py2ls 0.1.9.4__py3-none-any.whl → 0.1.9.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py2ls/stats.py CHANGED
@@ -37,6 +37,7 @@ def FuncStars(
37
37
  report=None,
38
38
  report_scale=-0.1,
39
39
  report_loc=None,
40
+ **kwargs
40
41
  ):
41
42
  if ax is None:
42
43
  ax = plt.gca()
@@ -54,136 +55,136 @@ def FuncStars(
54
55
  else:
55
56
  y_loc=y_loc+(1-yscale) * np.abs(np.diff(ylim))+0.1 *y_loc
56
57
  xcenter = np.mean([x1, x2])
57
-
58
- # ns / *
59
- if alpha < pval:
60
- if nsshow == "on":
61
- ns_str = f"p={round(pval, 3)}" if pval < 0.9 else "ns"
62
- color = "m" if pval < 0.1 else "k"
58
+ if pval is not None:
59
+ # ns / *
60
+ if alpha < pval:
61
+ if nsshow == "on":
62
+ ns_str = f"p={round(pval, 3)}" if pval < 0.9 else "ns"
63
+ color = "m" if pval < 0.1 else "k"
64
+ ax.text(
65
+ xcenter,
66
+ y_loc,
67
+ ns_str,
68
+ ha="center",
69
+ va="bottom", # 'center_baseline',
70
+ fontsize=fontsize - 6 if fontsize > 6 else fontsize,
71
+ fontname=fontname,
72
+ color=color,
73
+ rotation=rotation,
74
+ # bbox=dict(facecolor=None, edgecolor=None, color=None, linewidth=None)
75
+ )
76
+ elif 0.01 < pval <= alpha:
63
77
  ax.text(
64
78
  xcenter,
65
79
  y_loc,
66
- ns_str,
80
+ symbol,
67
81
  ha="center",
68
- va="bottom", # 'center_baseline',
69
- fontsize=fontsize - 6 if fontsize > 6 else fontsize,
82
+ va="top",#"center_baseline",
83
+ fontsize=fontsize,
70
84
  fontname=fontname,
71
- color=color,
72
- rotation=rotation,
73
- # bbox=dict(facecolor=None, edgecolor=None, color=None, linewidth=None)
85
+ color=symbolcolor,
74
86
  )
75
- elif 0.01 < pval <= alpha:
76
- ax.text(
77
- xcenter,
78
- y_loc,
79
- symbol,
80
- ha="center",
81
- va="top",#"center_baseline",
82
- fontsize=fontsize,
83
- fontname=fontname,
84
- color=symbolcolor,
85
- )
86
- elif 0.001 < pval <= 0.01:
87
- ax.text(
88
- xcenter,
89
- y_loc,
90
- symbol * 2,
91
- ha="center",
92
- va="top",#"center_baseline",
93
- fontsize=fontsize,
94
- fontname=fontname,
95
- color=symbolcolor,
96
- )
97
- elif 0 < pval <= 0.001:
98
- ax.text(
99
- xcenter,
100
- y_loc,
101
- symbol * 3,
102
- ha="center",
103
- va="top",#"center_baseline",
104
- fontsize=fontsize,
105
- fontname=fontname,
106
- color=symbolcolor,
107
- )
108
- # lines indicators
109
- if linego and 0 < pval <= 0.05:
110
- # horizontal line
111
- if yscale <= 0.99:
112
- ax.plot(
113
- [x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
114
- [
115
- y_loc - np.abs(np.diff(ylim)) * 0.03,
116
- y_loc - np.abs(np.diff(ylim)) * 0.03,
117
- ],
118
- linestyle=linestyle,
119
- color=linecolor,
120
- linewidth=linewidth,
121
- )
122
- # vertical line
123
- ax.plot(
124
- [x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
125
- [
126
- y_loc - np.abs(np.diff(ylim)) * tailindicator[0],
127
- y_loc - np.abs(np.diff(ylim)) * 0.03,
128
- ],
129
- linestyle=linestyle,
130
- color=linecolor,
131
- linewidth=linewidth,
132
- )
133
- ax.plot(
134
- [x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
135
- [
136
- y_loc - np.abs(np.diff(ylim)) * tailindicator[1],
137
- y_loc - np.abs(np.diff(ylim)) * 0.03,
138
- ],
139
- linestyle=linestyle,
140
- color=linecolor,
141
- linewidth=linewidth,
142
- )
143
- else:
144
- ax.plot(
145
- [x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
146
- [
147
- np.min(ylim)
148
- + 0.95 * (np.max(ylim) - np.min(ylim))
149
- - np.abs(np.diff(ylim)) * 0.002,
150
- np.min(ylim)
151
- + 0.95 * (np.max(ylim) - np.min(ylim))
152
- - np.abs(np.diff(ylim)) * 0.002,
153
- ],
154
- linestyle=linestyle,
155
- color=linecolor,
156
- linewidth=linewidth,
157
- )
158
- # vertical line
159
- ax.plot(
160
- [x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
161
- [
162
- np.min(ylim)
163
- + 0.95 * (np.max(ylim) - np.min(ylim))
164
- - np.abs(np.diff(ylim)) * tailindicator[0],
165
- np.min(ylim)
166
- + 0.95 * (np.max(ylim) - np.min(ylim))
167
- - np.abs(np.diff(ylim)) * 0.002,
168
- ],
169
- linestyle=linestyle,
170
- color=linecolor,
171
- linewidth=linewidth,
87
+ elif 0.001 < pval <= 0.01:
88
+ ax.text(
89
+ xcenter,
90
+ y_loc,
91
+ symbol * 2,
92
+ ha="center",
93
+ va="top",#"center_baseline",
94
+ fontsize=fontsize,
95
+ fontname=fontname,
96
+ color=symbolcolor,
172
97
  )
173
- ax.plot(
174
- [x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
175
- [
176
- np.min(ylim)
177
- + 0.95 * (np.max(ylim) - np.min(ylim))
178
- - np.abs(np.diff(ylim)) * tailindicator[1],
179
- np.min(ylim)
180
- + 0.95 * (np.max(ylim) - np.min(ylim))
181
- - np.abs(np.diff(ylim)) * 0.002,
182
- ],
183
- linestyle=linestyle,
184
- color=linecolor,
185
- linewidth=linewidth,
98
+ elif 0 < pval <= 0.001:
99
+ ax.text(
100
+ xcenter,
101
+ y_loc,
102
+ symbol * 3,
103
+ ha="center",
104
+ va="top",#"center_baseline",
105
+ fontsize=fontsize,
106
+ fontname=fontname,
107
+ color=symbolcolor,
186
108
  )
109
+ # lines indicators
110
+ if linego and 0 < pval <= 0.05:
111
+ # horizontal line
112
+ if yscale <= 0.99:
113
+ ax.plot(
114
+ [x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
115
+ [
116
+ y_loc - np.abs(np.diff(ylim)) * 0.03,
117
+ y_loc - np.abs(np.diff(ylim)) * 0.03,
118
+ ],
119
+ linestyle=linestyle,
120
+ color=linecolor,
121
+ linewidth=linewidth,
122
+ )
123
+ # vertical line
124
+ ax.plot(
125
+ [x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
126
+ [
127
+ y_loc - np.abs(np.diff(ylim)) * tailindicator[0],
128
+ y_loc - np.abs(np.diff(ylim)) * 0.03,
129
+ ],
130
+ linestyle=linestyle,
131
+ color=linecolor,
132
+ linewidth=linewidth,
133
+ )
134
+ ax.plot(
135
+ [x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
136
+ [
137
+ y_loc - np.abs(np.diff(ylim)) * tailindicator[1],
138
+ y_loc - np.abs(np.diff(ylim)) * 0.03,
139
+ ],
140
+ linestyle=linestyle,
141
+ color=linecolor,
142
+ linewidth=linewidth,
143
+ )
144
+ else:
145
+ ax.plot(
146
+ [x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
147
+ [
148
+ np.min(ylim)
149
+ + 0.95 * (np.max(ylim) - np.min(ylim))
150
+ - np.abs(np.diff(ylim)) * 0.002,
151
+ np.min(ylim)
152
+ + 0.95 * (np.max(ylim) - np.min(ylim))
153
+ - np.abs(np.diff(ylim)) * 0.002,
154
+ ],
155
+ linestyle=linestyle,
156
+ color=linecolor,
157
+ linewidth=linewidth,
158
+ )
159
+ # vertical line
160
+ ax.plot(
161
+ [x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
162
+ [
163
+ np.min(ylim)
164
+ + 0.95 * (np.max(ylim) - np.min(ylim))
165
+ - np.abs(np.diff(ylim)) * tailindicator[0],
166
+ np.min(ylim)
167
+ + 0.95 * (np.max(ylim) - np.min(ylim))
168
+ - np.abs(np.diff(ylim)) * 0.002,
169
+ ],
170
+ linestyle=linestyle,
171
+ color=linecolor,
172
+ linewidth=linewidth,
173
+ )
174
+ ax.plot(
175
+ [x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
176
+ [
177
+ np.min(ylim)
178
+ + 0.95 * (np.max(ylim) - np.min(ylim))
179
+ - np.abs(np.diff(ylim)) * tailindicator[1],
180
+ np.min(ylim)
181
+ + 0.95 * (np.max(ylim) - np.min(ylim))
182
+ - np.abs(np.diff(ylim)) * 0.002,
183
+ ],
184
+ linestyle=linestyle,
185
+ color=linecolor,
186
+ linewidth=linewidth,
187
+ )
187
188
  if values_below is not None:
188
189
  ax.text(
189
190
  xcenter,
@@ -519,12 +520,12 @@ def FuncMultiCmpt(
519
520
  if "np" in cfg_pair: # 'unpaired'
520
521
  res_tab = run_kruskal(data, dv, factor)
521
522
  notes_stat = f"Non-parametric Kruskal: {data[factor].nunique()} Way ANOVA"
522
- notes_APA = f'H({res_tab.ddof1[0]},n={data.shape[0]})={round(res_tab.H[0],3)},p={round(res_tab["p-unc"][0],3)}'
523
+ notes_APA = [f'H({res_tab.ddof1[0]},N={data.shape[0]})={round(res_tab.H[0],3)},p={round(res_tab["p-unc"][0],3)}']
523
524
 
524
525
  elif "pa" in cfg_pair and "np" not in cfg_pair: # 'paired'
525
526
  res_tab = run_friedman(data, dv, factor, subject, method="chisq")
526
527
  notes_stat = f"Non-parametric {data[factor].nunique()} Way Friedman repeated measures ANOVA"
527
- notes_APA = f'X^2({res_tab.ddof1[0]})={round(res_tab.Q[0],3)},p={round(res_tab["p-unc"][0],3)}'
528
+ notes_APA = [f'X^2({res_tab.ddof1[0]})={round(res_tab.Q[0],3)},p={round(res_tab["p-unc"][0],3)}']
528
529
 
529
530
  # =============================================================================
530
531
  # # Post-hoc
@@ -705,6 +706,8 @@ def extract_apa(res_tab):
705
706
  note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.ddof1[irow]),round(res_tab.ddof2[irow])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
706
707
  notes_APA.append(note_tmp)
707
708
  elif "DF" in res_tab:
709
+ print("here")
710
+ display(res_tab)
708
711
  for irow in range(res_tab.shape[0] - 1):
709
712
  note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF[irow]),round(res_tab.DF[res_tab.shape[0]-1])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
710
713
  notes_APA.append(note_tmp)
@@ -866,220 +869,7 @@ def df_wide_long(df):
866
869
  elif rows > columns:
867
870
  return "Long"
868
871
 
869
-
870
- # =============================================================================
871
- # # One-way ANOVA
872
- # =============================================================================
873
- # url = "http://stats191.stanford.edu/data/rehab.csv"
874
- # rehab_table = pd.read_table(url, delimiter=",")
875
- # rehab_table.to_csv("rehab.table")
876
- # fig, ax = plt.subplots(figsize=(8, 6))
877
- # fig = rehab_table.boxplot("Time", "Fitness", ax=ax, grid=False)
878
- # # fig, ax = plt.subplots(figsize=(8, 6))
879
- # # set_pub()
880
- # # sns.boxenplot(x="Time",y="Fitness",data = rehab_table)
881
-
882
- # out2 = FuncMultiCmpt(pmc='pmc', pair='unpair',
883
- # data=rehab_table, dv='Time', factor='Fitness')
884
- # # print(out2['res_tab'])
885
- # # print(out2['APA'])
886
- # out2['res_posthoc']
887
- # out2['res_posthoc']['p-unc'][0]
888
- # out2['res_posthoc']['p-adjust'][0]
889
- # out2['res_posthoc']['p-corr'][0]
890
-
891
-
892
- # =============================================================================
893
- # # Interactions and ANOVA
894
- # https://www.statsmodels.org/dev/examples/notebooks/generated/interactions_anova.html
895
- # url = "http://stats191.stanford.edu/data/salary.table"
896
- # fh = urlopen(url)
897
- # df = pd.read_table(fh)
898
- # out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
899
- # dv='S', factor=['X', 'E', 'M'], group='M')
900
- # # # two-way anova
901
- # # https://www.statology.org/two-way-anova-python/
902
- # # =============================================================================
903
- # # df = pd.DataFrame({'water': np.repeat(['daily', 'weekly'], 15),
904
- # # 'sun': np.tile(np.repeat(['low', 'med', 'high'], 5), 2),
905
- # # 'height': [6, 6, 6, 5, 6, 5, 5, 6, 4, 5,
906
- # # 6, 6, 7, 8, 7, 3, 4, 4, 4, 5,
907
- # # 4, 4, 4, 4, 4, 5, 6, 6, 7, 8]})
908
- # # out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
909
- # # dv='height', factor=['water','sun'],group='water')
910
-
911
-
912
- # =============================================================================
913
- # # two way anova
914
- # https://www.geeksforgeeks.org/how-to-perform-a-two-way-anova-in-python/
915
- # =============================================================================
916
- # df1=pd.DataFrame({'Fertilizer': np.repeat(['daily', 'weekly'], 15),
917
- # 'Watering': np.repeat(['daily', 'weekly'], 15),
918
- # 'height': [14, 16, 15, 15, 16, 13, 12, 11,
919
- # 14, 15, 16, 16, 17, 18, 14, 13,
920
- # 14, 14, 14, 15, 16, 16, 17, 18,
921
- # 14, 13, 14, 14, 14, 15]})
922
-
923
- # df1['subject'] = np.tile(range(0, 15), (1, 2)).T
924
- # out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df1,
925
- # dv='height', factor=['Fertilizer','Watering'],group='Watering')
926
- # # print(out1['stat'])
927
- # # print(out1['res_tab'])
928
-
929
- # =============================================================================
930
- # # welch anova
931
- # https://www.geeksforgeeks.org/how-to-perform-welchs-anova-in-python/
932
- # =============================================================================
933
- # df = pd.DataFrame({'score': [64, 66, 68, 75, 78, 94, 98, 79, 71, 80,
934
- # 91, 92, 93, 90, 97, 94, 82, 88, 95, 96,
935
- # 79, 78, 88, 94, 92, 85, 83, 85, 82, 81],
936
- # 'group': np.repeat(['strat1', 'strat2', 'strat3'],repeats=10)})
937
- # out1 = FuncMultiCmpt(pmc='auto',pair='unpaired',data=df, dv='score', factor='group', group='group')
938
- # =============================================================================
939
- # # two way anova
940
- # https://www.statology.org/two-way-anova-python/
941
- # =============================================================================
942
- # df = pd.DataFrame({'water': np.repeat(['daily', 'weekly'], 15),
943
- # 'sun': np.tile(np.repeat(['low', 'med', 'high'], 5), 2),
944
- # 'height': [6, 6, 6, 5, 6, 5, 5, 6, 4, 5,
945
- # 6, 6, 7, 8, 7, 3, 4, 4, 4, 5,
946
- # 4, 4, 4, 4, 4, 5, 6, 6, 7, 8]})
947
- # df['subject'] = np.tile(range(0, 15), (1, 2)).T
948
- # out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
949
- # dv='height', factor=['water', 'sun'], subject='subject', group='water')
950
- # # print(out1['stat'])
951
- # # print(out1['res_tab'])
952
-
953
- # =============================================================================
954
- # # 3-way ANOVA
955
- # =============================================================================
956
- # df = pd.DataFrame({'program': np.repeat([1, 2], 20),
957
- # 'gender': np.tile(np.repeat(['M', 'F'], 10), 2),
958
- # 'division': np.tile(np.repeat([1, 2], 5), 4),
959
- # 'height': [7, 7, 8, 8, 7, 6, 6, 5, 6, 5,
960
- # 5, 5, 4, 5, 4, 3, 3, 4, 3, 3,
961
- # 6, 6, 5, 4, 5, 4, 5, 4, 4, 3,
962
- # 2, 2, 1, 4, 4, 2, 1, 1, 2, 1]})
963
- # df['subject'] = np.tile(range(0, 20), (1, 2)).T
964
- # out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
965
- # dv='height', factor=['gender', 'program', 'division'], subject='subject', group='program')
966
- # # print(out1['stat'])
967
- # # print(out1['res_tab'])
968
-
969
- # =============================================================================
970
- # # Repeated Measures ANOVA in Python
971
- # =============================================================================
972
- # df = pd.DataFrame({'patient': np.repeat([1, 2, 3, 4, 5], 4),
973
- # 'drug': np.tile([1, 2, 3, 4], 5),
974
- # 'response': [30, 28, 16, 34,
975
- # 14, 18, 10, 22,
976
- # 24, 20, 18, 30,
977
- # 38, 34, 20, 44,
978
- # 26, 28, 14, 30]})
979
- # # df['subject'] = np.tile(range(0, 20), (1, 2)).T
980
- # out1 = FuncMultiCmpt(pmc='pmc', pair='paired', data=df,
981
- # dv='response', factor=['drug'], subject='patient', group='drug')
982
- # print(out1['stat'])
983
- # print(out1['res_tab'])
984
- # print(out1['APA'])
985
-
986
- # =============================================================================
987
- # # repeated anova
988
- # https://www.geeksforgeeks.org/how-to-perform-a-repeated-measures-anova-in-python/
989
- # =============================================================================
990
- # df = pd.DataFrame({'Cars': np.repeat([1, 2, 3, 4, 5], 4),
991
- # 'Engine Oil': np.tile([1, 2, 3, 4], 5),
992
- # 'Mileage': [36, 38, 30, 29,
993
- # 34, 38, 30, 29,
994
- # 34, 28, 38, 32,
995
- # 38, 34, 20, 44,
996
- # 26, 28, 34, 50]})
997
- # out1 = FuncMultiCmpt(pmc='pmc', pair='paired', data=df,
998
- # dv='Mileage', factor=['Engine Oil'], subject='Cars', group='Cars')
999
- # =============================================================================
1000
- # #two-way repeated anova
1001
- # =============================================================================
1002
- # df = pd.read_csv(
1003
- # "https://reneshbedre.github.io/assets/posts/anova/plants_leaves_two_within.csv")
1004
- # df
1005
- # # df['subject'] = np.tile(range(0, 20), (1, 2)).T
1006
- # out1 = FuncMultiCmpt(pmc='pmc', pair='paired', data=df,
1007
- # dv='num_leaves', factor=['year', 'time'], subject='plants', group='year')
1008
- # print(out1['stat'])
1009
- # print(out1['res_tab'])
1010
- # print(out1['APA'])
1011
-
1012
- # =============================================================================
1013
- # # repeated anova
1014
- # =============================================================================
1015
- # df = pd.read_csv('/Users/macjianfeng/Desktop/test.csv')
1016
- # df.head()
1017
- # df.loc[df['animal'].str.contains('Sleep'), 'experiment'] = 'sleep'
1018
- # df.loc[df['animal'].str.contains('Wake'), 'experiment'] = 'wake'
1019
- # df.loc[df['variable'].str.contains('hypo'), 'region'] = 'hypo'
1020
- # df.loc[df['variable'].str.contains('cort'), 'region'] = 'cort'
1021
- # df
1022
- # for i in range(4):
1023
- # match i:
1024
- # case 0:
1025
- # prot_name = 'A1'
1026
- # case 1:
1027
- # prot_name = 'A2'
1028
- # case 2:
1029
- # prot_name = '845'
1030
- # case 3:
1031
- # prot_name = '831'
1032
- # df_tmp = df[df["variable"].str.contains(prot_name)]
1033
- # df_tmp['protein'] = prot_name
1034
- # df_tmp = df_tmp.reset_index()
1035
- # print(df_tmp)
1036
-
1037
- # out1 = FuncMultiCmpt(pmc='pmc', pair='mix', data=df_tmp,
1038
- # dv='value', between='experiment', within='region', subject='animal', group='experiment')
1039
- # print(out1['stat'])
1040
- # print(out1['res_tab'])
1041
- # # =============================================================================
1042
- # One-way ANOVA
1043
- # df1 = pd.read_csv('/Users/macjianfeng/Desktop/Book2.csv')
1044
- # df2 = df1.melt()
1045
- # out1 = FuncMultiCmpt(pmc='npmc', pair='unpaired', data=df2,
1046
- # dv='libido', factor=['brand x', 'brand y', 'brand z'], subject='participant')
1047
- # print(out1['stat'])
1048
- # print(out1['res_tab'])
1049
- # =============================================================================
1050
-
1051
-
1052
- # =============================================================================
1053
- # # #One-way ANOVA new example: https://www.pythonfordatascience.org/anova-python/
1054
- # =============================================================================
1055
- # df1 = pd.read_csv(
1056
- # "https://raw.githubusercontent.com/researchpy/Data-sets/master/difficile.csv")
1057
- # df1.drop('person', axis=1, inplace=True)
1058
- # # Recoding value from numeric to string
1059
- # df1['dose'].replace({1: 'placebo', 2: 'low', 3: 'high'}, inplace=True)
1060
- # df1.head(10)
1061
-
1062
- # out3= FuncMultiCmpt(pmc='pmc', data=df1, dv='libido', factor='dose')
1063
- # # print(out3['res_tab'])
1064
- # # # print(out3['res_posthoc'])
1065
- # # print(out3['APA'])
1066
-
1067
- # =============================================================================
1068
- # https://lifewithdata.com/2023/06/08/how-to-perform-a-two-way-anova-in-python/
1069
- # =============================================================================
1070
- # data = {
1071
- # 'Diet': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C'],
1072
- # 'Workout': ['Low', 'Medium', 'High', 'Low', 'Medium', 'High', 'Low', 'Medium', 'High', 'Low', 'Medium', 'High'],
1073
- # 'WeightLoss': [3, 4, 5, 3.2, 5, 6, 5.2, 6, 5.5, 4, 5.5, 6.2]
1074
- # }
1075
- # df = pd.DataFrame(data)
1076
- # out4= FuncMultiCmpt(pmc='pmc', pair='unpaired',data=df, dv='WeightLoss', factor=['Diet','Workout'],group='Diet')
1077
-
1078
- # =============================================================================
1079
- # # convert to list to string
1080
- # =============================================================================
1081
-
1082
-
872
+
1083
873
  def sort_rows_move_nan(arr, sort=False):
1084
874
  # Handle edge cases where all values are NaN
1085
875
  if np.all(np.isnan(arr)):
@@ -1116,11 +906,11 @@ def sort_rows_move_nan(arr, sort=False):
1116
906
  return clean_arr_
1117
907
 
1118
908
 
1119
- def df2array(data: pd.DataFrame, x, y, hue=None, sort=False):
909
+ def df2array(data: pd.DataFrame, x=None, y=None, hue=None, sort=False):
1120
910
  if hue is None:
1121
911
  a = []
1122
912
  if sort:
1123
- np.sort(data[x].unique().tolist()).tolist()
913
+ cat_x=np.sort(data[x].unique().tolist()).tolist()
1124
914
  else:
1125
915
  cat_x = data[x].unique().tolist()
1126
916
  for i, x_ in enumerate(cat_x):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: py2ls
3
- Version: 0.1.9.4
3
+ Version: 0.1.9.5
4
4
  Summary: py(thon)2(too)ls
5
5
  Author: Jianfeng
6
6
  Author-email: Jianfeng.Liu0413@gmail.com
@@ -1,4 +1,4 @@
1
- py2ls/.DS_Store,sha256=l7m93mLt2ckidOORlgzbfdGcDJ5emCexs-GHEiKbEaQ,6148
1
+ py2ls/.DS_Store,sha256=TrIRWvsmm5K2ZOHOl-Xg5QGwFENxbPivhMQVowzk3qw,6148
2
2
  py2ls/.git/COMMIT_EDITMSG,sha256=5xj-jWMbrdOc9m7gSn-UcsAQ9FMNvWSbLWSsrOUIO5w,7
3
3
  py2ls/.git/FETCH_HEAD,sha256=6cJaQzb6VhkvNNm-KsABX6R28FNKZB8qMmqacDEP_dQ,100
4
4
  py2ls/.git/HEAD,sha256=KNJb-Cr0wOK3L1CVmyvrhZ4-YLljCl6MYD2tTdsrboA,21
@@ -151,24 +151,36 @@ py2ls/data/.DS_Store,sha256=iH2O541jT_5mlTPavY_d5V2prS9zhNx4Pv7yhmbwaHI,6148
151
151
  py2ls/data/db2ls_sql_chtsht.json,sha256=ls9d7Sm8TLeujanWHfHlWhU85Qz1KnAizO_9X3wUH7E,6933
152
152
  py2ls/data/docs_links.json,sha256=kXgbbWo0b8bfV4n6iuuUNLnZipIyLzokUO6Lzmf7nO4,101829
153
153
  py2ls/data/lang_code_iso639.json,sha256=qZiU7H2RLJjDMXK22C-jhwzLJCI5vKmampjB1ys4ek4,2157
154
+ py2ls/data/styles/example/style1.pdf,sha256=Pt_qQJ5kiCSIPiz3TWSwEffHUdj75kKXnZ4MPqpEx4I,29873
155
+ py2ls/data/styles/example/style2.pdf,sha256=0xduPLPulET38LEP2V2H_q70wqlrrBEo8ttqO-FMrfQ,25449
156
+ py2ls/data/styles/example/style3.pdf,sha256=010-Pm2BUowAt0XDkJWZTR5rAszLqmI1DO3209sIFWs,65536
157
+ py2ls/data/styles/example/style4.pdf,sha256=dn4bPTLiwMF9d9U32LOaJGvluEkBwKMC079kvQJPd6s,19093
158
+ py2ls/data/styles/example/style5.pdf,sha256=ZFq5vYmGEfCSfUrh2mBOz_mQ8MwebcbOqaV-0eIEK2s,29610
159
+ py2ls/data/styles/example/style6.pdf,sha256=cjkWkeN1B5S6E1fs29kr0yxq36VD2nE-kKkcpsXRRwA,52648
160
+ py2ls/data/styles/example/style7.pdf,sha256=Sz54Qzvt6k6fCkvvZd6S4RSZjVZvxPxIx_uvGDP96v0,54468
161
+ py2ls/data/styles/example/style8.pdf,sha256=8As6rsajoqQEU9hUy4YDHOsXYpD4PJcbWMz-4iV77gI,62296
162
+ py2ls/data/styles/example/style9.pdf,sha256=uT4_9bZaoBB7aXoobIY8-k_OX7TNxJ_Zwqvr7o9deO0,65828
154
163
  py2ls/data/styles/style1.json,sha256=Q3tdH0Sf08FjNUZE5mELA45JEw3BXjSAL2nLfFDn1bU,3101
155
164
  py2ls/data/styles/style2.json,sha256=2xhDv-_qQOKaODy8fWRoaQk_W5-I3EdA6uh4JNnINGg,3124
156
165
  py2ls/data/styles/style3.json,sha256=0lHmjFGqlf1c7HLllsgGVNFkuEsqSCicBv-iOTB9hRk,3126
157
166
  py2ls/data/styles/style4.json,sha256=G8thPHwmJyS3kDletrh3NkapZ03bNfey2-zpG4erBfk,3072
158
167
  py2ls/data/styles/style5.json,sha256=0bqt3CYM1iBtu_7D8LmurnZ2mlrw-zOdUMUpnUADih4,3069
159
- py2ls/data/styles/style6.json,sha256=0bqt3CYM1iBtu_7D8LmurnZ2mlrw-zOdUMUpnUADih4,3069
168
+ py2ls/data/styles/style6.json,sha256=tu-MYOT9x5Rorc-2IK6sy-J-frmz0RNdm65XAsDQKX4,3280
169
+ py2ls/data/styles/style7.json,sha256=StdUFwIVrS7T_6CDrADHMorzc0WZFWBM7IyYdO1TPHg,4447
170
+ py2ls/data/styles/style8.json,sha256=8XUgkZtew8ebvjbAHlDHCSWUqNra3ktDvMCO4vNh-CM,4456
171
+ py2ls/data/styles/style9.json,sha256=PLxvntbH_kfzZlnCTtCEAUVBGi5m6Lngb9C01rArQog,4769
160
172
  py2ls/db2ls.py,sha256=MMfFX47aIPIyu7fU9aPvX9lbPRPYOpJ_VXwlnWk-8qo,13615
161
173
  py2ls/doc.py,sha256=xN3g1OWfoaGUhikbJ0NqbN5eKy1VZVvWwRlhHMgyVEc,4243
162
174
  py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,2325
163
175
  py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
164
176
  py2ls/ips.py,sha256=N7MdOCgJXDQu73YkJQTtDN3RSntzXX7V0MOJ1NYBLEk,100572
165
177
  py2ls/netfinder.py,sha256=KJIvg3JZSsy1dJZHNJvd9Y3oyYG0mbdTjtXimdRs8e8,49182
166
- py2ls/plot.py,sha256=ytJf3sWUg-52n5A2RsKd9jfCw3f1sYLPIDc0eOvaQRg,69606
178
+ py2ls/plot.py,sha256=DeGchynrr5KHivV-vgrOj3pUMi75SaBVRbUc3XkZe7c,82630
167
179
  py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
168
180
  py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
169
- py2ls/stats.py,sha256=gPlnPkyLDZnBlWXZ4atCC5_Q0S1nbXwyxL7FGROLq5Q,48025
181
+ py2ls/stats.py,sha256=U2yeTYUkInI4JXtfhdSbSAzna_h8rh8MZmY31o51_EU,38169
170
182
  py2ls/translator.py,sha256=bc5FB-wqC4TtQz9gyCP1mE38HqNRJ_pmuRIgKnAlMzM,30581
171
183
  py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
172
- py2ls-0.1.9.4.dist-info/METADATA,sha256=-idfSTkT2AmukiwTq4TLQM2xEjZgnG5X9hhYW0xpfcg,20017
173
- py2ls-0.1.9.4.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
174
- py2ls-0.1.9.4.dist-info/RECORD,,
184
+ py2ls-0.1.9.5.dist-info/METADATA,sha256=sQK7r2gM_Az7cKffERl81if1FJ7Qn0viiNTkijjcmvI,20017
185
+ py2ls-0.1.9.5.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
186
+ py2ls-0.1.9.5.dist-info/RECORD,,