,format=None,index=True,min_itemsize=None,nan_rep=None,dropna=None,data_columns=None,errors='strict',encoding='UTF-8')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_hdf.html#pandas.Series.to_hdf",
750
+ "Series.to_sql": "Series.to_sql(name,con,*,schema=None,if_exists='fail',index=True,index_label=None,chunksize=None,dtype=None,method=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_sql.html#pandas.Series.to_sql",
751
+ "Series.to_json": "Series.to_json(path_or_buf=None,*,orient=None,date_format=None,double_precision=10,force_ascii=True,date_unit='ms',default_handler=None,lines=False,compression='infer',index=None,indent=None,storage_options=None,mode='w')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_json.html#pandas.Series.to_json",
752
+ "Series.to_string": "Series.to_string(buf=None,na_rep='NaN',float_format=None,header=True,index=True,length=False,dtype=False,name=False,max_rows=None,min_rows=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_string.html#pandas.Series.to_string",
753
+ "Series.to_clipboard": "Series.to_clipboard(*,excel=True,sep=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_clipboard.html#pandas.Series.to_clipboard",
754
+ "Series.to_latex": "Series.to_latex(buf=None,*,columns=None,header=True,index=True,na_rep='NaN',formatters=None,float_format=None,sparsify=None,index_names=True,bold_rows=False,column_format=None,longtable=None,escape=None,encoding=None,decimal='.',multicolumn=None,multicolumn_format=None,multirow=None,caption=None,label=None,position=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_latex.html#pandas.Series.to_latex",
755
+ "Series.to_markdown": "Series.to_markdown(buf=None,mode='wt',index=True,storage_options=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Series.to_markdown.html#pandas.Series.to_markdown",
756
+ "pandas.MultiIndex": "pandas.MultiIndex(levels=None,codes=None,sortorder=None,names=None,dtype=None,copy=False,name=None,verify_integrity=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.html#pandas.MultiIndex",
757
+ "df.index": "df.index\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.index.html#pandas.DataFrame.index",
758
+ "df.columns": "df.columns\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.columns.html#pandas.DataFrame.columns",
759
+ "DataFrame.dtypes": "DataFrame.dtypes\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dtypes.html#pandas.DataFrame.dtypes",
760
+ "df.info": "df.info(verbose=None,buf=None,max_cols=None,memory_usage=None,show_counts=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.info.html#pandas.DataFrame.info",
761
+ "df.select_dtypes": "df.select_dtypes(include=None,exclude=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.select_dtypes.html#pandas.DataFrame.select_dtypes",
762
+ "DataFrame.values": "DataFrame.values\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.values.html#pandas.DataFrame.values",
763
+ "DataFrame.axes": "DataFrame.axes\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.axes.html#pandas.DataFrame.axes",
764
+ "DataFrame.ndim": "DataFrame.ndim\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ndim.html#pandas.DataFrame.ndim",
765
+ "DataFrame.size": "DataFrame.size\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.size.html#pandas.DataFrame.size",
766
+ "DataFrame.shape": "DataFrame.shape\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html#pandas.DataFrame.shape",
767
+ "df.memory_usage": "df.memory_usage(index=True,deep=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.memory_usage.html#pandas.DataFrame.memory_usage",
768
+ "DataFrame.empty": "DataFrame.empty\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.empty.html#pandas.DataFrame.empty",
769
+ "df.set_flags": "df.set_flags(*,copy=False,allows_duplicate_labels=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.set_flags.html#pandas.DataFrame.set_flags",
770
+ "df.astype": "df.astype(dtype,copy=None,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.astype.html#pandas.DataFrame.astype",
771
+ "df.convert_dtypes": "df.convert_dtypes(infer_objects=True,convert_string=True,convert_integer=True,convert_boolean=True,convert_floating=True,dtype_backend='numpy_nullable')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.convert_dtypes.html#pandas.DataFrame.convert_dtypes",
772
+ "df.infer_objects": "df.infer_objects(copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.infer_objects.html#pandas.DataFrame.infer_objects",
773
+ "df.copy": "df.copy(deep=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.copy.html#pandas.DataFrame.copy",
774
+ "df.bool": "df.bool()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.bool.html#pandas.DataFrame.bool",
775
+ "df.to_numpy": "df.to_numpy(dtype=None,copy=False,na_value=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy",
776
+ "df.head": "df.head(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.head.html#pandas.DataFrame.head",
777
+ "DataFrame.at": "DataFrame.at\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.at.html#pandas.DataFrame.at",
778
+ "DataFrame.iat": "DataFrame.iat\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iat.html#pandas.DataFrame.iat",
779
+ "DataFrame.loc": "DataFrame.loc\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html#pandas.DataFrame.loc",
780
+ "DataFrame.iloc": "DataFrame.iloc\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#pandas.DataFrame.iloc",
781
+ "df.insert": "df.insert(loc,column,value,allow_duplicates=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.insert.html#pandas.DataFrame.insert",
782
+ "df.__iter__": "df.__iter__()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.__iter__.html#pandas.DataFrame.__iter__",
783
+ "df.items": "df.items()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.items.html#pandas.DataFrame.items",
784
+ "df.keys": "df.keys()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.keys.html#pandas.DataFrame.keys",
785
+ "df.iterrows": "df.iterrows()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iterrows.html#pandas.DataFrame.iterrows",
786
+ "df.itertuples": "df.itertuples(index=True,name='Pandas')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.itertuples.html#pandas.DataFrame.itertuples",
787
+ "df.pop": "df.pop(item)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pop.html#pandas.DataFrame.pop",
788
+ "df.tail": "df.tail(n=5)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.tail.html#pandas.DataFrame.tail",
789
+ "df.xs": "df.xs(key,axis=0,level=None,drop_level=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.xs.html#pandas.DataFrame.xs",
790
+ "df.get": "df.get(key,default=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.get.html#pandas.DataFrame.get",
791
+ "df.isin": "df.isin(values)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.isin.html#pandas.DataFrame.isin",
792
+ "df.where": "df.where(cond,other=nan,*,inplace=False,axis=None,level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.where.html#pandas.DataFrame.where",
793
+ "df.mask": "df.mask(cond,other=<no_default>,*,inplace=False,axis=None,level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mask.html#pandas.DataFrame.mask",
794
+ "df.query": "df.query(expr,*,inplace=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query",
795
+ "df.__add__": "df.__add__(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.__add__.html#pandas.DataFrame.__add__",
796
+ "df.add": "df.add(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.add.html#pandas.DataFrame.add",
797
+ "df.sub": "df.sub(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sub.html#pandas.DataFrame.sub",
798
+ "df.mul": "df.mul(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mul.html#pandas.DataFrame.mul",
799
+ "df.div": "df.div(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.div.html#pandas.DataFrame.div",
800
+ "df.truediv": "df.truediv(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.truediv.html#pandas.DataFrame.truediv",
801
+ "df.floordiv": "df.floordiv(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.floordiv.html#pandas.DataFrame.floordiv",
802
+ "df.mod": "df.mod(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mod.html#pandas.DataFrame.mod",
803
+ "df.pow": "df.pow(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pow.html#pandas.DataFrame.pow",
804
+ "df.dot": "df.dot(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dot.html#pandas.DataFrame.dot",
805
+ "df.radd": "df.radd(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.radd.html#pandas.DataFrame.radd",
806
+ "df.rsub": "df.rsub(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rsub.html#pandas.DataFrame.rsub",
807
+ "df.rmul": "df.rmul(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rmul.html#pandas.DataFrame.rmul",
808
+ "df.rdiv": "df.rdiv(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rdiv.html#pandas.DataFrame.rdiv",
809
+ "df.rtruediv": "df.rtruediv(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rtruediv.html#pandas.DataFrame.rtruediv",
810
+ "df.rfloordiv": "df.rfloordiv(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rfloordiv.html#pandas.DataFrame.rfloordiv",
811
+ "df.rmod": "df.rmod(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rmod.html#pandas.DataFrame.rmod",
812
+ "df.rpow": "df.rpow(other,axis='columns',level=None,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rpow.html#pandas.DataFrame.rpow",
813
+ "df.lt": "df.lt(other,axis='columns',level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.lt.html#pandas.DataFrame.lt",
814
+ "df.gt": "df.gt(other,axis='columns',level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.gt.html#pandas.DataFrame.gt",
815
+ "df.le": "df.le(other,axis='columns',level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.le.html#pandas.DataFrame.le",
816
+ "df.ge": "df.ge(other,axis='columns',level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ge.html#pandas.DataFrame.ge",
817
+ "df.ne": "df.ne(other,axis='columns',level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ne.html#pandas.DataFrame.ne",
818
+ "df.eq": "df.eq(other,axis='columns',level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.eq.html#pandas.DataFrame.eq",
819
+ "df.combine": "df.combine(other,func,fill_value=None,overwrite=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.combine.html#pandas.DataFrame.combine",
820
+ "df.combine_first": "df.combine_first(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.combine_first.html#pandas.DataFrame.combine_first",
821
+ "df.apply": "df.apply(func,axis=0,raw=False,result_type=None,args=(),by_row='compat',engine='python',engine_kwargs=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html#pandas.DataFrame.apply",
822
+ "df.map": "df.map(func,na_action=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.map.html#pandas.DataFrame.map",
823
+ "df.applymap": "df.applymap(func,na_action=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.applymap.html#pandas.DataFrame.applymap",
824
+ "df.pipe": "df.pipe(func,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pipe.html#pandas.DataFrame.pipe",
825
+ "df.agg": "df.agg(func=None,axis=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.agg.html#pandas.DataFrame.agg",
826
+ "df.aggregate": "df.aggregate(func=None,axis=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.aggregate.html#pandas.DataFrame.aggregate",
827
+ "df.transform": "df.transform(func,axis=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transform.html#pandas.DataFrame.transform",
828
+ "df.abs": "df.abs()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.abs.html#pandas.DataFrame.abs",
829
+ "df.all": "df.all(axis=0,bool_only=False,skipna=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.all.html#pandas.DataFrame.all",
830
+ "df.any": "df.any(*,axis=0,bool_only=False,skipna=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html#pandas.DataFrame.any",
831
+ "df.clip": "df.clip(lower=None,upper=None,*,axis=None,inplace=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.clip.html#pandas.DataFrame.clip",
832
+ "df.corr": "df.corr(method='pearson',min_periods=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html#pandas.DataFrame.corr",
833
+ "df.corrwith": "df.corrwith(other,axis=0,drop=False,method='pearson',numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corrwith.html#pandas.DataFrame.corrwith",
834
+ "df.count": "df.count(axis=0,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html#pandas.DataFrame.count",
835
+ "df.cov": "df.cov(min_periods=None,ddof=1,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.cov.html#pandas.DataFrame.cov",
836
+ "df.cummax": "df.cummax(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.cummax.html#pandas.DataFrame.cummax",
837
+ "df.cummin": "df.cummin(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.cummin.html#pandas.DataFrame.cummin",
838
+ "df.cumprod": "df.cumprod(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.cumprod.html#pandas.DataFrame.cumprod",
839
+ "df.cumsum": "df.cumsum(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.cumsum.html#pandas.DataFrame.cumsum",
840
+ "df.describe": "df.describe(percentiles=None,include=None,exclude=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.describe.html#pandas.DataFrame.describe",
841
+ "df.diff": "df.diff(periods=1,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.diff.html#pandas.DataFrame.diff",
842
+ "df.eval": "df.eval(expr,*,inplace=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.eval.html#pandas.DataFrame.eval",
843
+ "df.kurt": "df.kurt(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.kurt.html#pandas.DataFrame.kurt",
844
+ "df.kurtosis": "df.kurtosis(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.kurtosis.html#pandas.DataFrame.kurtosis",
845
+ "df.max": "df.max(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.max.html#pandas.DataFrame.max",
846
+ "df.mean": "df.mean(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html#pandas.DataFrame.mean",
847
+ "df.median": "df.median(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.median.html#pandas.DataFrame.median",
848
+ "df.min": "df.min(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.min.html#pandas.DataFrame.min",
849
+ "df.mode": "df.mode(axis=0,numeric_only=False,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mode.html#pandas.DataFrame.mode",
850
+ "df.pct_change": "df.pct_change(periods=1,fill_method=<no_default>,limit=<no_default>,freq=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pct_change.html#pandas.DataFrame.pct_change",
851
+ "df.prod": "df.prod(axis=0,skipna=True,numeric_only=False,min_count=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.prod.html#pandas.DataFrame.prod",
852
+ "df.product": "df.product(axis=0,skipna=True,numeric_only=False,min_count=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.product.html#pandas.DataFrame.product",
853
+ "df.quantile": "df.quantile(q=0.5,axis=0,numeric_only=False,interpolation='linear',method='single')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.quantile.html#pandas.DataFrame.quantile",
854
+ "df.rank": "df.rank(axis=0,method='average',numeric_only=False,na_option='keep',ascending=True,pct=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rank.html#pandas.DataFrame.rank",
855
+ "df.round": "df.round(decimals=0,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.round.html#pandas.DataFrame.round",
856
+ "df.sem": "df.sem(axis=0,skipna=True,ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sem.html#pandas.DataFrame.sem",
857
+ "df.skew": "df.skew(axis=0,skipna=True,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.skew.html#pandas.DataFrame.skew",
858
+ "df.sum": "df.sum(axis=0,skipna=True,numeric_only=False,min_count=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sum.html#pandas.DataFrame.sum",
859
+ "df.std": "df.std(axis=0,skipna=True,ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.std.html#pandas.DataFrame.std",
860
+ "df.var": "df.var(axis=0,skipna=True,ddof=1,numeric_only=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.var.html#pandas.DataFrame.var",
861
+ "df.nunique": "df.nunique(axis=0,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.nunique.html#pandas.DataFrame.nunique",
862
+ "df.value_counts": "df.value_counts(subset=None,normalize=False,sort=True,ascending=False,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.value_counts.html#pandas.DataFrame.value_counts",
863
+ "df.add_prefix": "df.add_prefix(prefix,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.add_prefix.html#pandas.DataFrame.add_prefix",
864
+ "df.add_suffix": "df.add_suffix(suffix,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.add_suffix.html#pandas.DataFrame.add_suffix",
865
+ "df.align": "df.align(other,join='outer',axis=None,level=None,copy=None,fill_value=None,method=<no_default>,limit=<no_default>,fill_axis=<no_default>,broadcast_axis=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.align.html#pandas.DataFrame.align",
866
+ "df.at_time": "df.at_time(time,asof=False,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.at_time.html#pandas.DataFrame.at_time",
867
+ "df.between_time": "df.between_time(start_time,end_time,inclusive='both',axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.between_time.html#pandas.DataFrame.between_time",
868
+ "df.drop": "df.drop(labels=None,*,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html#pandas.DataFrame.drop",
869
+ "df.drop_duplicates": "df.drop_duplicates(subset=None,*,keep='first',inplace=False,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop_duplicates.html#pandas.DataFrame.drop_duplicates",
870
+ "df.duplicated": "df.duplicated(subset=None,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.duplicated.html#pandas.DataFrame.duplicated",
871
+ "df.equals": "df.equals(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.equals.html#pandas.DataFrame.equals",
872
+ "df.filter": "df.filter(items=None,like=None,regex=None,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.filter.html#pandas.DataFrame.filter",
873
+ "df.first": "df.first(offset)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.first.html#pandas.DataFrame.first",
874
+ "df.idxmax": "df.idxmax(axis=0,skipna=True,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.idxmax.html#pandas.DataFrame.idxmax",
875
+ "df.idxmin": "df.idxmin(axis=0,skipna=True,numeric_only=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.idxmin.html#pandas.DataFrame.idxmin",
876
+ "df.last": "df.last(offset)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.last.html#pandas.DataFrame.last",
877
+ "df.reindex": "df.reindex(labels=None,*,index=None,columns=None,axis=None,method=None,copy=None,level=None,fill_value=nan,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reindex.html#pandas.DataFrame.reindex",
878
+ "df.reindex_like": "df.reindex_like(other,method=None,copy=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reindex_like.html#pandas.DataFrame.reindex_like",
879
+ "df.rename": "df.rename(mapper=None,*,index=None,columns=None,axis=None,copy=None,inplace=False,level=None,errors='ignore')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rename.html#pandas.DataFrame.rename",
880
+ "df.rename_axis": "df.rename_axis(mapper=<no_default>,*,index=<no_default>,columns=<no_default>,axis=0,copy=None,inplace=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rename_axis.html#pandas.DataFrame.rename_axis",
881
+ "df.reset_index": "df.reset_index(level=None,*,drop=False,inplace=False,col_level=0,col_fill='',allow_duplicates=<no_default>,names=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reset_index.html#pandas.DataFrame.reset_index",
882
+ "df.sample": "df.sample(n=None,frac=None,replace=False,weights=None,random_state=None,axis=None,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html#pandas.DataFrame.sample",
883
+ "df.set_axis": "df.set_axis(labels,*,axis=0,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.set_axis.html#pandas.DataFrame.set_axis",
884
+ "df.set_index": "df.set_index(keys,*,drop=True,append=False,inplace=False,verify_integrity=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.set_index.html#pandas.DataFrame.set_index",
885
+ "df.take": "df.take(indices,axis=0,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.take.html#pandas.DataFrame.take",
886
+ "df.truncate": "df.truncate(before=None,after=None,axis=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.truncate.html#pandas.DataFrame.truncate",
887
+ "df.backfill": "df.backfill(*,axis=None,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.backfill.html#pandas.DataFrame.backfill",
888
+ "df.bfill": "df.bfill(*,axis=None,inplace=False,limit=None,limit_area=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.bfill.html#pandas.DataFrame.bfill",
889
+ "df.dropna": "df.dropna(*,axis=0,how=<no_default>,thresh=<no_default>,subset=None,inplace=False,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html#pandas.DataFrame.dropna",
890
+ "df.ffill": "df.ffill(*,axis=None,inplace=False,limit=None,limit_area=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ffill.html#pandas.DataFrame.ffill",
891
+ "df.fillna": "df.fillna(value=None,*,method=None,axis=None,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna",
892
+ "df.interpolate": "df.interpolate(method='linear',*,axis=0,limit=None,inplace=False,limit_direction=None,limit_area=None,downcast=<no_default>,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html#pandas.DataFrame.interpolate",
893
+ "df.isna": "df.isna()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.isna.html#pandas.DataFrame.isna",
894
+ "df.isnull": "df.isnull()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.isnull.html#pandas.DataFrame.isnull",
895
+ "df.notna": "df.notna()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.notna.html#pandas.DataFrame.notna",
896
+ "df.notnull": "df.notnull()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.notnull.html#pandas.DataFrame.notnull",
897
+ "df.pad": "df.pad(*,axis=None,inplace=False,limit=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pad.html#pandas.DataFrame.pad",
898
+ "df.replace": "df.replace(to_replace=None,value=<no_default>,*,inplace=False,limit=None,regex=False,method=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html#pandas.DataFrame.replace",
899
+ "df.droplevel": "df.droplevel(level,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.droplevel.html#pandas.DataFrame.droplevel",
900
+ "df.pivot": "df.pivot(*,columns,index=<no_default>,values=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot.html#pandas.DataFrame.pivot",
901
+ "df.pivot_table": "df.pivot_table(values=None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna=True,margins_name='All',observed=<no_default>,sort=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot_table.html#pandas.DataFrame.pivot_table",
902
+ "df.reorder_levels": "df.reorder_levels(order,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reorder_levels.html#pandas.DataFrame.reorder_levels",
903
+ "df.sort_values": "df.sort_values(by,*,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last',ignore_index=False,key=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html#pandas.DataFrame.sort_values",
904
+ "df.sort_index": "df.sort_index(*,axis=0,level=None,ascending=True,inplace=False,kind='quicksort',na_position='last',sort_remaining=True,ignore_index=False,key=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html#pandas.DataFrame.sort_index",
905
+ "df.nlargest": "df.nlargest(n,columns,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.nlargest.html#pandas.DataFrame.nlargest",
906
+ "df.nsmallest": "df.nsmallest(n,columns,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.nsmallest.html#pandas.DataFrame.nsmallest",
907
+ "df.swaplevel": "df.swaplevel(i=-2,j=-1,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.swaplevel.html#pandas.DataFrame.swaplevel",
908
+ "df.stack": "df.stack(level=-1,dropna=<no_default>,sort=<no_default>,future_stack=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.stack.html#pandas.DataFrame.stack",
909
+ "df.unstack": "df.unstack(level=-1,fill_value=None,sort=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.unstack.html#pandas.DataFrame.unstack",
910
+ "df.swapaxes": "df.swapaxes(axis1,axis2,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.swapaxes.html#pandas.DataFrame.swapaxes",
911
+ "df.melt": "df.melt(id_vars=None,value_vars=None,var_name=None,value_name='value',col_level=None,ignore_index=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt",
912
+ "df.explode": "df.explode(column,ignore_index=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.explode.html#pandas.DataFrame.explode",
913
+ "df.squeeze": "df.squeeze(axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.squeeze.html#pandas.DataFrame.squeeze",
914
+ "df.to_xarray": "df.to_xarray()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_xarray.html#pandas.DataFrame.to_xarray",
915
+ "DataFrame.T": "DataFrame.T\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.T.html#pandas.DataFrame.T",
916
+ "df.transpose": "df.transpose(*args,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transpose.html#pandas.DataFrame.transpose",
917
+ "df.assign": "df.assign(**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html#pandas.DataFrame.assign",
918
+ "df.compare": "df.compare(other,align_axis=1,keep_shape=False,keep_equal=False,result_names=('self','other'))\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.compare.html#pandas.DataFrame.compare",
919
+ "df.join": "df.join(other,on=None,how='left',lsuffix='',rsuffix='',sort=False,validate=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html#pandas.DataFrame.join",
920
+ "df.merge": "df.merge(right,how='inner',on=None,left_on=None,right_on=None,left_index=False,right_index=False,sort=False,suffixes=('_x','_y'),copy=None,indicator=False,validate=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html#pandas.DataFrame.merge",
921
+ "df.update": "df.update(other,join='left',overwrite=True,filter_func=None,errors='ignore')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.update.html#pandas.DataFrame.update",
922
+ "df.asfreq": "df.asfreq(freq,method=None,how=None,normalize=False,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.asfreq.html#pandas.DataFrame.asfreq",
923
+ "df.asof": "df.asof(where,subset=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.asof.html#pandas.DataFrame.asof",
924
+ "df.shift": "df.shift(periods=1,freq=None,axis=0,fill_value=<no_default>,suffix=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shift.html#pandas.DataFrame.shift",
925
+ "df.first_valid_index": "df.first_valid_index()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.first_valid_index.html#pandas.DataFrame.first_valid_index",
926
+ "df.last_valid_index": "df.last_valid_index()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.last_valid_index.html#pandas.DataFrame.last_valid_index",
927
+ "df.to_period": "df.to_period(freq=None,axis=0,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_period.html#pandas.DataFrame.to_period",
928
+ "df.to_timestamp": "df.to_timestamp(freq=None,how='start',axis=0,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_timestamp.html#pandas.DataFrame.to_timestamp",
929
+ "df.tz_convert": "df.tz_convert(tz,axis=0,level=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.tz_convert.html#pandas.DataFrame.tz_convert",
930
+ "df.tz_localize": "df.tz_localize(tz,axis=0,level=None,copy=None,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.tz_localize.html#pandas.DataFrame.tz_localize",
931
+ "DataFrame.attrs": "DataFrame.attrs\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs",
932
+ "df.plot": "df.plot(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html#pandas.DataFrame.plot",
933
+ "df.plot.area": "df.plot.area(x=None,y=None,stacked=True,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.area.html#pandas.DataFrame.plot.area",
934
+ "df.plot.bar": "df.plot.bar(x=None,y=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.bar.html#pandas.DataFrame.plot.bar",
935
+ "df.plot.barh": "df.plot.barh(x=None,y=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.barh.html#pandas.DataFrame.plot.barh",
936
+ "df.plot.box": "df.plot.box(by=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.box.html#pandas.DataFrame.plot.box",
937
+ "df.plot.density": "df.plot.density(bw_method=None,ind=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.density.html#pandas.DataFrame.plot.density",
938
+ "df.plot.hexbin": "df.plot.hexbin(x,y,C=None,reduce_C_function=None,gridsize=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.hexbin.html#pandas.DataFrame.plot.hexbin",
939
+ "df.plot.hist": "df.plot.hist(by=None,bins=10,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.hist.html#pandas.DataFrame.plot.hist",
940
+ "df.plot.kde": "df.plot.kde(bw_method=None,ind=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.kde.html#pandas.DataFrame.plot.kde",
941
+ "df.plot.line": "df.plot.line(x=None,y=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.line.html#pandas.DataFrame.plot.line",
942
+ "df.plot.pie": "df.plot.pie(**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.pie.html#pandas.DataFrame.plot.pie",
943
+ "df.plot.scatter": "df.plot.scatter(x,y,s=None,c=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.scatter.html#pandas.DataFrame.plot.scatter",
944
+ "df.boxplot": "df.boxplot(column=None,by=None,ax=None,fontsize=None,rot=0,grid=True,figsize=None,layout=None,return_type=None,backend=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.boxplot.html#pandas.DataFrame.boxplot",
945
+ "df.hist": "df.hist(column=None,by=None,grid=True,xlabelsize=None,xrot=None,ylabelsize=None,yrot=None,ax=None,sharex=False,sharey=False,figsize=None,layout=None,bins=10,backend=None,legend=False,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist",
946
+ "df.sparse.density": "df.sparse.density\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sparse.density.html#pandas.DataFrame.sparse.density",
947
+ "methodDataFrame.sparse.from_spmatrix": "methodDataFrame.sparse.from_spmatrix(data,index=None,columns=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sparse.from_spmatrix.html#pandas.DataFrame.sparse.from_spmatrix",
948
+ "df.sparse.to_coo": "df.sparse.to_coo()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sparse.to_coo.html#pandas.DataFrame.sparse.to_coo",
949
+ "df.sparse.to_dense": "df.sparse.to_dense()\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sparse.to_dense.html#pandas.DataFrame.sparse.to_dense",
950
+ "methodDataFrame.from_dict": "methodDataFrame.from_dict(data,orient='columns',dtype=None,columns=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.from_dict.html#pandas.DataFrame.from_dict",
951
+ "methodDataFrame.from_records": "methodDataFrame.from_records(data,index=None,exclude=None,columns=None,coerce_float=False,nrows=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.from_records.html#pandas.DataFrame.from_records",
952
+ "df.to_hdf": "df.to_hdf(path_or_buf,*,key,mode='a',complevel=None,complib=None,append=False,format=None,index=True,min_itemsize=None,nan_rep=None,dropna=None,data_columns=None,errors='strict',encoding='UTF-8')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf",
953
+ "df.to_dict": "df.to_dict(orient='dict',*,into=<class'dict'>,index=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_dict.html#pandas.DataFrame.to_dict",
954
+ "df.to_gbq": "df.to_gbq(destination_table,*,project_id=None,chunksize=None,reauth=False,if_exists='fail',auth_local_webserver=True,table_schema=None,location=None,progress_bar=True,credentials=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_gbq.html#pandas.DataFrame.to_gbq",
955
+ "df.to_records": "df.to_records(index=True,column_dtypes=None,index_dtypes=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_records.html#pandas.DataFrame.to_records",
956
+ "df.to_string": "df.to_string(buf=None,*,columns=None,col_space=None,header=True,index=True,na_rep='NaN',formatters=None,float_format=None,sparsify=None,index_names=True,justify=None,max_rows=None,max_cols=None,show_dimensions=False,decimal='.',line_width=None,min_rows=None,max_colwidth=None,encoding=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_string.html#pandas.DataFrame.to_string",
957
+ "df.to_markdown": "df.to_markdown(buf=None,*,mode='wt',index=True,storage_options=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_markdown.html#pandas.DataFrame.to_markdown",
958
+ "df.__dataframe__": "df.__dataframe__(nan_as_null=False,allow_copy=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.__dataframe__.html#pandas.DataFrame.__dataframe__",
959
+ "pd.array": "pd.array(data,dtype=None,copy=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.array.html#pandas.array",
960
+ "pandas.arrays.ArrowExtensionArray": "pandas.arrays.ArrowExtensionArray(values)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.ArrowExtensionArray.html#pandas.arrays.ArrowExtensionArray",
961
+ "pandas.ArrowDtype": "pandas.ArrowDtype(pyarrow_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.ArrowDtype.html#pandas.ArrowDtype",
962
+ "pandas.Timestamp": "pandas.Timestamp(ts_input=<objectobject>,year=None,month=None,day=None,hour=None,minute=None,second=None,microsecond=None,tzinfo=None,*,nanosecond=None,tz=None,unit=None,fold=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.html#pandas.Timestamp",
963
+ "Timestamp.asm8": "Timestamp.asm8\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.asm8.html#pandas.Timestamp.asm8",
964
+ "Timestamp.day": "Timestamp.day\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.day.html#pandas.Timestamp.day",
965
+ "Timestamp.dayofweek": "Timestamp.dayofweek\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.dayofweek.html#pandas.Timestamp.dayofweek",
966
+ "Timestamp.day_of_week": "Timestamp.day_of_week\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.day_of_week.html#pandas.Timestamp.day_of_week",
967
+ "Timestamp.dayofyear": "Timestamp.dayofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.dayofyear.html#pandas.Timestamp.dayofyear",
968
+ "Timestamp.day_of_year": "Timestamp.day_of_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.day_of_year.html#pandas.Timestamp.day_of_year",
969
+ "Timestamp.days_in_month": "Timestamp.days_in_month\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.days_in_month.html#pandas.Timestamp.days_in_month",
970
+ "Timestamp.daysinmonth": "Timestamp.daysinmonth\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.daysinmonth.html#pandas.Timestamp.daysinmonth",
971
+ "Timestamp.fold": "Timestamp.fold\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.fold.html#pandas.Timestamp.fold",
972
+ "Timestamp.hour": "Timestamp.hour\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.hour.html#pandas.Timestamp.hour",
973
+ "Timestamp.is_leap_year": "Timestamp.is_leap_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_leap_year.html#pandas.Timestamp.is_leap_year",
974
+ "Timestamp.is_month_end": "Timestamp.is_month_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_month_end.html#pandas.Timestamp.is_month_end",
975
+ "Timestamp.is_month_start": "Timestamp.is_month_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_month_start.html#pandas.Timestamp.is_month_start",
976
+ "Timestamp.is_quarter_end": "Timestamp.is_quarter_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_quarter_end.html#pandas.Timestamp.is_quarter_end",
977
+ "Timestamp.is_quarter_start": "Timestamp.is_quarter_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_quarter_start.html#pandas.Timestamp.is_quarter_start",
978
+ "Timestamp.is_year_end": "Timestamp.is_year_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_year_end.html#pandas.Timestamp.is_year_end",
979
+ "Timestamp.is_year_start": "Timestamp.is_year_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.is_year_start.html#pandas.Timestamp.is_year_start",
980
+ "Timestamp.max=Timestamp": "Timestamp.max=Timestamp('2262-04-1123:47:16.854775807')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.max.html#pandas.Timestamp.max",
981
+ "Timestamp.microsecond": "Timestamp.microsecond\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.microsecond.html#pandas.Timestamp.microsecond",
982
+ "Timestamp.min=Timestamp": "Timestamp.min=Timestamp('1677-09-2100:12:43.145224193')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.min.html#pandas.Timestamp.min",
983
+ "Timestamp.minute": "Timestamp.minute\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.minute.html#pandas.Timestamp.minute",
984
+ "Timestamp.month": "Timestamp.month\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.month.html#pandas.Timestamp.month",
985
+ "Timestamp.nanosecond": "Timestamp.nanosecond\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.nanosecond.html#pandas.Timestamp.nanosecond",
986
+ "Timestamp.quarter": "Timestamp.quarter\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.quarter.html#pandas.Timestamp.quarter",
987
+ "Timestamp.resolution=Timedelta": "Timestamp.resolution=Timedelta('0days00:00:00.000000001')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.resolution.html#pandas.Timestamp.resolution",
988
+ "Timestamp.second": "Timestamp.second\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.second.html#pandas.Timestamp.second",
989
+ "Timestamp.tz": "Timestamp.tz\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.tz.html#pandas.Timestamp.tz",
990
+ "Timestamp.tzinfo": "Timestamp.tzinfo\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.tzinfo.html#pandas.Timestamp.tzinfo",
991
+ "Timestamp.unit": "Timestamp.unit\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.unit.html#pandas.Timestamp.unit",
992
+ "Timestamp.value": "Timestamp.value\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.value.html#pandas.Timestamp.value",
993
+ "Timestamp.week": "Timestamp.week\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.week.html#pandas.Timestamp.week",
994
+ "Timestamp.weekofyear": "Timestamp.weekofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.weekofyear.html#pandas.Timestamp.weekofyear",
995
+ "Timestamp.year": "Timestamp.year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.year.html#pandas.Timestamp.year",
996
+ "Timestamp.as_unit": "Timestamp.as_unit(unit,round_ok=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.as_unit.html#pandas.Timestamp.as_unit",
997
+ "Timestamp.astimezone": "Timestamp.astimezone(tz)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.astimezone.html#pandas.Timestamp.astimezone",
998
+ "Timestamp.ceil": "Timestamp.ceil(freq,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.ceil.html#pandas.Timestamp.ceil",
999
+ "methodTimestamp.combine": "methodTimestamp.combine(date,time)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.combine.html#pandas.Timestamp.combine",
1000
+ "Timestamp.ctime": "Timestamp.ctime()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.ctime.html#pandas.Timestamp.ctime",
1001
+ "Timestamp.date": "Timestamp.date()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.date.html#pandas.Timestamp.date",
1002
+ "Timestamp.day_name": "Timestamp.day_name(locale=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.day_name.html#pandas.Timestamp.day_name",
1003
+ "Timestamp.dst": "Timestamp.dst()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.dst.html#pandas.Timestamp.dst",
1004
+ "Timestamp.floor": "Timestamp.floor(freq,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.floor.html#pandas.Timestamp.floor",
1005
+ "methodTimestamp.fromordinal": "methodTimestamp.fromordinal(ordinal,tz=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.fromordinal.html#pandas.Timestamp.fromordinal",
1006
+ "methodTimestamp.fromtimestamp": "methodTimestamp.fromtimestamp(ts)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.fromtimestamp.html#pandas.Timestamp.fromtimestamp",
1007
+ "Timestamp.isocalendar": "Timestamp.isocalendar()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.isocalendar.html#pandas.Timestamp.isocalendar",
1008
+ "Timestamp.isoformat": "Timestamp.isoformat(sep='T',timespec='auto')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.isoformat.html#pandas.Timestamp.isoformat",
1009
+ "Timestamp.isoweekday": "Timestamp.isoweekday()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.isoweekday.html#pandas.Timestamp.isoweekday",
1010
+ "Timestamp.month_name": "Timestamp.month_name(locale=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.month_name.html#pandas.Timestamp.month_name",
1011
+ "Timestamp.normalize": "Timestamp.normalize()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.normalize.html#pandas.Timestamp.normalize",
1012
+ "methodTimestamp.now": "methodTimestamp.now(tz=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.now.html#pandas.Timestamp.now",
1013
+ "Timestamp.replace": "Timestamp.replace(year=None,month=None,day=None,hour=None,minute=None,second=None,microsecond=None,nanosecond=None,tzinfo=<class'object'>,fold=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.replace.html#pandas.Timestamp.replace",
1014
+ "Timestamp.round": "Timestamp.round(freq,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.round.html#pandas.Timestamp.round",
1015
+ "Timestamp.strftime": "Timestamp.strftime(format)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.strftime.html#pandas.Timestamp.strftime",
1016
+ "methodTimestamp.strptime": "methodTimestamp.strptime(string,format)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.strptime.html#pandas.Timestamp.strptime",
1017
+ "Timestamp.time": "Timestamp.time()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.time.html#pandas.Timestamp.time",
1018
+ "Timestamp.timestamp": "Timestamp.timestamp()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.timestamp.html#pandas.Timestamp.timestamp",
1019
+ "Timestamp.timetuple": "Timestamp.timetuple()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.timetuple.html#pandas.Timestamp.timetuple",
1020
+ "Timestamp.timetz": "Timestamp.timetz()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.timetz.html#pandas.Timestamp.timetz",
1021
+ "Timestamp.to_datetime64": "Timestamp.to_datetime64()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.to_datetime64.html#pandas.Timestamp.to_datetime64",
1022
+ "Timestamp.to_numpy": "Timestamp.to_numpy(dtype=None,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.to_numpy.html#pandas.Timestamp.to_numpy",
1023
+ "Timestamp.to_julian_date": "Timestamp.to_julian_date()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.to_julian_date.html#pandas.Timestamp.to_julian_date",
1024
+ "Timestamp.to_period": "Timestamp.to_period(freq=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.to_period.html#pandas.Timestamp.to_period",
1025
+ "Timestamp.to_pydatetime": "Timestamp.to_pydatetime(warn=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.to_pydatetime.html#pandas.Timestamp.to_pydatetime",
1026
+ "methodTimestamp.today": "methodTimestamp.today(tz=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.today.html#pandas.Timestamp.today",
1027
+ "Timestamp.toordinal": "Timestamp.toordinal()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.toordinal.html#pandas.Timestamp.toordinal",
1028
+ "Timestamp.tz_convert": "Timestamp.tz_convert(tz)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.tz_convert.html#pandas.Timestamp.tz_convert",
1029
+ "Timestamp.tz_localize": "Timestamp.tz_localize(tz,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.tz_localize.html#pandas.Timestamp.tz_localize",
1030
+ "Timestamp.tzname": "Timestamp.tzname()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.tzname.html#pandas.Timestamp.tzname",
1031
+ "methodTimestamp.utcfromtimestamp": "methodTimestamp.utcfromtimestamp(ts)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.utcfromtimestamp.html#pandas.Timestamp.utcfromtimestamp",
1032
+ "methodTimestamp.utcnow": "methodTimestamp.utcnow()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.utcnow.html#pandas.Timestamp.utcnow",
1033
+ "Timestamp.utcoffset": "Timestamp.utcoffset()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.utcoffset.html#pandas.Timestamp.utcoffset",
1034
+ "Timestamp.utctimetuple": "Timestamp.utctimetuple()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.utctimetuple.html#pandas.Timestamp.utctimetuple",
1035
+ "Timestamp.weekday": "Timestamp.weekday()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timestamp.weekday.html#pandas.Timestamp.weekday",
1036
+ "pandas.arrays.DatetimeArray": "pandas.arrays.DatetimeArray(values,dtype=None,freq=<no_default>,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.DatetimeArray.html#pandas.arrays.DatetimeArray",
1037
+ "pandas.DatetimeTZDtype": "pandas.DatetimeTZDtype(unit='ns',tz=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeTZDtype.html#pandas.DatetimeTZDtype",
1038
+ "pandas.Timedelta": "pandas.Timedelta(value=<objectobject>,unit=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.html#pandas.Timedelta",
1039
+ "Timedelta.asm8": "Timedelta.asm8\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.asm8.html#pandas.Timedelta.asm8",
1040
+ "Timedelta.components": "Timedelta.components\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.components.html#pandas.Timedelta.components",
1041
+ "Timedelta.days": "Timedelta.days\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.days.html#pandas.Timedelta.days",
1042
+ "Timedelta.max=Timedelta": "Timedelta.max=Timedelta('106751days23:47:16.854775807')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.max.html#pandas.Timedelta.max",
1043
+ "Timedelta.microseconds": "Timedelta.microseconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.microseconds.html#pandas.Timedelta.microseconds",
1044
+ "Timedelta.min=Timedelta": "Timedelta.min=Timedelta('-106752days+00:12:43.145224193')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.min.html#pandas.Timedelta.min",
1045
+ "Timedelta.nanoseconds": "Timedelta.nanoseconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.nanoseconds.html#pandas.Timedelta.nanoseconds",
1046
+ "Timedelta.resolution=Timedelta": "Timedelta.resolution=Timedelta('0days00:00:00.000000001')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.resolution.html#pandas.Timedelta.resolution",
1047
+ "Timedelta.seconds": "Timedelta.seconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.seconds.html#pandas.Timedelta.seconds",
1048
+ "Timedelta.unit": "Timedelta.unit\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.unit.html#pandas.Timedelta.unit",
1049
+ "Timedelta.value": "Timedelta.value\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.value.html#pandas.Timedelta.value",
1050
+ "Timedelta.view": "Timedelta.view(dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.view.html#pandas.Timedelta.view",
1051
+ "Timedelta.as_unit": "Timedelta.as_unit(unit,round_ok=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.as_unit.html#pandas.Timedelta.as_unit",
1052
+ "Timedelta.ceil": "Timedelta.ceil(freq)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.ceil.html#pandas.Timedelta.ceil",
1053
+ "Timedelta.floor": "Timedelta.floor(freq)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.floor.html#pandas.Timedelta.floor",
1054
+ "Timedelta.isoformat": "Timedelta.isoformat()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.isoformat.html#pandas.Timedelta.isoformat",
1055
+ "Timedelta.round": "Timedelta.round(freq)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.round.html#pandas.Timedelta.round",
1056
+ "Timedelta.to_pytimedelta": "Timedelta.to_pytimedelta()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.to_pytimedelta.html#pandas.Timedelta.to_pytimedelta",
1057
+ "Timedelta.to_timedelta64": "Timedelta.to_timedelta64()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.to_timedelta64.html#pandas.Timedelta.to_timedelta64",
1058
+ "Timedelta.to_numpy": "Timedelta.to_numpy(dtype=None,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.to_numpy.html#pandas.Timedelta.to_numpy",
1059
+ "Timedelta.total_seconds": "Timedelta.total_seconds()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Timedelta.total_seconds.html#pandas.Timedelta.total_seconds",
1060
+ "pandas.arrays.TimedeltaArray": "pandas.arrays.TimedeltaArray(values,dtype=None,freq=<no_default>,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.TimedeltaArray.html#pandas.arrays.TimedeltaArray",
1061
+ "pandas.Period": "pandas.Period(value=None,freq=None,ordinal=None,year=None,month=None,quarter=None,day=None,hour=None,minute=None,second=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period",
1062
+ "Period.day": "Period.day\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.day.html#pandas.Period.day",
1063
+ "Period.dayofweek": "Period.dayofweek\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.dayofweek.html#pandas.Period.dayofweek",
1064
+ "Period.day_of_week": "Period.day_of_week\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.day_of_week.html#pandas.Period.day_of_week",
1065
+ "Period.dayofyear": "Period.dayofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.dayofyear.html#pandas.Period.dayofyear",
1066
+ "Period.day_of_year": "Period.day_of_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.day_of_year.html#pandas.Period.day_of_year",
1067
+ "Period.days_in_month": "Period.days_in_month\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.days_in_month.html#pandas.Period.days_in_month",
1068
+ "Period.daysinmonth": "Period.daysinmonth\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.daysinmonth.html#pandas.Period.daysinmonth",
1069
+ "Period.end_time": "Period.end_time\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.end_time.html#pandas.Period.end_time",
1070
+ "Period.freq": "Period.freq\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.freq.html#pandas.Period.freq",
1071
+ "Period.freqstr": "Period.freqstr\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.freqstr.html#pandas.Period.freqstr",
1072
+ "Period.hour": "Period.hour\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.hour.html#pandas.Period.hour",
1073
+ "Period.is_leap_year": "Period.is_leap_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.is_leap_year.html#pandas.Period.is_leap_year",
1074
+ "Period.minute": "Period.minute\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.minute.html#pandas.Period.minute",
1075
+ "Period.month": "Period.month\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.month.html#pandas.Period.month",
1076
+ "Period.ordinal": "Period.ordinal\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.ordinal.html#pandas.Period.ordinal",
1077
+ "Period.quarter": "Period.quarter\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.quarter.html#pandas.Period.quarter",
1078
+ "Period.qyear": "Period.qyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.qyear.html#pandas.Period.qyear",
1079
+ "Period.second": "Period.second\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.second.html#pandas.Period.second",
1080
+ "Period.start_time": "Period.start_time\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.start_time.html#pandas.Period.start_time",
1081
+ "Period.week": "Period.week\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.week.html#pandas.Period.week",
1082
+ "Period.weekday": "Period.weekday\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.weekday.html#pandas.Period.weekday",
1083
+ "Period.weekofyear": "Period.weekofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.weekofyear.html#pandas.Period.weekofyear",
1084
+ "Period.year": "Period.year\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.year.html#pandas.Period.year",
1085
+ "Period.asfreq": "Period.asfreq(freq,how='E')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.asfreq.html#pandas.Period.asfreq",
1086
+ "methodPeriod.now": "methodPeriod.now(freq)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.now.html#pandas.Period.now",
1087
+ "Period.strftime": "Period.strftime(fmt)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.strftime.html#pandas.Period.strftime",
1088
+ "Period.to_timestamp": "Period.to_timestamp(freq=None,how='start')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Period.to_timestamp.html#pandas.Period.to_timestamp",
1089
+ "pandas.arrays.PeriodArray": "pandas.arrays.PeriodArray(values,dtype=None,freq=None,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.PeriodArray.html#pandas.arrays.PeriodArray",
1090
+ "pandas.PeriodDtype": "pandas.PeriodDtype(freq)\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodDtype.html#pandas.PeriodDtype",
1091
+ "pandas.Interval": "pandas.Interval\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.html#pandas.Interval",
1092
+ "Interval.closed": "Interval.closed\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.closed.html#pandas.Interval.closed",
1093
+ "Interval.closed_left": "Interval.closed_left\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.closed_left.html#pandas.Interval.closed_left",
1094
+ "Interval.closed_right": "Interval.closed_right\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.closed_right.html#pandas.Interval.closed_right",
1095
+ "Interval.is_empty": "Interval.is_empty\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.is_empty.html#pandas.Interval.is_empty",
1096
+ "Interval.left": "Interval.left\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.left.html#pandas.Interval.left",
1097
+ "Interval.length": "Interval.length\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.length.html#pandas.Interval.length",
1098
+ "Interval.mid": "Interval.mid\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.mid.html#pandas.Interval.mid",
1099
+ "Interval.open_left": "Interval.open_left\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.open_left.html#pandas.Interval.open_left",
1100
+ "Interval.open_right": "Interval.open_right\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.open_right.html#pandas.Interval.open_right",
1101
+ "Interval.overlaps": "Interval.overlaps(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.overlaps.html#pandas.Interval.overlaps",
1102
+ "Interval.right": "Interval.right\nhttps://pandas.pydata.org/docs/reference/api/pandas.Interval.right.html#pandas.Interval.right",
1103
+ "pandas.arrays.IntervalArray": "pandas.arrays.IntervalArray(data,closed=None,dtype=None,copy=False,verify_integrity=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.IntervalArray.html#pandas.arrays.IntervalArray",
1104
+ "pandas.IntervalDtype": "pandas.IntervalDtype(subtype=None,closed=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalDtype.html#pandas.IntervalDtype",
1105
+ "pandas.arrays.IntegerArray": "pandas.arrays.IntegerArray(values,mask,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.IntegerArray.html#pandas.arrays.IntegerArray",
1106
+ "pandas.Int8Dtype": "pandas.Int8Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Int8Dtype.html#pandas.Int8Dtype",
1107
+ "pandas.Int16Dtype": "pandas.Int16Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Int16Dtype.html#pandas.Int16Dtype",
1108
+ "pandas.Int32Dtype": "pandas.Int32Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Int32Dtype.html#pandas.Int32Dtype",
1109
+ "pandas.Int64Dtype": "pandas.Int64Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Int64Dtype.html#pandas.Int64Dtype",
1110
+ "pandas.UInt8Dtype": "pandas.UInt8Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.UInt8Dtype.html#pandas.UInt8Dtype",
1111
+ "pandas.UInt16Dtype": "pandas.UInt16Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.UInt16Dtype.html#pandas.UInt16Dtype",
1112
+ "pandas.UInt32Dtype": "pandas.UInt32Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.UInt32Dtype.html#pandas.UInt32Dtype",
1113
+ "pandas.UInt64Dtype": "pandas.UInt64Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.UInt64Dtype.html#pandas.UInt64Dtype",
1114
+ "pandas.arrays.FloatingArray": "pandas.arrays.FloatingArray(values,mask,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.FloatingArray.html#pandas.arrays.FloatingArray",
1115
+ "pandas.Float32Dtype": "pandas.Float32Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Float32Dtype.html#pandas.Float32Dtype",
1116
+ "pandas.Float64Dtype": "pandas.Float64Dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Float64Dtype.html#pandas.Float64Dtype",
1117
+ "pandas.CategoricalDtype": "pandas.CategoricalDtype(categories=None,ordered=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas.CategoricalDtype",
1118
+ "CategoricalDtype.categories": "CategoricalDtype.categories\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.categories.html#pandas.CategoricalDtype.categories",
1119
+ "CategoricalDtype.ordered": "CategoricalDtype.ordered\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.ordered.html#pandas.CategoricalDtype.ordered",
1120
+ "pandas.Categorical": "pandas.Categorical(values,categories=None,ordered=None,dtype=None,fastpath=<no_default>,copy=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.html#pandas.Categorical",
1121
+ "methodCategorical.from_codes": "methodCategorical.from_codes(codes,categories=None,ordered=None,dtype=None,validate=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.from_codes.html#pandas.Categorical.from_codes",
1122
+ "Categorical.dtype": "Categorical.dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.dtype.html#pandas.Categorical.dtype",
1123
+ "Categorical.categories": "Categorical.categories\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.categories.html#pandas.Categorical.categories",
1124
+ "Categorical.ordered": "Categorical.ordered\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.ordered.html#pandas.Categorical.ordered",
1125
+ "Categorical.codes": "Categorical.codes\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.codes.html#pandas.Categorical.codes",
1126
+ "Categorical.__array__": "Categorical.__array__(dtype=None,copy=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Categorical.__array__.html#pandas.Categorical.__array__",
1127
+ "pandas.arrays.SparseArray": "pandas.arrays.SparseArray(data,sparse_index=None,fill_value=None,kind='integer',dtype=None,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.SparseArray.html#pandas.arrays.SparseArray",
1128
+ "pandas.SparseDtype": "pandas.SparseDtype(dtype=<'numpy.float64'>,fill_value=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.SparseDtype.html#pandas.SparseDtype",
1129
+ "pandas.arrays.StringArray": "pandas.arrays.StringArray(values,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.StringArray.html#pandas.arrays.StringArray",
1130
+ "pandas.arrays.ArrowStringArray": "pandas.arrays.ArrowStringArray(values)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.ArrowStringArray.html#pandas.arrays.ArrowStringArray",
1131
+ "pandas.StringDtype": "pandas.StringDtype(storage=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.StringDtype.html#pandas.StringDtype",
1132
+ "pandas.arrays.BooleanArray": "pandas.arrays.BooleanArray(values,mask,copy=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.arrays.BooleanArray.html#pandas.arrays.BooleanArray",
1133
+ "pandas.BooleanDtype": "pandas.BooleanDtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.BooleanDtype.html#pandas.BooleanDtype",
1134
+ "pd.api.types.union_categoricals": "pd.api.types.union_categoricals(to_union,sort_categories=False,ignore_order=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.union_categoricals.html#pandas.api.types.union_categoricals",
1135
+ "pd.api.types.infer_dtype": "pd.api.types.infer_dtype(value,skipna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.infer_dtype.html#pandas.api.types.infer_dtype",
1136
+ "pd.api.types.pd_dtype": "pd.api.types.pd_dtype(dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.pandas_dtype.html#pandas.api.types.pandas_dtype",
1137
+ "pd.api.types.is_any_real_numeric_dtype": "pd.api.types.is_any_real_numeric_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_any_real_numeric_dtype.html#pandas.api.types.is_any_real_numeric_dtype",
1138
+ "pd.api.types.is_bool_dtype": "pd.api.types.is_bool_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_bool_dtype.html#pandas.api.types.is_bool_dtype",
1139
+ "pd.api.types.is_categorical_dtype": "pd.api.types.is_categorical_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_categorical_dtype.html#pandas.api.types.is_categorical_dtype",
1140
+ "pd.api.types.is_complex_dtype": "pd.api.types.is_complex_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_complex_dtype.html#pandas.api.types.is_complex_dtype",
1141
+ "pd.api.types.is_datetime64_any_dtype": "pd.api.types.is_datetime64_any_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_datetime64_any_dtype.html#pandas.api.types.is_datetime64_any_dtype",
1142
+ "pd.api.types.is_datetime64_dtype": "pd.api.types.is_datetime64_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_datetime64_dtype.html#pandas.api.types.is_datetime64_dtype",
1143
+ "pd.api.types.is_datetime64_ns_dtype": "pd.api.types.is_datetime64_ns_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_datetime64_ns_dtype.html#pandas.api.types.is_datetime64_ns_dtype",
1144
+ "pd.api.types.is_datetime64tz_dtype": "pd.api.types.is_datetime64tz_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_datetime64tz_dtype.html#pandas.api.types.is_datetime64tz_dtype",
1145
+ "pd.api.types.is_extension_array_dtype": "pd.api.types.is_extension_array_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_extension_array_dtype.html#pandas.api.types.is_extension_array_dtype",
1146
+ "pd.api.types.is_float_dtype": "pd.api.types.is_float_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_float_dtype.html#pandas.api.types.is_float_dtype",
1147
+ "pd.api.types.is_int64_dtype": "pd.api.types.is_int64_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_int64_dtype.html#pandas.api.types.is_int64_dtype",
1148
+ "pd.api.types.is_integer_dtype": "pd.api.types.is_integer_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_integer_dtype.html#pandas.api.types.is_integer_dtype",
1149
+ "pd.api.types.is_interval_dtype": "pd.api.types.is_interval_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_interval_dtype.html#pandas.api.types.is_interval_dtype",
1150
+ "pd.api.types.is_numeric_dtype": "pd.api.types.is_numeric_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_numeric_dtype.html#pandas.api.types.is_numeric_dtype",
1151
+ "pd.api.types.is_object_dtype": "pd.api.types.is_object_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_object_dtype.html#pandas.api.types.is_object_dtype",
1152
+ "pd.api.types.is_period_dtype": "pd.api.types.is_period_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_period_dtype.html#pandas.api.types.is_period_dtype",
1153
+ "pd.api.types.is_signed_integer_dtype": "pd.api.types.is_signed_integer_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_signed_integer_dtype.html#pandas.api.types.is_signed_integer_dtype",
1154
+ "pd.api.types.is_string_dtype": "pd.api.types.is_string_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_string_dtype.html#pandas.api.types.is_string_dtype",
1155
+ "pd.api.types.is_timedelta64_dtype": "pd.api.types.is_timedelta64_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_timedelta64_dtype.html#pandas.api.types.is_timedelta64_dtype",
1156
+ "pd.api.types.is_timedelta64_ns_dtype": "pd.api.types.is_timedelta64_ns_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_timedelta64_ns_dtype.html#pandas.api.types.is_timedelta64_ns_dtype",
1157
+ "pd.api.types.is_unsigned_integer_dtype": "pd.api.types.is_unsigned_integer_dtype(arr_or_dtype)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_unsigned_integer_dtype.html#pandas.api.types.is_unsigned_integer_dtype",
1158
+ "pd.api.types.is_sparse": "pd.api.types.is_sparse(arr)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_sparse.html#pandas.api.types.is_sparse",
1159
+ "pd.api.types.is_dict_like": "pd.api.types.is_dict_like(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_dict_like.html#pandas.api.types.is_dict_like",
1160
+ "pd.api.types.is_file_like": "pd.api.types.is_file_like(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_file_like.html#pandas.api.types.is_file_like",
1161
+ "pd.api.types.is_list_like": "pd.api.types.is_list_like(obj,allow_sets=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_list_like.html#pandas.api.types.is_list_like",
1162
+ "pd.api.types.is_named_tuple": "pd.api.types.is_named_tuple(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_named_tuple.html#pandas.api.types.is_named_tuple",
1163
+ "pd.api.types.is_iterator": "pd.api.types.is_iterator(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_iterator.html#pandas.api.types.is_iterator",
1164
+ "pd.api.types.is_bool": "pd.api.types.is_bool(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_bool.html#pandas.api.types.is_bool",
1165
+ "pd.api.types.is_complex": "pd.api.types.is_complex(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_complex.html#pandas.api.types.is_complex",
1166
+ "pd.api.types.is_float": "pd.api.types.is_float(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_float.html#pandas.api.types.is_float",
1167
+ "pd.api.types.is_hashable": "pd.api.types.is_hashable(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_hashable.html#pandas.api.types.is_hashable",
1168
+ "pd.api.types.is_integer": "pd.api.types.is_integer(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_integer.html#pandas.api.types.is_integer",
1169
+ "pd.api.types.is_interval": "pd.api.types.is_interval(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_interval.html#pandas.api.types.is_interval",
1170
+ "pd.api.types.is_number": "pd.api.types.is_number(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_number.html#pandas.api.types.is_number",
1171
+ "pd.api.types.is_re": "pd.api.types.is_re(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_re.html#pandas.api.types.is_re",
1172
+ "pd.api.types.is_re_compilable": "pd.api.types.is_re_compilable(obj)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_re_compilable.html#pandas.api.types.is_re_compilable",
1173
+ "pd.api.types.is_scalar": "pd.api.types.is_scalar(val)\nhttps://pandas.pydata.org/docs/reference/api/pandas.api.types.is_scalar.html#pandas.api.types.is_scalar",
1174
+ "pandas.Index": "pandas.Index(data=None,dtype=None,copy=False,name=None,tupleize_cols=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.html#pandas.Index",
1175
+ "Index.values": "Index.values\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.values.html#pandas.Index.values",
1176
+ "Index.is_monotonic_increasing": "Index.is_monotonic_increasing\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_monotonic_increasing.html#pandas.Index.is_monotonic_increasing",
1177
+ "Index.is_monotonic_decreasing": "Index.is_monotonic_decreasing\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_monotonic_decreasing.html#pandas.Index.is_monotonic_decreasing",
1178
+ "Index.is_unique": "Index.is_unique\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_unique.html#pandas.Index.is_unique",
1179
+ "Index.has_duplicates": "Index.has_duplicates\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.has_duplicates.html#pandas.Index.has_duplicates",
1180
+ "Index.hasnans": "Index.hasnans\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.hasnans.html#pandas.Index.hasnans",
1181
+ "Index.dtype": "Index.dtype\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.dtype.html#pandas.Index.dtype",
1182
+ "Index.inferred_type": "Index.inferred_type\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.inferred_type.html#pandas.Index.inferred_type",
1183
+ "Index.shape": "Index.shape\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.shape.html#pandas.Index.shape",
1184
+ "Index.name": "Index.name\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.name.html#pandas.Index.name",
1185
+ "Index.names": "Index.names\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.names.html#pandas.Index.names",
1186
+ "Index.nbytes": "Index.nbytes\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.nbytes.html#pandas.Index.nbytes",
1187
+ "Index.ndim": "Index.ndim\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.ndim.html#pandas.Index.ndim",
1188
+ "Index.size": "Index.size\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.size.html#pandas.Index.size",
1189
+ "Index.empty": "Index.empty\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.empty.html#pandas.Index.empty",
1190
+ "Index.T": "Index.T\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.T.html#pandas.Index.T",
1191
+ "Index.memory_usage": "Index.memory_usage(deep=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.memory_usage.html#pandas.Index.memory_usage",
1192
+ "Index.all": "Index.all(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.all.html#pandas.Index.all",
1193
+ "Index.any": "Index.any(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.any.html#pandas.Index.any",
1194
+ "Index.argmin": "Index.argmin(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.argmin.html#pandas.Index.argmin",
1195
+ "Index.argmax": "Index.argmax(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.argmax.html#pandas.Index.argmax",
1196
+ "Index.copy": "Index.copy(name=None,deep=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.copy.html#pandas.Index.copy",
1197
+ "Index.delete": "Index.delete(loc)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.delete.html#pandas.Index.delete",
1198
+ "Index.drop": "Index.drop(labels,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.drop.html#pandas.Index.drop",
1199
+ "Index.drop_duplicates": "Index.drop_duplicates(*,keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.drop_duplicates.html#pandas.Index.drop_duplicates",
1200
+ "Index.duplicated": "Index.duplicated(keep='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.duplicated.html#pandas.Index.duplicated",
1201
+ "Index.equals": "Index.equals(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.equals.html#pandas.Index.equals",
1202
+ "Index.factorize": "Index.factorize(sort=False,use_na_sentinel=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.factorize.html#pandas.Index.factorize",
1203
+ "finalIndex.identical": "finalIndex.identical(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.identical.html#pandas.Index.identical",
1204
+ "Index.insert": "Index.insert(loc,item)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.insert.html#pandas.Index.insert",
1205
+ "finalIndex.is_": "finalIndex.is_(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_.html#pandas.Index.is_",
1206
+ "finalIndex.is_boolean": "finalIndex.is_boolean()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_boolean.html#pandas.Index.is_boolean",
1207
+ "finalIndex.is_categorical": "finalIndex.is_categorical()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_categorical.html#pandas.Index.is_categorical",
1208
+ "finalIndex.is_floating": "finalIndex.is_floating()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_floating.html#pandas.Index.is_floating",
1209
+ "finalIndex.is_integer": "finalIndex.is_integer()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_integer.html#pandas.Index.is_integer",
1210
+ "finalIndex.is_interval": "finalIndex.is_interval()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_interval.html#pandas.Index.is_interval",
1211
+ "finalIndex.is_numeric": "finalIndex.is_numeric()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_numeric.html#pandas.Index.is_numeric",
1212
+ "finalIndex.is_object": "finalIndex.is_object()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.is_object.html#pandas.Index.is_object",
1213
+ "Index.min": "Index.min(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.min.html#pandas.Index.min",
1214
+ "Index.max": "Index.max(axis=None,skipna=True,*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.max.html#pandas.Index.max",
1215
+ "Index.reindex": "Index.reindex(target,method=None,level=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.reindex.html#pandas.Index.reindex",
1216
+ "Index.rename": "Index.rename(name,*,inplace=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.rename.html#pandas.Index.rename",
1217
+ "Index.repeat": "Index.repeat(repeats,axis=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.repeat.html#pandas.Index.repeat",
1218
+ "finalIndex.where": "finalIndex.where(cond,other=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.where.html#pandas.Index.where",
1219
+ "Index.take": "Index.take(indices,axis=0,allow_fill=True,fill_value=None,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.take.html#pandas.Index.take",
1220
+ "Index.putmask": "Index.putmask(mask,value)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.putmask.html#pandas.Index.putmask",
1221
+ "Index.unique": "Index.unique(level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.unique.html#pandas.Index.unique",
1222
+ "Index.nunique": "Index.nunique(dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.nunique.html#pandas.Index.nunique",
1223
+ "Index.value_counts": "Index.value_counts(normalize=False,sort=True,ascending=False,bins=None,dropna=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.value_counts.html#pandas.Index.value_counts",
1224
+ "Index.set_names": "Index.set_names(names,*,level=None,inplace=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.set_names.html#pandas.Index.set_names",
1225
+ "finalIndex.droplevel": "finalIndex.droplevel(level=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.droplevel.html#pandas.Index.droplevel",
1226
+ "Index.fillna": "Index.fillna(value=None,downcast=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.fillna.html#pandas.Index.fillna",
1227
+ "Index.dropna": "Index.dropna(how='any')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.dropna.html#pandas.Index.dropna",
1228
+ "finalIndex.isna": "finalIndex.isna()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.isna.html#pandas.Index.isna",
1229
+ "finalIndex.notna": "finalIndex.notna()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.notna.html#pandas.Index.notna",
1230
+ "Index.astype": "Index.astype(dtype,copy=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.astype.html#pandas.Index.astype",
1231
+ "Index.item": "Index.item()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.item.html#pandas.Index.item",
1232
+ "Index.map": "Index.map(mapper,na_action=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.map.html#pandas.Index.map",
1233
+ "finalIndex.ravel": "finalIndex.ravel(order='C')\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.ravel.html#pandas.Index.ravel",
1234
+ "Index.to_list": "Index.to_list()\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.to_list.html#pandas.Index.to_list",
1235
+ "finalIndex.to_series": "finalIndex.to_series(index=None,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.to_series.html#pandas.Index.to_series",
1236
+ "Index.to_frame": "Index.to_frame(index=True,name=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.to_frame.html#pandas.Index.to_frame",
1237
+ "Index.view": "Index.view(cls=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.view.html#pandas.Index.view",
1238
+ "Index.argsort": "Index.argsort(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.argsort.html#pandas.Index.argsort",
1239
+ "Index.searchsorted": "Index.searchsorted(value,side='left',sorter=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.searchsorted.html#pandas.Index.searchsorted",
1240
+ "Index.sort_values": "Index.sort_values(*,return_indexer=False,ascending=True,na_position='last',key=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.sort_values.html#pandas.Index.sort_values",
1241
+ "Index.shift": "Index.shift(periods=1,freq=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.shift.html#pandas.Index.shift",
1242
+ "Index.append": "Index.append(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.append.html#pandas.Index.append",
1243
+ "finalIndex.join": "finalIndex.join(other,*,how='left',level=None,return_indexers=False,sort=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.join.html#pandas.Index.join",
1244
+ "finalIndex.intersection": "finalIndex.intersection(other,sort=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.intersection.html#pandas.Index.intersection",
1245
+ "finalIndex.union": "finalIndex.union(other,sort=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.union.html#pandas.Index.union",
1246
+ "finalIndex.difference": "finalIndex.difference(other,sort=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.difference.html#pandas.Index.difference",
1247
+ "Index.symmetric_difference": "Index.symmetric_difference(other,result_name=None,sort=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.symmetric_difference.html#pandas.Index.symmetric_difference",
1248
+ "finalIndex.asof": "finalIndex.asof(label)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.asof.html#pandas.Index.asof",
1249
+ "Index.asof_locs": "Index.asof_locs(where,mask)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.asof_locs.html#pandas.Index.asof_locs",
1250
+ "finalIndex.get_indexer": "finalIndex.get_indexer(target,method=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.get_indexer.html#pandas.Index.get_indexer",
1251
+ "finalIndex.get_indexer_for": "finalIndex.get_indexer_for(target)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.get_indexer_for.html#pandas.Index.get_indexer_for",
1252
+ "Index.get_indexer_non_unique": "Index.get_indexer_non_unique(target)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.get_indexer_non_unique.html#pandas.Index.get_indexer_non_unique",
1253
+ "Index.get_level_values": "Index.get_level_values(level)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.get_level_values.html#pandas.Index.get_level_values",
1254
+ "Index.get_loc": "Index.get_loc(key)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.get_loc.html#pandas.Index.get_loc",
1255
+ "Index.get_slice_bound": "Index.get_slice_bound(label,side)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.get_slice_bound.html#pandas.Index.get_slice_bound",
1256
+ "Index.isin": "Index.isin(values,level=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.isin.html#pandas.Index.isin",
1257
+ "Index.slice_indexer": "Index.slice_indexer(start=None,end=None,step=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.slice_indexer.html#pandas.Index.slice_indexer",
1258
+ "Index.slice_locs": "Index.slice_locs(start=None,end=None,step=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.Index.slice_locs.html#pandas.Index.slice_locs",
1259
+ "pandas.RangeIndex": "pandas.RangeIndex(start=None,stop=None,step=None,dtype=None,copy=False,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.RangeIndex.html#pandas.RangeIndex",
1260
+ "RangeIndex.start": "RangeIndex.start\nhttps://pandas.pydata.org/docs/reference/api/pandas.RangeIndex.start.html#pandas.RangeIndex.start",
1261
+ "RangeIndex.stop": "RangeIndex.stop\nhttps://pandas.pydata.org/docs/reference/api/pandas.RangeIndex.stop.html#pandas.RangeIndex.stop",
1262
+ "RangeIndex.step": "RangeIndex.step\nhttps://pandas.pydata.org/docs/reference/api/pandas.RangeIndex.step.html#pandas.RangeIndex.step",
1263
+ "methodRangeIndex.from_range": "methodRangeIndex.from_range(data,name=None,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.RangeIndex.from_range.html#pandas.RangeIndex.from_range",
1264
+ "pandas.CategoricalIndex": "pandas.CategoricalIndex(data=None,categories=None,ordered=None,dtype=None,copy=False,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.html#pandas.CategoricalIndex",
1265
+ "CategoricalIndex.codes": "CategoricalIndex.codes\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.codes.html#pandas.CategoricalIndex.codes",
1266
+ "CategoricalIndex.categories": "CategoricalIndex.categories\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.categories.html#pandas.CategoricalIndex.categories",
1267
+ "CategoricalIndex.ordered": "CategoricalIndex.ordered\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.ordered.html#pandas.CategoricalIndex.ordered",
1268
+ "CategoricalIndex.rename_categories": "CategoricalIndex.rename_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.rename_categories.html#pandas.CategoricalIndex.rename_categories",
1269
+ "CategoricalIndex.reorder_categories": "CategoricalIndex.reorder_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.reorder_categories.html#pandas.CategoricalIndex.reorder_categories",
1270
+ "CategoricalIndex.add_categories": "CategoricalIndex.add_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.add_categories.html#pandas.CategoricalIndex.add_categories",
1271
+ "CategoricalIndex.remove_categories": "CategoricalIndex.remove_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.remove_categories.html#pandas.CategoricalIndex.remove_categories",
1272
+ "CategoricalIndex.remove_unused_categories": "CategoricalIndex.remove_unused_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.remove_unused_categories.html#pandas.CategoricalIndex.remove_unused_categories",
1273
+ "CategoricalIndex.set_categories": "CategoricalIndex.set_categories(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.set_categories.html#pandas.CategoricalIndex.set_categories",
1274
+ "CategoricalIndex.as_ordered": "CategoricalIndex.as_ordered(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.as_ordered.html#pandas.CategoricalIndex.as_ordered",
1275
+ "CategoricalIndex.as_unordered": "CategoricalIndex.as_unordered(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.as_unordered.html#pandas.CategoricalIndex.as_unordered",
1276
+ "CategoricalIndex.map": "CategoricalIndex.map(mapper,na_action=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.map.html#pandas.CategoricalIndex.map",
1277
+ "CategoricalIndex.equals": "CategoricalIndex.equals(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.CategoricalIndex.equals.html#pandas.CategoricalIndex.equals",
1278
+ "pandas.IntervalIndex": "pandas.IntervalIndex(data,closed=None,dtype=None,copy=False,name=None,verify_integrity=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.html#pandas.IntervalIndex",
1279
+ "methodIntervalIndex.from_arrays": "methodIntervalIndex.from_arrays(left,right,closed='right',name=None,copy=False,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.from_arrays.html#pandas.IntervalIndex.from_arrays",
1280
+ "methodIntervalIndex.from_tuples": "methodIntervalIndex.from_tuples(data,closed='right',name=None,copy=False,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.from_tuples.html#pandas.IntervalIndex.from_tuples",
1281
+ "methodIntervalIndex.from_breaks": "methodIntervalIndex.from_breaks(breaks,closed='right',name=None,copy=False,dtype=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.from_breaks.html#pandas.IntervalIndex.from_breaks",
1282
+ "IntervalIndex.left": "IntervalIndex.left\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.left.html#pandas.IntervalIndex.left",
1283
+ "IntervalIndex.right": "IntervalIndex.right\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.right.html#pandas.IntervalIndex.right",
1284
+ "IntervalIndex.mid": "IntervalIndex.mid\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.mid.html#pandas.IntervalIndex.mid",
1285
+ "IntervalIndex.closed": "IntervalIndex.closed\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.closed.html#pandas.IntervalIndex.closed",
1286
+ "IntervalIndex.length": "IntervalIndex.length\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.length.html#pandas.IntervalIndex.length",
1287
+ "IntervalIndex.values": "IntervalIndex.values\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.values.html#pandas.IntervalIndex.values",
1288
+ "IntervalIndex.is_empty": "IntervalIndex.is_empty\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.is_empty.html#pandas.IntervalIndex.is_empty",
1289
+ "IntervalIndex.is_non_overlapping_monotonic": "IntervalIndex.is_non_overlapping_monotonic\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.is_non_overlapping_monotonic.html#pandas.IntervalIndex.is_non_overlapping_monotonic",
1290
+ "IntervalIndex.is_overlapping": "IntervalIndex.is_overlapping\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.is_overlapping.html#pandas.IntervalIndex.is_overlapping",
1291
+ "IntervalIndex.get_loc": "IntervalIndex.get_loc(key)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.get_loc.html#pandas.IntervalIndex.get_loc",
1292
+ "IntervalIndex.get_indexer": "IntervalIndex.get_indexer(target,method=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.get_indexer.html#pandas.IntervalIndex.get_indexer",
1293
+ "IntervalIndex.set_closed": "IntervalIndex.set_closed(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.set_closed.html#pandas.IntervalIndex.set_closed",
1294
+ "IntervalIndex.contains": "IntervalIndex.contains(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.contains.html#pandas.IntervalIndex.contains",
1295
+ "IntervalIndex.overlaps": "IntervalIndex.overlaps(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.overlaps.html#pandas.IntervalIndex.overlaps",
1296
+ "IntervalIndex.to_tuples": "IntervalIndex.to_tuples(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.to_tuples.html#pandas.IntervalIndex.to_tuples",
1297
+ "methodMultiIndex.from_arrays": "methodMultiIndex.from_arrays(arrays,sortorder=None,names=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.from_arrays.html#pandas.MultiIndex.from_arrays",
1298
+ "methodMultiIndex.from_tuples": "methodMultiIndex.from_tuples(tuples,sortorder=None,names=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.from_tuples.html#pandas.MultiIndex.from_tuples",
1299
+ "methodMultiIndex.from_product": "methodMultiIndex.from_product(iterables,sortorder=None,names=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.from_product.html#pandas.MultiIndex.from_product",
1300
+ "methodMultiIndex.from_frame": "methodMultiIndex.from_frame(df,sortorder=None,names=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.from_frame.html#pandas.MultiIndex.from_frame",
1301
+ "MultiIndex.names": "MultiIndex.names\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.names.html#pandas.MultiIndex.names",
1302
+ "MultiIndex.levels": "MultiIndex.levels\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.levels.html#pandas.MultiIndex.levels",
1303
+ "MultiIndex.codes": "MultiIndex.codes\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.codes.html#pandas.MultiIndex.codes",
1304
+ "MultiIndex.nlevels": "MultiIndex.nlevels\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.nlevels.html#pandas.MultiIndex.nlevels",
1305
+ "MultiIndex.levshape": "MultiIndex.levshape\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.levshape.html#pandas.MultiIndex.levshape",
1306
+ "MultiIndex.dtypes": "MultiIndex.dtypes\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.dtypes.html#pandas.MultiIndex.dtypes",
1307
+ "MultiIndex.set_levels": "MultiIndex.set_levels(levels,*,level=None,verify_integrity=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.set_levels.html#pandas.MultiIndex.set_levels",
1308
+ "MultiIndex.set_codes": "MultiIndex.set_codes(codes,*,level=None,verify_integrity=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.set_codes.html#pandas.MultiIndex.set_codes",
1309
+ "MultiIndex.to_flat_index": "MultiIndex.to_flat_index()\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.to_flat_index.html#pandas.MultiIndex.to_flat_index",
1310
+ "MultiIndex.to_frame": "MultiIndex.to_frame(index=True,name=<no_default>,allow_duplicates=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.to_frame.html#pandas.MultiIndex.to_frame",
1311
+ "MultiIndex.sortlevel": "MultiIndex.sortlevel(level=0,ascending=True,sort_remaining=True,na_position='first')\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.sortlevel.html#pandas.MultiIndex.sortlevel",
1312
+ "MultiIndex.droplevel": "MultiIndex.droplevel(level=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.droplevel.html#pandas.MultiIndex.droplevel",
1313
+ "MultiIndex.swaplevel": "MultiIndex.swaplevel(i=-2,j=-1)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.swaplevel.html#pandas.MultiIndex.swaplevel",
1314
+ "MultiIndex.reorder_levels": "MultiIndex.reorder_levels(order)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.reorder_levels.html#pandas.MultiIndex.reorder_levels",
1315
+ "MultiIndex.remove_unused_levels": "MultiIndex.remove_unused_levels()\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.remove_unused_levels.html#pandas.MultiIndex.remove_unused_levels",
1316
+ "MultiIndex.drop": "MultiIndex.drop(codes,level=None,errors='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.drop.html#pandas.MultiIndex.drop",
1317
+ "MultiIndex.copy": "MultiIndex.copy(names=None,deep=False,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.copy.html#pandas.MultiIndex.copy",
1318
+ "MultiIndex.append": "MultiIndex.append(other)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.append.html#pandas.MultiIndex.append",
1319
+ "MultiIndex.truncate": "MultiIndex.truncate(before=None,after=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.truncate.html#pandas.MultiIndex.truncate",
1320
+ "MultiIndex.get_loc": "MultiIndex.get_loc(key)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.get_loc.html#pandas.MultiIndex.get_loc",
1321
+ "MultiIndex.get_locs": "MultiIndex.get_locs(seq)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.get_locs.html#pandas.MultiIndex.get_locs",
1322
+ "MultiIndex.get_loc_level": "MultiIndex.get_loc_level(key,level=0,drop_level=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.get_loc_level.html#pandas.MultiIndex.get_loc_level",
1323
+ "MultiIndex.get_indexer": "MultiIndex.get_indexer(target,method=None,limit=None,tolerance=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.get_indexer.html#pandas.MultiIndex.get_indexer",
1324
+ "MultiIndex.get_level_values": "MultiIndex.get_level_values(level)\nhttps://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.get_level_values.html#pandas.MultiIndex.get_level_values",
1325
+ "pd.IndexSlice=<pd.core.indexing._IndexSliceobject>": "pd.IndexSlice=<pd.core.indexing._IndexSliceobject>\nhttps://pandas.pydata.org/docs/reference/api/pandas.IndexSlice.html#pandas.IndexSlice",
1326
+ "pandas.DatetimeIndex": "pandas.DatetimeIndex(data=None,freq=<no_default>,tz=<no_default>,normalize=<no_default>,closed=<no_default>,ambiguous='raise',dayfirst=False,yearfirst=False,dtype=None,copy=False,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.html#pandas.DatetimeIndex",
1327
+ "DatetimeIndex.year": "DatetimeIndex.year\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.year.html#pandas.DatetimeIndex.year",
1328
+ "DatetimeIndex.month": "DatetimeIndex.month\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.month.html#pandas.DatetimeIndex.month",
1329
+ "DatetimeIndex.day": "DatetimeIndex.day\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.day.html#pandas.DatetimeIndex.day",
1330
+ "DatetimeIndex.hour": "DatetimeIndex.hour\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.hour.html#pandas.DatetimeIndex.hour",
1331
+ "DatetimeIndex.minute": "DatetimeIndex.minute\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.minute.html#pandas.DatetimeIndex.minute",
1332
+ "DatetimeIndex.second": "DatetimeIndex.second\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.second.html#pandas.DatetimeIndex.second",
1333
+ "DatetimeIndex.microsecond": "DatetimeIndex.microsecond\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.microsecond.html#pandas.DatetimeIndex.microsecond",
1334
+ "DatetimeIndex.nanosecond": "DatetimeIndex.nanosecond\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.nanosecond.html#pandas.DatetimeIndex.nanosecond",
1335
+ "DatetimeIndex.date": "DatetimeIndex.date\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.date.html#pandas.DatetimeIndex.date",
1336
+ "DatetimeIndex.time": "DatetimeIndex.time\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.time.html#pandas.DatetimeIndex.time",
1337
+ "DatetimeIndex.timetz": "DatetimeIndex.timetz\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.timetz.html#pandas.DatetimeIndex.timetz",
1338
+ "DatetimeIndex.dayofyear": "DatetimeIndex.dayofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.dayofyear.html#pandas.DatetimeIndex.dayofyear",
1339
+ "DatetimeIndex.day_of_year": "DatetimeIndex.day_of_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.day_of_year.html#pandas.DatetimeIndex.day_of_year",
1340
+ "DatetimeIndex.dayofweek": "DatetimeIndex.dayofweek\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.dayofweek.html#pandas.DatetimeIndex.dayofweek",
1341
+ "DatetimeIndex.day_of_week": "DatetimeIndex.day_of_week\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.day_of_week.html#pandas.DatetimeIndex.day_of_week",
1342
+ "DatetimeIndex.weekday": "DatetimeIndex.weekday\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.weekday.html#pandas.DatetimeIndex.weekday",
1343
+ "DatetimeIndex.quarter": "DatetimeIndex.quarter\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.quarter.html#pandas.DatetimeIndex.quarter",
1344
+ "DatetimeIndex.tz": "DatetimeIndex.tz\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.tz.html#pandas.DatetimeIndex.tz",
1345
+ "DatetimeIndex.freq": "DatetimeIndex.freq\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.freq.html#pandas.DatetimeIndex.freq",
1346
+ "DatetimeIndex.freqstr": "DatetimeIndex.freqstr\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.freqstr.html#pandas.DatetimeIndex.freqstr",
1347
+ "DatetimeIndex.is_month_start": "DatetimeIndex.is_month_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_month_start.html#pandas.DatetimeIndex.is_month_start",
1348
+ "DatetimeIndex.is_month_end": "DatetimeIndex.is_month_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_month_end.html#pandas.DatetimeIndex.is_month_end",
1349
+ "DatetimeIndex.is_quarter_start": "DatetimeIndex.is_quarter_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_quarter_start.html#pandas.DatetimeIndex.is_quarter_start",
1350
+ "DatetimeIndex.is_quarter_end": "DatetimeIndex.is_quarter_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_quarter_end.html#pandas.DatetimeIndex.is_quarter_end",
1351
+ "DatetimeIndex.is_year_start": "DatetimeIndex.is_year_start\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_year_start.html#pandas.DatetimeIndex.is_year_start",
1352
+ "DatetimeIndex.is_year_end": "DatetimeIndex.is_year_end\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_year_end.html#pandas.DatetimeIndex.is_year_end",
1353
+ "DatetimeIndex.is_leap_year": "DatetimeIndex.is_leap_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.is_leap_year.html#pandas.DatetimeIndex.is_leap_year",
1354
+ "DatetimeIndex.inferred_freq": "DatetimeIndex.inferred_freq\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.inferred_freq.html#pandas.DatetimeIndex.inferred_freq",
1355
+ "DatetimeIndex.indexer_at_time": "DatetimeIndex.indexer_at_time(time,asof=False)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.indexer_at_time.html#pandas.DatetimeIndex.indexer_at_time",
1356
+ "DatetimeIndex.indexer_between_time": "DatetimeIndex.indexer_between_time(start_time,end_time,include_start=True,include_end=True)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.indexer_between_time.html#pandas.DatetimeIndex.indexer_between_time",
1357
+ "DatetimeIndex.normalize": "DatetimeIndex.normalize(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.normalize.html#pandas.DatetimeIndex.normalize",
1358
+ "DatetimeIndex.strftime": "DatetimeIndex.strftime(date_format)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.strftime.html#pandas.DatetimeIndex.strftime",
1359
+ "DatetimeIndex.snap": "DatetimeIndex.snap(freq='S')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.snap.html#pandas.DatetimeIndex.snap",
1360
+ "DatetimeIndex.tz_convert": "DatetimeIndex.tz_convert(tz)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.tz_convert.html#pandas.DatetimeIndex.tz_convert",
1361
+ "DatetimeIndex.tz_localize": "DatetimeIndex.tz_localize(tz,ambiguous='raise',nonexistent='raise')\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.tz_localize.html#pandas.DatetimeIndex.tz_localize",
1362
+ "DatetimeIndex.round": "DatetimeIndex.round(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.round.html#pandas.DatetimeIndex.round",
1363
+ "DatetimeIndex.floor": "DatetimeIndex.floor(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.floor.html#pandas.DatetimeIndex.floor",
1364
+ "DatetimeIndex.ceil": "DatetimeIndex.ceil(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.ceil.html#pandas.DatetimeIndex.ceil",
1365
+ "DatetimeIndex.month_name": "DatetimeIndex.month_name(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.month_name.html#pandas.DatetimeIndex.month_name",
1366
+ "DatetimeIndex.day_name": "DatetimeIndex.day_name(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.day_name.html#pandas.DatetimeIndex.day_name",
1367
+ "DatetimeIndex.as_unit": "DatetimeIndex.as_unit(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.as_unit.html#pandas.DatetimeIndex.as_unit",
1368
+ "DatetimeIndex.to_period": "DatetimeIndex.to_period(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.to_period.html#pandas.DatetimeIndex.to_period",
1369
+ "DatetimeIndex.to_pydatetime": "DatetimeIndex.to_pydatetime(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.to_pydatetime.html#pandas.DatetimeIndex.to_pydatetime",
1370
+ "DatetimeIndex.to_series": "DatetimeIndex.to_series(index=None,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.to_series.html#pandas.DatetimeIndex.to_series",
1371
+ "DatetimeIndex.to_frame": "DatetimeIndex.to_frame(index=True,name=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.to_frame.html#pandas.DatetimeIndex.to_frame",
1372
+ "DatetimeIndex.mean": "DatetimeIndex.mean(*,skipna=True,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.mean.html#pandas.DatetimeIndex.mean",
1373
+ "DatetimeIndex.std": "DatetimeIndex.std(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.std.html#pandas.DatetimeIndex.std",
1374
+ "pandas.TimedeltaIndex": "pandas.TimedeltaIndex(data=None,unit=<no_default>,freq=<no_default>,closed=<no_default>,dtype=None,copy=False,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.html#pandas.TimedeltaIndex",
1375
+ "TimedeltaIndex.days": "TimedeltaIndex.days\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.days.html#pandas.TimedeltaIndex.days",
1376
+ "TimedeltaIndex.seconds": "TimedeltaIndex.seconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.seconds.html#pandas.TimedeltaIndex.seconds",
1377
+ "TimedeltaIndex.microseconds": "TimedeltaIndex.microseconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.microseconds.html#pandas.TimedeltaIndex.microseconds",
1378
+ "TimedeltaIndex.nanoseconds": "TimedeltaIndex.nanoseconds\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.nanoseconds.html#pandas.TimedeltaIndex.nanoseconds",
1379
+ "TimedeltaIndex.components": "TimedeltaIndex.components\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.components.html#pandas.TimedeltaIndex.components",
1380
+ "TimedeltaIndex.inferred_freq": "TimedeltaIndex.inferred_freq\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.inferred_freq.html#pandas.TimedeltaIndex.inferred_freq",
1381
+ "TimedeltaIndex.as_unit": "TimedeltaIndex.as_unit(unit)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.as_unit.html#pandas.TimedeltaIndex.as_unit",
1382
+ "TimedeltaIndex.to_pytimedelta": "TimedeltaIndex.to_pytimedelta(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.to_pytimedelta.html#pandas.TimedeltaIndex.to_pytimedelta",
1383
+ "TimedeltaIndex.to_series": "TimedeltaIndex.to_series(index=None,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.to_series.html#pandas.TimedeltaIndex.to_series",
1384
+ "TimedeltaIndex.round": "TimedeltaIndex.round(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.round.html#pandas.TimedeltaIndex.round",
1385
+ "TimedeltaIndex.floor": "TimedeltaIndex.floor(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.floor.html#pandas.TimedeltaIndex.floor",
1386
+ "TimedeltaIndex.ceil": "TimedeltaIndex.ceil(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.ceil.html#pandas.TimedeltaIndex.ceil",
1387
+ "TimedeltaIndex.to_frame": "TimedeltaIndex.to_frame(index=True,name=<no_default>)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.to_frame.html#pandas.TimedeltaIndex.to_frame",
1388
+ "TimedeltaIndex.mean": "TimedeltaIndex.mean(*,skipna=True,axis=0)\nhttps://pandas.pydata.org/docs/reference/api/pandas.TimedeltaIndex.mean.html#pandas.TimedeltaIndex.mean",
1389
+ "pandas.PeriodIndex": "pandas.PeriodIndex(data=None,ordinal=None,freq=None,dtype=None,copy=False,name=None,**fields)\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.html#pandas.PeriodIndex",
1390
+ "PeriodIndex.day": "PeriodIndex.day\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.day.html#pandas.PeriodIndex.day",
1391
+ "PeriodIndex.dayofweek": "PeriodIndex.dayofweek\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.dayofweek.html#pandas.PeriodIndex.dayofweek",
1392
+ "PeriodIndex.day_of_week": "PeriodIndex.day_of_week\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.day_of_week.html#pandas.PeriodIndex.day_of_week",
1393
+ "PeriodIndex.dayofyear": "PeriodIndex.dayofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.dayofyear.html#pandas.PeriodIndex.dayofyear",
1394
+ "PeriodIndex.day_of_year": "PeriodIndex.day_of_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.day_of_year.html#pandas.PeriodIndex.day_of_year",
1395
+ "PeriodIndex.days_in_month": "PeriodIndex.days_in_month\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.days_in_month.html#pandas.PeriodIndex.days_in_month",
1396
+ "PeriodIndex.daysinmonth": "PeriodIndex.daysinmonth\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.daysinmonth.html#pandas.PeriodIndex.daysinmonth",
1397
+ "PeriodIndex.end_time": "PeriodIndex.end_time\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.end_time.html#pandas.PeriodIndex.end_time",
1398
+ "PeriodIndex.freq": "PeriodIndex.freq\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.freq.html#pandas.PeriodIndex.freq",
1399
+ "PeriodIndex.freqstr": "PeriodIndex.freqstr\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.freqstr.html#pandas.PeriodIndex.freqstr",
1400
+ "PeriodIndex.hour": "PeriodIndex.hour\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.hour.html#pandas.PeriodIndex.hour",
1401
+ "PeriodIndex.is_leap_year": "PeriodIndex.is_leap_year\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.is_leap_year.html#pandas.PeriodIndex.is_leap_year",
1402
+ "PeriodIndex.minute": "PeriodIndex.minute\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.minute.html#pandas.PeriodIndex.minute",
1403
+ "PeriodIndex.month": "PeriodIndex.month\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.month.html#pandas.PeriodIndex.month",
1404
+ "PeriodIndex.quarter": "PeriodIndex.quarter\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.quarter.html#pandas.PeriodIndex.quarter",
1405
+ "PeriodIndex.qyear": "PeriodIndex.qyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.qyear.html#pandas.PeriodIndex.qyear",
1406
+ "PeriodIndex.second": "PeriodIndex.second\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.second.html#pandas.PeriodIndex.second",
1407
+ "PeriodIndex.start_time": "PeriodIndex.start_time\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.start_time.html#pandas.PeriodIndex.start_time",
1408
+ "PeriodIndex.week": "PeriodIndex.week\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.week.html#pandas.PeriodIndex.week",
1409
+ "PeriodIndex.weekday": "PeriodIndex.weekday\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.weekday.html#pandas.PeriodIndex.weekday",
1410
+ "PeriodIndex.weekofyear": "PeriodIndex.weekofyear\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.weekofyear.html#pandas.PeriodIndex.weekofyear",
1411
+ "PeriodIndex.year": "PeriodIndex.year\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.year.html#pandas.PeriodIndex.year",
1412
+ "PeriodIndex.asfreq": "PeriodIndex.asfreq(freq=None,how='E')\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.asfreq.html#pandas.PeriodIndex.asfreq",
1413
+ "PeriodIndex.strftime": "PeriodIndex.strftime(*args,**kwargs)\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.strftime.html#pandas.PeriodIndex.strftime",
1414
+ "PeriodIndex.to_timestamp": "PeriodIndex.to_timestamp(freq=None,how='start')\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.to_timestamp.html#pandas.PeriodIndex.to_timestamp",
1415
+ "methodPeriodIndex.from_fields": "methodPeriodIndex.from_fields(*,year=None,quarter=None,month=None,day=None,hour=None,minute=None,second=None,freq=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.from_fields.html#pandas.PeriodIndex.from_fields",
1416
+ "methodPeriodIndex.from_ordinals": "methodPeriodIndex.from_ordinals(ordinals,*,freq,name=None)\nhttps://pandas.pydata.org/docs/reference/api/pandas.PeriodIndex.from_ordinals.html#pandas.PeriodIndex.from_ordinals"
56
1417
  }