py2ls 0.2.4.17__py3-none-any.whl → 0.2.4.19__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
py2ls/ml2ls.py CHANGED
@@ -702,7 +702,7 @@ def get_features(
702
702
  "AdaBoost",
703
703
  ]
704
704
  cls = [ips.strcmp(i, cls_)[0] for i in cls]
705
-
705
+
706
706
  feature_importances = {}
707
707
 
708
708
  # Lasso Feature Selection
@@ -714,7 +714,7 @@ def get_features(
714
714
  lasso_selected_features = (
715
715
  lasso_importances.head(n_features)["feature"].values if "lasso" in cls else []
716
716
  )
717
- feature_importances['lasso']=lasso_importances.head(n_features)
717
+ feature_importances["lasso"] = lasso_importances.head(n_features)
718
718
  # Ridge
719
719
  ridge_importances = (
720
720
  features_ridge(x_train, y_train, ridge_params)
@@ -724,7 +724,7 @@ def get_features(
724
724
  selected_ridge_features = (
725
725
  ridge_importances.head(n_features)["feature"].values if "ridge" in cls else []
726
726
  )
727
- feature_importances['ridge']=ridge_importances.head(n_features)
727
+ feature_importances["ridge"] = ridge_importances.head(n_features)
728
728
  # Elastic Net
729
729
  enet_importances = (
730
730
  features_enet(x_train, y_train, enet_params)
@@ -734,7 +734,7 @@ def get_features(
734
734
  selected_enet_features = (
735
735
  enet_importances.head(n_features)["feature"].values if "Enet" in cls else []
736
736
  )
737
- feature_importances['Enet']=enet_importances.head(n_features)
737
+ feature_importances["Enet"] = enet_importances.head(n_features)
738
738
  # Random Forest Feature Importance
739
739
  rf_importances = (
740
740
  features_rf(x_train, y_train, rf_params)
@@ -746,7 +746,7 @@ def get_features(
746
746
  if "Random Forest" in cls
747
747
  else []
748
748
  )
749
- feature_importances['Random Forest']=rf_importances.head(n_features)
749
+ feature_importances["Random Forest"] = rf_importances.head(n_features)
750
750
  # Gradient Boosting Feature Importance
751
751
  gb_importances = (
752
752
  features_gradient_boosting(x_train, y_train, gb_params)
@@ -758,7 +758,7 @@ def get_features(
758
758
  if "Gradient Boosting" in cls
759
759
  else []
760
760
  )
761
- feature_importances['Gradient Boosting']=gb_importances.head(n_features)
761
+ feature_importances["Gradient Boosting"] = gb_importances.head(n_features)
762
762
  # xgb
763
763
  xgb_importances = (
764
764
  features_xgb(x_train, y_train, xgb_params) if "xgb" in cls else pd.DataFrame()
@@ -766,7 +766,7 @@ def get_features(
766
766
  top_xgb_features = (
767
767
  xgb_importances.head(n_features)["feature"].values if "xgb" in cls else []
768
768
  )
769
- feature_importances['xgb']=xgb_importances.head(n_features)
769
+ feature_importances["xgb"] = xgb_importances.head(n_features)
770
770
 
771
771
  # SVM with RFE
772
772
  selected_svm_features = (
@@ -781,7 +781,7 @@ def get_features(
781
781
  selected_lda_features = (
782
782
  lda_importances.head(n_features)["feature"].values if "lda" in cls else []
783
783
  )
784
- feature_importances['lda']=lda_importances.head(n_features)
784
+ feature_importances["lda"] = lda_importances.head(n_features)
785
785
  # AdaBoost Feature Importance
786
786
  adaboost_importances = (
787
787
  features_adaboost(x_train, y_train, adaboost_params)
@@ -793,7 +793,7 @@ def get_features(
793
793
  if "AdaBoost" in cls
794
794
  else []
795
795
  )
796
- feature_importances['AdaBoost']=adaboost_importances.head(n_features)
796
+ feature_importances["AdaBoost"] = adaboost_importances.head(n_features)
797
797
  # Decision Tree Feature Importance
798
798
  dt_importances = (
799
799
  features_decision_tree(x_train, y_train, dt_params)
@@ -804,8 +804,8 @@ def get_features(
804
804
  dt_importances.head(n_features)["feature"].values
805
805
  if "Decision Tree" in cls
806
806
  else []
807
- )
808
- feature_importances['Decision Tree']=dt_importances.head(n_features)
807
+ )
808
+ feature_importances["Decision Tree"] = dt_importances.head(n_features)
809
809
  # Bagging Feature Importance
810
810
  bagging_importances = (
811
811
  features_bagging(x_train, y_train, bagging_params)
@@ -817,7 +817,7 @@ def get_features(
817
817
  if "Bagging" in cls
818
818
  else []
819
819
  )
820
- feature_importances['Bagging']=bagging_importances.head(n_features)
820
+ feature_importances["Bagging"] = bagging_importances.head(n_features)
821
821
  # KNN Feature Importance via Permutation
822
822
  knn_importances = (
823
823
  features_knn(x_train, y_train, knn_params) if "KNN" in cls else pd.DataFrame()
@@ -825,7 +825,7 @@ def get_features(
825
825
  top_knn_features = (
826
826
  knn_importances.head(n_features)["feature"].values if "KNN" in cls else []
827
827
  )
828
- feature_importances['KNN']=knn_importances.head(n_features)
828
+ feature_importances["KNN"] = knn_importances.head(n_features)
829
829
 
830
830
  #! Find common features
831
831
  common_features = ips.shared(
@@ -928,7 +928,7 @@ def get_features(
928
928
  "cv_train_scores": cv_train_results_df,
929
929
  "cv_test_scores": rank_models(cv_test_results_df, plot_=plot_),
930
930
  "common_features": list(common_features),
931
- "feature_importances":feature_importances
931
+ "feature_importances": feature_importances,
932
932
  }
933
933
  if all([plot_, dir_save]):
934
934
  from datetime import datetime
@@ -941,7 +941,7 @@ def get_features(
941
941
  "cv_train_scores": pd.DataFrame(),
942
942
  "cv_test_scores": pd.DataFrame(),
943
943
  "common_features": [],
944
- "feature_importances":{}
944
+ "feature_importances": {},
945
945
  }
946
946
  print(f"Warning: 没有找到共同的genes, when n_shared={n_shared}")
947
947
  return results
@@ -1232,7 +1232,7 @@ def validate_features(
1232
1232
 
1233
1233
  # # If you want to access validation scores
1234
1234
  # print(validation_results)
1235
- def plot_validate_features(res_val,is_binary=True,figsize=None):
1235
+ def plot_validate_features(res_val, is_binary=True, figsize=None):
1236
1236
  """
1237
1237
  plot the results of 'validate_features()'
1238
1238
  """
@@ -1295,26 +1295,28 @@ def plot_validate_features(res_val,is_binary=True,figsize=None):
1295
1295
  )
1296
1296
  plot.figsets(
1297
1297
  sp=2,
1298
- legend=dict(loc="upper right", ncols=1, fontsize=8, bbox_to_anchor=[1.5, 0.5]),
1298
+ legend=dict(
1299
+ loc="upper right", ncols=1, fontsize=8, bbox_to_anchor=[1.5, 0.5]
1300
+ ),
1299
1301
  )
1300
1302
  # plot.split_legend(ax,n=2, loc=["upper left", "lower left"],bbox=[[1,0.5],[1,0.5]],ncols=2,labelcolor="k",fontsize=8)
1301
1303
  else:
1302
1304
  colors = plot.get_color(len(ips.flatten(res_val["pr_curve"].index)))
1303
- modname_tmp=ips.flatten(res_val["roc_curve"].index)[0]
1304
- classes=list(res_val["roc_curve"][modname_tmp]['fpr'].keys())
1305
+ modname_tmp = ips.flatten(res_val["roc_curve"].index)[0]
1306
+ classes = list(res_val["roc_curve"][modname_tmp]["fpr"].keys())
1305
1307
  if res_val.shape[0] > 5:
1306
1308
  alpha = 0
1307
- figsize = [8, 8*2*(len(classes))] if figsize is None else figsize
1309
+ figsize = [8, 8 * 2 * (len(classes))] if figsize is None else figsize
1308
1310
  subplot_layout = [1, 2]
1309
1311
  ncols = 2
1310
1312
  bbox_to_anchor = [1.5, 0.6]
1311
1313
  else:
1312
1314
  alpha = 0.03
1313
- figsize = [10, 6*(len(classes))] if figsize is None else figsize
1315
+ figsize = [10, 6 * (len(classes))] if figsize is None else figsize
1314
1316
  subplot_layout = [1, 1]
1315
1317
  ncols = 1
1316
1318
  bbox_to_anchor = [1, 1]
1317
- nexttile = plot.subplot(2*(len(classes)),2,figsize=figsize)
1319
+ nexttile = plot.subplot(2 * (len(classes)), 2, figsize=figsize)
1318
1320
  for iclass, class_ in enumerate(classes):
1319
1321
  ax = nexttile(subplot_layout[0], subplot_layout[1])
1320
1322
  for i, model_name in enumerate(ips.flatten(res_val["pr_curve"].index)):
@@ -1352,7 +1354,9 @@ def plot_validate_features(res_val,is_binary=True,figsize=None):
1352
1354
  plot_pr_curve(
1353
1355
  recall=res_val["pr_curve"][model_name]["recall"][iclass],
1354
1356
  precision=res_val["pr_curve"][model_name]["precision"][iclass],
1355
- avg_precision=res_val["pr_curve"][model_name]["avg_precision"][iclass],
1357
+ avg_precision=res_val["pr_curve"][model_name]["avg_precision"][
1358
+ iclass
1359
+ ],
1356
1360
  model_name=model_name,
1357
1361
  color=colors[i],
1358
1362
  lw=1.5,
@@ -1362,13 +1366,20 @@ def plot_validate_features(res_val,is_binary=True,figsize=None):
1362
1366
  plot.figsets(
1363
1367
  sp=2,
1364
1368
  title=class_,
1365
- legend=dict(loc="upper right", ncols=1, fontsize=8, bbox_to_anchor=[1.5, 0.5]),
1369
+ legend=dict(
1370
+ loc="upper right", ncols=1, fontsize=8, bbox_to_anchor=[1.5, 0.5]
1371
+ ),
1366
1372
  )
1367
1373
 
1368
- def plot_validate_features_single(res_val, figsize=None,is_binary=True):
1374
+
1375
+ def plot_validate_features_single(res_val, figsize=None, is_binary=True):
1369
1376
  if is_binary:
1370
1377
  if figsize is None:
1371
- nexttile = plot.subplot(len(ips.flatten(res_val["pr_curve"].index)), 3,figsize=[13,4*len(ips.flatten(res_val["pr_curve"].index))])
1378
+ nexttile = plot.subplot(
1379
+ len(ips.flatten(res_val["pr_curve"].index)),
1380
+ 3,
1381
+ figsize=[13, 4 * len(ips.flatten(res_val["pr_curve"].index))],
1382
+ )
1372
1383
  else:
1373
1384
  nexttile = plot.subplot(
1374
1385
  len(ips.flatten(res_val["pr_curve"].index)), 3, figsize=figsize
@@ -1380,8 +1391,15 @@ def plot_validate_features_single(res_val, figsize=None,is_binary=True):
1380
1391
  mean_auc = res_val["roc_curve"][model_name]["auc"]
1381
1392
 
1382
1393
  # Plotting
1383
- plot_roc_curve(fpr, tpr, mean_auc, lower_ci, upper_ci,
1384
- model_name=model_name, ax=nexttile())
1394
+ plot_roc_curve(
1395
+ fpr,
1396
+ tpr,
1397
+ mean_auc,
1398
+ lower_ci,
1399
+ upper_ci,
1400
+ model_name=model_name,
1401
+ ax=nexttile(),
1402
+ )
1385
1403
  plot.figsets(title=model_name, sp=2)
1386
1404
 
1387
1405
  plot_pr_binary(
@@ -1394,14 +1412,18 @@ def plot_validate_features_single(res_val, figsize=None,is_binary=True):
1394
1412
  plot.figsets(title=model_name, sp=2)
1395
1413
 
1396
1414
  # plot cm
1397
- plot_cm(res_val["confusion_matrix"][model_name], ax=nexttile(), normalize=False)
1415
+ plot_cm(
1416
+ res_val["confusion_matrix"][model_name], ax=nexttile(), normalize=False
1417
+ )
1398
1418
  plot.figsets(title=model_name, sp=2)
1399
1419
  else:
1400
-
1401
- modname_tmp=ips.flatten(res_val["roc_curve"].index)[0]
1402
- classes=list(res_val["roc_curve"][modname_tmp]['fpr'].keys())
1420
+
1421
+ modname_tmp = ips.flatten(res_val["roc_curve"].index)[0]
1422
+ classes = list(res_val["roc_curve"][modname_tmp]["fpr"].keys())
1403
1423
  if figsize is None:
1404
- nexttile = plot.subplot(len(modname_tmp), 3,figsize=[15,len(modname_tmp)*5])
1424
+ nexttile = plot.subplot(
1425
+ len(modname_tmp), 3, figsize=[15, len(modname_tmp) * 5]
1426
+ )
1405
1427
  else:
1406
1428
  nexttile = plot.subplot(len(modname_tmp), 3, figsize=figsize)
1407
1429
  colors = plot.get_color(len(classes))
@@ -1429,16 +1451,18 @@ def plot_validate_features_single(res_val, figsize=None,is_binary=True):
1429
1451
  title=model_name,
1430
1452
  legend=dict(
1431
1453
  loc="best",
1432
- fontsize=8,
1454
+ fontsize=8,
1433
1455
  ),
1434
- )
1456
+ )
1435
1457
 
1436
1458
  ax = nexttile()
1437
1459
  for iclass, class_ in enumerate(classes):
1438
1460
  plot_pr_curve(
1439
1461
  recall=res_val["pr_curve"][model_name]["recall"][iclass],
1440
1462
  precision=res_val["pr_curve"][model_name]["precision"][iclass],
1441
- avg_precision=res_val["pr_curve"][model_name]["avg_precision"][iclass],
1463
+ avg_precision=res_val["pr_curve"][model_name]["avg_precision"][
1464
+ iclass
1465
+ ],
1442
1466
  model_name=class_,
1443
1467
  color=colors[iclass],
1444
1468
  lw=1.5,
@@ -1450,17 +1474,21 @@ def plot_validate_features_single(res_val, figsize=None,is_binary=True):
1450
1474
  title=class_,
1451
1475
  legend=dict(loc="best", fontsize=8),
1452
1476
  )
1453
-
1454
- plot_cm(res_val["confusion_matrix"][model_name],labels_name=classes, ax=nexttile(), normalize=False)
1477
+
1478
+ plot_cm(
1479
+ res_val["confusion_matrix"][model_name],
1480
+ labels_name=classes,
1481
+ ax=nexttile(),
1482
+ normalize=False,
1483
+ )
1455
1484
  plot.figsets(title=model_name, sp=2)
1456
1485
 
1457
1486
 
1458
- def cal_precision_recall(
1459
- y_true, y_pred_proba, is_binary=True):
1487
+ def cal_precision_recall(y_true, y_pred_proba, is_binary=True):
1460
1488
  if is_binary:
1461
1489
  precision_, recall_, _ = precision_recall_curve(y_true, y_pred_proba)
1462
1490
  avg_precision_ = average_precision_score(y_true, y_pred_proba)
1463
- return precision_, recall_,avg_precision_
1491
+ return precision_, recall_, avg_precision_
1464
1492
  else:
1465
1493
  n_classes = y_pred_proba.shape[1] # Number of classes
1466
1494
  precision_ = []
@@ -1469,7 +1497,9 @@ def cal_precision_recall(
1469
1497
  # One-vs-rest approach for multi-class precision-recall curve
1470
1498
  for class_idx in range(n_classes):
1471
1499
  precision, recall, _ = precision_recall_curve(
1472
- (y_true == class_idx).astype(int), # Binarize true labels for the current class
1500
+ (y_true == class_idx).astype(
1501
+ int
1502
+ ), # Binarize true labels for the current class
1473
1503
  y_pred_proba[:, class_idx], # Probabilities for the current class
1474
1504
  )
1475
1505
 
@@ -1479,14 +1509,23 @@ def cal_precision_recall(
1479
1509
  avg_precision_ = []
1480
1510
  for class_idx in range(n_classes):
1481
1511
  avg_precision = average_precision_score(
1482
- (y_true == class_idx).astype(int), # Binarize true labels for the current class
1512
+ (y_true == class_idx).astype(
1513
+ int
1514
+ ), # Binarize true labels for the current class
1483
1515
  y_pred_proba[:, class_idx], # Probabilities for the current class
1484
1516
  )
1485
1517
  avg_precision_.append(avg_precision)
1486
- return precision_, recall_,avg_precision_
1487
-
1518
+ return precision_, recall_, avg_precision_
1519
+
1520
+
1488
1521
  def cal_auc_ci(
1489
- y_true, y_pred, n_bootstraps=1000, ci=0.95, random_state=1,is_binary=True, verbose=True
1522
+ y_true,
1523
+ y_pred,
1524
+ n_bootstraps=1000,
1525
+ ci=0.95,
1526
+ random_state=1,
1527
+ is_binary=True,
1528
+ verbose=True,
1490
1529
  ):
1491
1530
  if is_binary:
1492
1531
  y_true = np.asarray(y_true)
@@ -1525,15 +1564,20 @@ def cal_auc_ci(
1525
1564
  return confidence_lower, confidence_upper
1526
1565
  else:
1527
1566
  from sklearn.preprocessing import label_binarize
1567
+
1528
1568
  # Multi-class classification case
1529
1569
  y_true = np.asarray(y_true)
1530
1570
  y_pred = np.asarray(y_pred)
1531
1571
 
1532
1572
  # Binarize the multi-class labels for OvR computation
1533
- y_true_bin = label_binarize(y_true, classes=np.unique(y_true)) # One-vs-Rest transformation
1573
+ y_true_bin = label_binarize(
1574
+ y_true, classes=np.unique(y_true)
1575
+ ) # One-vs-Rest transformation
1534
1576
  n_classes = y_true_bin.shape[1] # Number of classes
1535
-
1536
- bootstrapped_scores = np.zeros((n_classes, n_bootstraps)) # Store scores for each class
1577
+
1578
+ bootstrapped_scores = np.zeros(
1579
+ (n_classes, n_bootstraps)
1580
+ ) # Store scores for each class
1537
1581
 
1538
1582
  if verbose:
1539
1583
  print("AUROC scores for each class:")
@@ -1546,7 +1590,9 @@ def cal_auc_ci(
1546
1590
  for class_idx in range(n_classes):
1547
1591
  if len(np.unique(y_true_bin[indices, class_idx])) < 2:
1548
1592
  continue # Reject if the class doesn't have both positive and negative samples
1549
- score = roc_auc_score(y_true_bin[indices, class_idx], y_pred[indices, class_idx])
1593
+ score = roc_auc_score(
1594
+ y_true_bin[indices, class_idx], y_pred[indices, class_idx]
1595
+ )
1550
1596
  bootstrapped_scores[class_idx, i] = score
1551
1597
 
1552
1598
  # Calculating the confidence intervals for each class
@@ -1558,8 +1604,10 @@ def cal_auc_ci(
1558
1604
  confidence_intervals.append((confidence_lower, confidence_upper))
1559
1605
 
1560
1606
  if verbose:
1561
- print(f"Class {class_idx} - Confidence interval: [{confidence_lower:.3f} - {confidence_upper:.3f}]")
1562
-
1607
+ print(
1608
+ f"Class {class_idx} - Confidence interval: [{confidence_lower:.3f} - {confidence_upper:.3f}]"
1609
+ )
1610
+
1563
1611
  return confidence_intervals
1564
1612
 
1565
1613
 
@@ -1619,6 +1667,7 @@ def plot_roc_curve(
1619
1667
  # ml2ls.plot_roc_curve(fpr, tpr, mean_auc, lower_ci, upper_ci)
1620
1668
  # figsets(title=model_name)
1621
1669
 
1670
+
1622
1671
  def plot_pr_curve(
1623
1672
  recall=None,
1624
1673
  precision=None,
@@ -1661,6 +1710,7 @@ def plot_pr_curve(
1661
1710
  ax.legend(loc=legend_loc)
1662
1711
  return ax
1663
1712
 
1713
+
1664
1714
  # * usage: ml2ls.plot_pr_curve()
1665
1715
  # for md_name in flatten(validation_results["pr_curve"].keys()):
1666
1716
  # ml2ls.plot_pr_curve(
@@ -1673,6 +1723,7 @@ def plot_pr_curve(
1673
1723
  # color="r",
1674
1724
  # )
1675
1725
 
1726
+
1676
1727
  def plot_pr_binary(
1677
1728
  recall=None,
1678
1729
  precision=None,
@@ -1689,19 +1740,20 @@ def plot_pr_binary(
1689
1740
  ax=None,
1690
1741
  show_avg_precision=False,
1691
1742
  **kwargs,
1692
- ):
1743
+ ):
1693
1744
  from scipy.interpolate import interp1d
1745
+
1694
1746
  if ax is None:
1695
1747
  fig, ax = plt.subplots(figsize=figsize)
1696
1748
  model_name = "Binary PR Curve" if model_name is None else model_name
1697
1749
 
1698
- #* use sklearn bulitin function 'PrecisionRecallDisplay'?
1750
+ # * use sklearn bulitin function 'PrecisionRecallDisplay'?
1699
1751
  # from sklearn.metrics import PrecisionRecallDisplay
1700
- # disp = PrecisionRecallDisplay(precision=precision,
1701
- # recall=recall,
1752
+ # disp = PrecisionRecallDisplay(precision=precision,
1753
+ # recall=recall,
1702
1754
  # average_precision=avg_precision,**kwargs)
1703
1755
  # disp.plot(ax=ax, name=model_name, color=color)
1704
-
1756
+
1705
1757
  # Plot Precision-Recall curve
1706
1758
  ax.plot(
1707
1759
  recall,
@@ -1729,15 +1781,17 @@ def plot_pr_binary(
1729
1781
  y_vals = f_score * x_vals / (2 * x_vals - f_score)
1730
1782
  y_vals_clipped = np.minimum(y_vals, pr_boundary(x_vals))
1731
1783
  y_vals_clipped = np.clip(y_vals_clipped, 1e-3, None) # Prevent going to zero
1732
- valid = y_vals_clipped < pr_boundary(x_vals)
1733
- valid_ = y_vals_clipped > 1e-3
1734
- valid = valid&valid_
1735
- x_vals = x_vals[valid]
1784
+ valid = y_vals_clipped < pr_boundary(x_vals)
1785
+ valid_ = y_vals_clipped > 1e-3
1786
+ valid = valid & valid_
1787
+ x_vals = x_vals[valid]
1736
1788
  y_vals_clipped = y_vals_clipped[valid]
1737
1789
  if len(x_vals) > 0: # Ensure annotation is placed only if line segment exists
1738
1790
  ax.plot(x_vals, y_vals_clipped, color="gray", alpha=1)
1739
- plt.annotate(f"$f_1={f_score:0.1f}$", xy=(0.8, y_vals_clipped[-int(len(y_vals_clipped)*0.35)] + 0.02))
1740
-
1791
+ plt.annotate(
1792
+ f"$f_1={f_score:0.1f}$",
1793
+ xy=(0.8, y_vals_clipped[-int(len(y_vals_clipped) * 0.35)] + 0.02),
1794
+ )
1741
1795
 
1742
1796
  # # Plot the average precision line
1743
1797
  if show_avg_precision:
@@ -1757,11 +1811,12 @@ def plot_pr_binary(
1757
1811
  ax.grid(False)
1758
1812
  ax.legend(loc=legend_loc)
1759
1813
  return ax
1760
-
1814
+
1815
+
1761
1816
  def plot_cm(
1762
1817
  cm,
1763
1818
  labels_name=None,
1764
- thresh=0.8, # for set color
1819
+ thresh=0.8, # for set color
1765
1820
  axis_labels=None,
1766
1821
  cmap="Reds",
1767
1822
  normalize=True,
@@ -2048,7 +2103,7 @@ def predict(
2048
2103
  y_train: pd.Series,
2049
2104
  x_true: pd.DataFrame = None,
2050
2105
  y_true: Optional[pd.Series] = None,
2051
- backward:bool=False, # backward_regression
2106
+ backward: bool = False, # backward_regression
2052
2107
  common_features: set = None,
2053
2108
  purpose: str = "classification", # 'classification' or 'regression'
2054
2109
  cls: Optional[Dict[str, Any]] = None,
@@ -2242,22 +2297,22 @@ def predict(
2242
2297
  x_train = x_train.drop(y_train_col_name, axis=1)
2243
2298
  # else:
2244
2299
  # y_train = ips.df_encoder(pd.DataFrame(y_train), method="dummy").values.ravel()
2245
- y_train=pd.DataFrame(y_train)
2300
+ y_train = pd.DataFrame(y_train)
2246
2301
  if y_train.select_dtypes(include=np.number).empty:
2247
- y_train_=ips.df_encoder(y_train, method="dummy",drop=None)
2248
- is_binary = False if y_train_.shape[1] >2 else True
2302
+ y_train_ = ips.df_encoder(y_train, method="dummy", drop=None)
2303
+ is_binary = False if y_train_.shape[1] > 2 else True
2249
2304
  else:
2250
- y_train_=ips.flatten(y_train.values)
2251
- is_binary = False if len(y_train_)>2 else True
2305
+ y_train_ = ips.flatten(y_train.values)
2306
+ is_binary = False if len(y_train_) > 2 else True
2252
2307
 
2253
2308
  if is_binary:
2254
- y_train = ips.df_encoder(pd.DataFrame(y_train), method="label")
2255
- print('is_binary:',is_binary)
2309
+ y_train = ips.df_encoder(pd.DataFrame(y_train), method="label")
2310
+ print("is_binary:", is_binary)
2256
2311
 
2257
2312
  # Perform backward feature selection
2258
2313
  if backward:
2259
2314
  selected_features = backward_regression(x_train, y_train, threshold_out=0.05)
2260
- x_train=x_train[selected_features]
2315
+ x_train = x_train[selected_features]
2261
2316
 
2262
2317
  if x_true is None:
2263
2318
  x_train, x_true, y_train, y_true = train_test_split(
@@ -2271,23 +2326,31 @@ def predict(
2271
2326
  if isinstance(y_train, str) and y_train in x_train.columns:
2272
2327
  y_train_col_name = y_train
2273
2328
  y_train = x_train[y_train]
2274
- y_train = ips.df_encoder(pd.DataFrame(y_train), method="label") if is_binary else y_train
2329
+ y_train = (
2330
+ ips.df_encoder(pd.DataFrame(y_train), method="label")
2331
+ if is_binary
2332
+ else y_train
2333
+ )
2275
2334
  x_train = x_train.drop(y_train_col_name, axis=1)
2276
2335
  if is_binary:
2277
2336
  y_train = ips.df_encoder(
2278
2337
  pd.DataFrame(y_train), method="label"
2279
- ).values.ravel()
2338
+ ).values.ravel()
2280
2339
 
2281
2340
  if y_true is not None:
2282
2341
  if isinstance(y_true, str) and y_true in x_true.columns:
2283
2342
  y_true_col_name = y_true
2284
2343
  y_true = x_true[y_true]
2285
- y_true = ips.df_encoder(pd.DataFrame(y_true), method="label") if is_binary else y_true
2286
- y_true = pd.DataFrame(y_true)
2344
+ y_true = (
2345
+ ips.df_encoder(pd.DataFrame(y_true), method="label")
2346
+ if is_binary
2347
+ else y_true
2348
+ )
2349
+ y_true = pd.DataFrame(y_true)
2287
2350
  x_true = x_true.drop(y_true_col_name, axis=1)
2288
2351
  if is_binary:
2289
2352
  y_true = ips.df_encoder(pd.DataFrame(y_true), method="label").values.ravel()
2290
- y_true = pd.DataFrame(y_true)
2353
+ y_true = pd.DataFrame(y_true)
2291
2354
 
2292
2355
  # to convert the 2D to 1D: 2D column-vector format (like [[1], [0], [1], ...]) instead of a 1D array ([1, 0, 1, ...]
2293
2356
 
@@ -2295,10 +2358,14 @@ def predict(
2295
2358
  # y_true=y_true.values.ravel() if y_true is not None else None
2296
2359
  if y_train is not None:
2297
2360
  y_train = (
2298
- y_train.ravel() if isinstance(y_train, np.ndarray) else y_train.values.ravel()
2361
+ y_train.ravel()
2362
+ if isinstance(y_train, np.ndarray)
2363
+ else y_train.values.ravel()
2299
2364
  )
2300
2365
  if y_true is not None:
2301
- y_true = y_true.ravel() if isinstance(y_true, np.ndarray) else y_true.values.ravel()
2366
+ y_true = (
2367
+ y_true.ravel() if isinstance(y_true, np.ndarray) else y_true.values.ravel()
2368
+ )
2302
2369
  # Ensure common features are selected
2303
2370
  if common_features is not None:
2304
2371
  x_train, x_true = x_train[common_features], x_true[common_features]
@@ -2307,7 +2374,9 @@ def predict(
2307
2374
  x_train, x_true = x_train[share_col_names], x_true[share_col_names]
2308
2375
 
2309
2376
  x_train, x_true = ips.df_scaler(x_train), ips.df_scaler(x_true)
2310
- x_train, x_true = ips.df_encoder(x_train, method="dummy"), ips.df_encoder(x_true, method="dummy")
2377
+ x_train, x_true = ips.df_encoder(x_train, method="dummy"), ips.df_encoder(
2378
+ x_true, method="dummy"
2379
+ )
2311
2380
  # Handle class imbalance using SMOTE (only for classification)
2312
2381
  if (
2313
2382
  smote
@@ -2320,11 +2389,11 @@ def predict(
2320
2389
  x_train, y_train = smote_sampler.fit_resample(x_train, y_train)
2321
2390
  if not is_binary:
2322
2391
  if isinstance(y_train, np.ndarray):
2323
- y_train = ips.df_encoder(data=pd.DataFrame(y_train),method='label')
2324
- y_train=np.asarray(y_train)
2392
+ y_train = ips.df_encoder(data=pd.DataFrame(y_train), method="label")
2393
+ y_train = np.asarray(y_train)
2325
2394
  if isinstance(y_train, np.ndarray):
2326
- y_true = ips.df_encoder(data=pd.DataFrame(y_true),method='label')
2327
- y_true=np.asarray(y_true)
2395
+ y_true = ips.df_encoder(data=pd.DataFrame(y_true), method="label")
2396
+ y_true = np.asarray(y_true)
2328
2397
  # Hyperparameter grids for tuning
2329
2398
  if cv_level in ["low", "simple", "s", "l"]:
2330
2399
  param_grids = {
@@ -2908,14 +2977,16 @@ def predict(
2908
2977
  clf,
2909
2978
  param_grid=param_grids.get(name, {}),
2910
2979
  scoring=(
2911
- "roc_auc" if purpose == "classification" else "neg_mean_squared_error"
2980
+ "roc_auc"
2981
+ if purpose == "classification"
2982
+ else "neg_mean_squared_error"
2912
2983
  ),
2913
2984
  cv=cv,
2914
2985
  n_jobs=n_jobs,
2915
2986
  verbose=verbose,
2916
2987
  )
2917
2988
 
2918
- gs.fit(x_train, y_train)
2989
+ gs.fit(x_train, y_train)
2919
2990
  best_clf = gs.best_estimator_
2920
2991
  # make sure x_train and x_test has the same name
2921
2992
  x_true = x_true.reindex(columns=x_train.columns, fill_value=0)
@@ -2924,7 +2995,9 @@ def predict(
2924
2995
  y_pred_proba = best_clf.predict_proba(x_true)
2925
2996
  print("Shape of predicted probabilities:", y_pred_proba.shape)
2926
2997
  if y_pred_proba.shape[1] == 1:
2927
- y_pred_proba = np.hstack([1 - y_pred_proba, y_pred_proba]) # Add missing class probabilities
2998
+ y_pred_proba = np.hstack(
2999
+ [1 - y_pred_proba, y_pred_proba]
3000
+ ) # Add missing class probabilities
2928
3001
  y_pred_proba = y_pred_proba[:, 1]
2929
3002
  elif hasattr(best_clf, "decision_function"):
2930
3003
  # If predict_proba is not available, use decision_function (e.g., for SVM)
@@ -2940,7 +3013,9 @@ def predict(
2940
3013
  clf,
2941
3014
  param_grid=param_grids.get(name, {}),
2942
3015
  scoring=(
2943
- "roc_auc_ovr" if purpose == "classification" else "neg_mean_squared_error"
3016
+ "roc_auc_ovr"
3017
+ if purpose == "classification"
3018
+ else "neg_mean_squared_error"
2944
3019
  ),
2945
3020
  cv=cv,
2946
3021
  n_jobs=n_jobs,
@@ -2948,7 +3023,7 @@ def predict(
2948
3023
  )
2949
3024
 
2950
3025
  # Fit GridSearchCV
2951
- gs.fit(x_train, y_train)
3026
+ gs.fit(x_train, y_train)
2952
3027
  best_clf = gs.best_estimator_
2953
3028
 
2954
3029
  # Ensure x_true aligns with x_train columns
@@ -2960,14 +3035,18 @@ def predict(
2960
3035
  y_pred_proba = best_clf.predict_proba(x_true)
2961
3036
  elif hasattr(best_clf, "decision_function"):
2962
3037
  y_pred_proba = best_clf.decision_function(x_true)
2963
-
3038
+
2964
3039
  # Normalize for multiclass if necessary
2965
3040
  if y_pred_proba.ndim == 2:
2966
- y_pred_proba = (y_pred_proba - y_pred_proba.min(axis=1, keepdims=True)) / \
2967
- (y_pred_proba.max(axis=1, keepdims=True) - y_pred_proba.min(axis=1, keepdims=True))
3041
+ y_pred_proba = (
3042
+ y_pred_proba - y_pred_proba.min(axis=1, keepdims=True)
3043
+ ) / (
3044
+ y_pred_proba.max(axis=1, keepdims=True)
3045
+ - y_pred_proba.min(axis=1, keepdims=True)
3046
+ )
2968
3047
  else:
2969
3048
  y_pred_proba = None # No probability output for certain models
2970
-
3049
+
2971
3050
  validation_scores = {}
2972
3051
 
2973
3052
  if y_true is not None and y_pred_proba is not None:
@@ -2985,7 +3064,9 @@ def predict(
2985
3064
  if y_pred_proba is not None:
2986
3065
  # fpr, tpr, roc_auc = dict(), dict(), dict()
2987
3066
  fpr, tpr, _ = roc_curve(y_true, y_pred_proba)
2988
- lower_ci, upper_ci = cal_auc_ci(y_true, y_pred_proba, verbose=False,is_binary=is_binary)
3067
+ lower_ci, upper_ci = cal_auc_ci(
3068
+ y_true, y_pred_proba, verbose=False, is_binary=is_binary
3069
+ )
2989
3070
  roc_auc = auc(fpr, tpr)
2990
3071
  roc_info = {
2991
3072
  "fpr": fpr.tolist(),
@@ -3030,11 +3111,13 @@ def predict(
3030
3111
  y_pred_proba.tolist() if y_pred_proba is not None else None
3031
3112
  ),
3032
3113
  }
3033
- else: # multi-classes
3114
+ else: # multi-classes
3034
3115
  if y_pred_proba is not None:
3035
3116
  # fpr, tpr, roc_auc = dict(), dict(), dict()
3036
3117
  # fpr, tpr, _ = roc_curve(y_true, y_pred_proba)
3037
- confidence_intervals = cal_auc_ci(y_true, y_pred_proba, verbose=False,is_binary=is_binary)
3118
+ confidence_intervals = cal_auc_ci(
3119
+ y_true, y_pred_proba, verbose=False, is_binary=is_binary
3120
+ )
3038
3121
  roc_info = {
3039
3122
  "fpr": validation_scores["fpr"],
3040
3123
  "tpr": validation_scores["tpr"],
@@ -3042,7 +3125,9 @@ def predict(
3042
3125
  "ci95": confidence_intervals,
3043
3126
  }
3044
3127
  # precision-recall curve
3045
- precision_, recall_, avg_precision_ = cal_precision_recall(y_true, y_pred_proba,is_binary=is_binary)
3128
+ precision_, recall_, avg_precision_ = cal_precision_recall(
3129
+ y_true, y_pred_proba, is_binary=is_binary
3130
+ )
3046
3131
  pr_info = {
3047
3132
  "precision": precision_,
3048
3133
  "recall": recall_,
@@ -3080,14 +3165,17 @@ def predict(
3080
3165
  }
3081
3166
 
3082
3167
  else:
3083
- validation_scores = cal_metrics(
3084
- y_true,
3085
- y_pred,
3086
- y_pred_proba=y_pred_proba,
3087
- is_binary=is_binary,
3088
- purpose=purpose,
3089
- average="weighted",
3090
- )
3168
+ if not y_ture:
3169
+ validation_scores = []
3170
+ else:
3171
+ validation_scores = cal_metrics(
3172
+ y_true,
3173
+ y_pred,
3174
+ y_pred_proba=y_pred_proba,
3175
+ is_binary=is_binary,
3176
+ purpose=purpose,
3177
+ average="weighted",
3178
+ )
3091
3179
  results[name] = {
3092
3180
  "best_clf": gs.best_estimator_,
3093
3181
  "best_params": gs.best_params_,
@@ -3096,8 +3184,8 @@ def predict(
3096
3184
  "predictions_proba": (
3097
3185
  y_pred_proba.tolist() if y_pred_proba is not None else None
3098
3186
  ),
3099
- "y_train":y_train if y_train is not None else [],
3100
- "y_true": y_true if y_true is not None else []
3187
+ "y_train": y_train if y_train is not None else [],
3188
+ "y_true": y_true if y_true is not None else [],
3101
3189
  }
3102
3190
 
3103
3191
  # Convert results to DataFrame
@@ -3118,8 +3206,8 @@ def predict(
3118
3206
  plot.figsets(xangle=30)
3119
3207
  if dir_save:
3120
3208
  ips.figsave(dir_save + f"scores_sorted_heatmap{now_}.pdf")
3121
-
3122
- df_scores=df_scores.select_dtypes(include=np.number)
3209
+
3210
+ df_scores = df_scores.select_dtypes(include=np.number)
3123
3211
 
3124
3212
  if df_scores.shape[0] > 1: # draw cluster
3125
3213
  plot.heatmap(df_scores, kind="direct", cluster=True)
@@ -3129,7 +3217,7 @@ def predict(
3129
3217
  if all([plot_, y_true is not None, purpose == "classification"]):
3130
3218
  # try:
3131
3219
  if len(models) > 3:
3132
- plot_validate_features(df_results,is_binary=is_binary)
3220
+ plot_validate_features(df_results, is_binary=is_binary)
3133
3221
  else:
3134
3222
  plot_validate_features_single(df_results, is_binary=is_binary)
3135
3223
  if dir_save:
@@ -3140,7 +3228,12 @@ def predict(
3140
3228
 
3141
3229
 
3142
3230
  def cal_metrics(
3143
- y_true, y_pred, y_pred_proba=None, is_binary=True,purpose="regression", average="weighted"
3231
+ y_true,
3232
+ y_pred,
3233
+ y_pred_proba=None,
3234
+ is_binary=True,
3235
+ purpose="regression",
3236
+ average="weighted",
3144
3237
  ):
3145
3238
  """
3146
3239
  Calculate regression or classification metrics based on the purpose.
@@ -3216,33 +3309,38 @@ def cal_metrics(
3216
3309
  tn, fp, fn, tp = cm.ravel()
3217
3310
  else:
3218
3311
  # Handle single-class predictions
3219
- tn, fp, fn, tp = 0, 0, 0, 0
3312
+ tn, fp, fn, tp = 0, 0, 0, 0
3220
3313
  print("Warning: Only one class found in y_pred or y_true.")
3221
3314
 
3222
3315
  # Specificity calculation
3223
- validation_scores["specificity"] = (
3224
- tn / (tn + fp) if (tn + fp) > 0 else 0
3225
- )
3316
+ validation_scores["specificity"] = tn / (tn + fp) if (tn + fp) > 0 else 0
3226
3317
  if y_pred_proba is not None:
3227
3318
  # Calculate ROC-AUC
3228
3319
  validation_scores["roc_auc"] = roc_auc_score(y_true, y_pred_proba)
3229
3320
  # PR-AUC (Precision-Recall AUC) calculation
3230
- validation_scores["pr_auc"] = average_precision_score(y_true, y_pred_proba)
3231
-
3232
- else: # multi-class
3321
+ validation_scores["pr_auc"] = average_precision_score(
3322
+ y_true, y_pred_proba
3323
+ )
3324
+
3325
+ else: # multi-class
3233
3326
  from sklearn.preprocessing import label_binarize
3234
- #* Multi-class ROC calculation
3235
- y_pred_proba = np.asarray(y_pred_proba)
3327
+
3328
+ # * Multi-class ROC calculation
3329
+ y_pred_proba = np.asarray(y_pred_proba)
3236
3330
  classes = np.unique(y_true)
3237
3331
  y_true_bin = label_binarize(y_true, classes=classes)
3238
3332
  if isinstance(y_true, np.ndarray):
3239
- y_true = ips.df_encoder(data=pd.DataFrame(y_true), method='dum',prefix='Label')
3333
+ y_true = ips.df_encoder(
3334
+ data=pd.DataFrame(y_true), method="dum", prefix="Label"
3335
+ )
3240
3336
  # Initialize dictionaries to store FPR, TPR, and AUC for each class
3241
3337
  fpr = dict()
3242
3338
  tpr = dict()
3243
- roc_auc = dict()
3339
+ roc_auc = dict()
3244
3340
  for i, class_label in enumerate(classes):
3245
- fpr[class_label], tpr[class_label], _ = roc_curve(y_true_bin[:, i], y_pred_proba[:, i])
3341
+ fpr[class_label], tpr[class_label], _ = roc_curve(
3342
+ y_true_bin[:, i], y_pred_proba[:, i]
3343
+ )
3246
3344
  roc_auc[class_label] = auc(fpr[class_label], tpr[class_label])
3247
3345
 
3248
3346
  # Store the mean ROC AUC
@@ -3267,6 +3365,7 @@ def cal_metrics(
3267
3365
 
3268
3366
  return validation_scores
3269
3367
 
3368
+
3270
3369
  def plot_trees(
3271
3370
  X, y, cls, max_trees=500, test_size=0.2, random_state=42, early_stopping_rounds=None
3272
3371
  ):
@@ -3303,6 +3402,7 @@ def plot_trees(
3303
3402
  ExtraTreesClassifier,
3304
3403
  )
3305
3404
  from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
3405
+
3306
3406
  # Split data for training and testing error calculation
3307
3407
  x_train, x_test, y_train, y_test = train_test_split(
3308
3408
  X, y, test_size=test_size, random_state=random_state
@@ -3361,7 +3461,9 @@ def plot_trees(
3361
3461
  if validation_error[-early_stopping_rounds:] == sorted(
3362
3462
  validation_error[-early_stopping_rounds:]
3363
3463
  ):
3364
- print(f"Early stopping at tree {i} due to lack of improvement in validation error.")
3464
+ print(
3465
+ f"Early stopping at tree {i} due to lack of improvement in validation error."
3466
+ )
3365
3467
  break
3366
3468
 
3367
3469
  # Plot results
@@ -3407,16 +3509,17 @@ def plot_trees(
3407
3509
  plt.grid(True)
3408
3510
  plt.show()
3409
3511
 
3512
+
3410
3513
  def img_datasets_preprocessing(
3411
3514
  data: pd.DataFrame,
3412
3515
  x_col: str,
3413
- y_col: str=None,
3516
+ y_col: str = None,
3414
3517
  target_size: tuple = (224, 224),
3415
3518
  batch_size: int = 128,
3416
3519
  class_mode: str = "raw",
3417
3520
  shuffle: bool = False,
3418
3521
  augment: bool = False,
3419
- scaler: str = 'normalize', # 'normalize', 'standardize', 'clahe', 'raw'
3522
+ scaler: str = "normalize", # 'normalize', 'standardize', 'clahe', 'raw'
3420
3523
  grayscale: bool = False,
3421
3524
  encoder: str = "label", # Options: 'label', 'onehot', 'binary'
3422
3525
  label_encoder=None,
@@ -3461,16 +3564,29 @@ def img_datasets_preprocessing(
3461
3564
  x_col in data.columns and y_col in data.columns
3462
3565
  ), "Missing required columns in DataFrame."
3463
3566
  if y_col is None:
3464
- class_mode=None
3567
+ class_mode = None
3465
3568
  # 输出格式
3466
- output = ips.strcmp(output,[
3467
- "generator","tf","iterator","transform","transformer","dataframe",
3468
- "df","pd","pandas"])[0]
3469
-
3569
+ output = ips.strcmp(
3570
+ output,
3571
+ [
3572
+ "generator",
3573
+ "tf",
3574
+ "iterator",
3575
+ "transform",
3576
+ "transformer",
3577
+ "dataframe",
3578
+ "df",
3579
+ "pd",
3580
+ "pandas",
3581
+ ],
3582
+ )[0]
3583
+
3470
3584
  # Handle missing file paths
3471
3585
  if drop_missing:
3472
3586
  data = data[
3473
- data[x_col].apply(lambda path: os.path.exists(path) and os.path.isfile(path))
3587
+ data[x_col].apply(
3588
+ lambda path: os.path.exists(path) and os.path.isfile(path)
3589
+ )
3474
3590
  ]
3475
3591
 
3476
3592
  # Encoding labels if necessary
@@ -3502,11 +3618,11 @@ def img_datasets_preprocessing(
3502
3618
  aug_params.update(kws_augmentation)
3503
3619
  dat = ImageDataGenerator(rescale=scaler, **aug_params)
3504
3620
  dat = ImageDataGenerator(
3505
- rescale=1.0 / 255 if scaler == 'normalize' else None, **aug_params)
3621
+ rescale=1.0 / 255 if scaler == "normalize" else None, **aug_params
3622
+ )
3506
3623
 
3507
3624
  else:
3508
- dat = ImageDataGenerator(
3509
- rescale=1.0 / 255 if scaler == 'normalize' else None)
3625
+ dat = ImageDataGenerator(rescale=1.0 / 255 if scaler == "normalize" else None)
3510
3626
 
3511
3627
  # Create DataFrameIterator
3512
3628
  data_iterator = dat.flow_from_dataframe(
@@ -3529,14 +3645,14 @@ def img_datasets_preprocessing(
3529
3645
 
3530
3646
  # Load, resize, and process images in batches
3531
3647
  for i, (batch_images, batch_labels) in enumerate(data_iterator):
3532
- for img, label in zip(batch_images, batch_labels):
3533
- if scaler == ['normalize','raw']:
3648
+ for img, label in zip(batch_images, batch_labels):
3649
+ if scaler == ["normalize", "raw"]:
3534
3650
  # Already rescaled by 1.0/255 in ImageDataGenerator
3535
3651
  pass
3536
- elif scaler == 'standardize':
3652
+ elif scaler == "standardize":
3537
3653
  # Standardize by subtracting mean and dividing by std
3538
3654
  img = (img - np.mean(img)) / np.std(img)
3539
- elif scaler == 'clahe':
3655
+ elif scaler == "clahe":
3540
3656
  # Apply CLAHE to the image
3541
3657
  img = apply_clahe(img)
3542
3658
  flat_img = img.flatten()
@@ -3561,11 +3677,13 @@ def img_datasets_preprocessing(
3561
3677
  return df_img
3562
3678
 
3563
3679
 
3564
- def backward_regression(X:pd.DataFrame, y:pd.Series, initial_list=[], threshold_out=0.05, verbose=True):
3680
+ def backward_regression(
3681
+ X: pd.DataFrame, y: pd.Series, initial_list=[], threshold_out=0.05, verbose=True
3682
+ ):
3565
3683
  """
3566
3684
  # awesome bit of code from https://www.kaggle.com/code/adibouayjan/house-price-step-by-step-modeling
3567
-
3568
- Evaluates the p-values of all features, which represent the probability of observing a coefficient
3685
+
3686
+ Evaluates the p-values of all features, which represent the probability of observing a coefficient
3569
3687
  as extreme as the one calculated if the feature had no true effect on the target.
3570
3688
 
3571
3689
  Args:
@@ -3576,9 +3694,10 @@ def backward_regression(X:pd.DataFrame, y:pd.Series, initial_list=[], threshold_
3576
3694
  verbose -- true to produce lots of logging output
3577
3695
 
3578
3696
  Returns:
3579
- list of selected features for modeling
3697
+ list of selected features for modeling
3580
3698
  """
3581
3699
  import statsmodels.api as sm
3700
+
3582
3701
  if isinstance(y, str) and y in X.columns:
3583
3702
  y_col_name = y
3584
3703
  y = X[y]
@@ -3600,15 +3719,16 @@ def backward_regression(X:pd.DataFrame, y:pd.Series, initial_list=[], threshold_
3600
3719
  break
3601
3720
  print(f"\nSelected Features:\n{included}")
3602
3721
  return included # Returns the list of selected features
3603
-
3722
+
3604
3723
 
3605
3724
  # Function to apply CLAHE (Contrast Limited Adaptive Histogram Equalization)
3606
3725
  def apply_clahe(img):
3607
3726
  import cv2
3727
+
3608
3728
  lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) # Convert to LAB color space
3609
3729
  l, a, b = cv2.split(lab) # Split into channels
3610
3730
  clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
3611
3731
  cl = clahe.apply(l) # Apply CLAHE to the L channel
3612
3732
  limg = cv2.merge((cl, a, b)) # Merge back the channels
3613
3733
  img_clahe = cv2.cvtColor(limg, cv2.COLOR_LAB2RGB) # Convert back to RGB
3614
- return img_clahe
3734
+ return img_clahe
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: py2ls
3
- Version: 0.2.4.17
3
+ Version: 0.2.4.19
4
4
  Summary: py(thon)2(too)ls
5
5
  Author: Jianfeng
6
6
  Author-email: Jianfeng.Liu0413@gmail.com
@@ -236,7 +236,7 @@ py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
236
236
  py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
237
237
  py2ls/ips.py,sha256=2TWuOSFquwhmPdxkmmvU_pcIbE5M0S9aRPtuQgs5B7A,297706
238
238
  py2ls/ml2ls copy.py,sha256=iZJrFLIrdfTieAY2BDsxQFTm29smwnJh0aC4hRB9VGM,113314
239
- py2ls/ml2ls.py,sha256=Mkf374TLsCdBVYtSYptFzegn8euda33TA-M73nGtzV0,144368
239
+ py2ls/ml2ls.py,sha256=2IyvI2KA7Jxrvv_Nkw3W8CH19d3zdpqXwCL4oJ9nzUo,146065
240
240
  py2ls/mol.py,sha256=AZnHzarIk_MjueKdChqn1V6e4tUle3X1NnHSFA6n3Nw,10645
241
241
  py2ls/netfinder.py,sha256=R70NkrnO8LlXjT1y7bf2TN-yE4yOeAYhb0jDBiNp8XA,57536
242
242
  py2ls/ocr.py,sha256=5lhUbJufIKRSOL6wAWVLEo8TqMYSjoI_Q-IO-_4u3DE,31419
@@ -246,6 +246,6 @@ py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso
246
246
  py2ls/stats.py,sha256=qBn2rJmNa_QLLUqjwYqXUlGzqmW94sgA1bxJU2FC3r0,39175
247
247
  py2ls/translator.py,sha256=77Tp_GjmiiwFbEIJD_q3VYpQ43XL9ZeJo6Mhl44mvh8,34284
248
248
  py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
249
- py2ls-0.2.4.17.dist-info/METADATA,sha256=6WLASUWtoQ3ildtbRkAKZyLiniebr8NBtsS1UJPB7Qs,20078
250
- py2ls-0.2.4.17.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
251
- py2ls-0.2.4.17.dist-info/RECORD,,
249
+ py2ls-0.2.4.19.dist-info/METADATA,sha256=t1mDfTbXpW214vpoKnd_kAf5MvocTHMnK3c1SMBt0GI,20078
250
+ py2ls-0.2.4.19.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
251
+ py2ls-0.2.4.19.dist-info/RECORD,,