py2ls 0.1.9.3__py3-none-any.whl → 0.1.9.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py2ls/.DS_Store +0 -0
- py2ls/.git/COMMIT_EDITMSG +1 -1
- py2ls/.git/FETCH_HEAD +1 -1
- py2ls/.git/index +0 -0
- py2ls/.git/logs/HEAD +1 -0
- py2ls/.git/logs/refs/heads/main +1 -0
- py2ls/.git/logs/refs/remotes/origin/HEAD +2 -0
- py2ls/.git/logs/refs/remotes/origin/main +1 -0
- py2ls/.git/objects/12/c2808a1b3a4d0892a4154dfba1e2ae3770fa73 +0 -0
- py2ls/.git/objects/1c/9314c5f69b9390068a2a8616875d974849d71f +0 -0
- py2ls/.git/objects/2a/ae95d517d213b660bf4f65a4e0cfae7bb893eb +0 -0
- py2ls/.git/objects/34/9e31b6a3634cea102ce5588b98c11cc1738605 +0 -0
- py2ls/.git/objects/45/b1b6178bacbfc997811a998b5cc60c1ea7fac8 +0 -0
- py2ls/.git/objects/57/63d0c52f5c9c69e89d514a1f96034947abe21a +0 -0
- py2ls/.git/objects/59/380c4c26bdcd4d9b71ae3e2e35f05b3f26c5ab +0 -0
- py2ls/.git/objects/66/6227eeeba24073e63811e89f1449f3d958f183 +0 -0
- py2ls/.git/objects/66/c998778721d424bd0aae80602dabbffa93af2e +0 -0
- py2ls/.git/objects/6d/c2cdf4a84e538e5d4777486aeff87e42f41799 +2 -0
- py2ls/.git/objects/72/245a05b0966011cb381e6b32b0465000e969ab +0 -0
- py2ls/.git/objects/72/e4179337639859678ddaecf38b16f33aaec8e1 +0 -0
- py2ls/.git/objects/a1/906da89d1174f74867800c74c43af36253bd5e +0 -0
- py2ls/.git/objects/d2/992df305f4b56a466a2f221aeb182ddd20f418 +0 -0
- py2ls/.git/objects/dc/c2bdbafb3296e09d9ee4955cfa55d275825f94 +5 -0
- py2ls/.git/objects/dc/cdbd4266765d840be2ae35ab1752a0fa312c16 +0 -0
- py2ls/.git/objects/e2/f2f8f4c25e62a297fc55f36acc6b01cfbab76f +3 -0
- py2ls/.git/objects/ea/3a18cc75e53792744ef754e05d3f4481768c13 +0 -0
- py2ls/.git/objects/ec/40fd8bf8e4c342534a9fc020289e402ba6bc9d +0 -0
- py2ls/.git/objects/f4/ba7f815b886797b73fede071d86e0c134d2bc7 +0 -0
- py2ls/.git/objects/f6/44a8ff56fa035105fc517cbb1ac46c3d8e349a +0 -0
- py2ls/.git/refs/heads/main +1 -1
- py2ls/.git/refs/remotes/origin/main +1 -1
- py2ls/data/styles/example/style1.pdf +0 -0
- py2ls/data/styles/example/style2.pdf +0 -0
- py2ls/data/styles/example/style3.pdf +0 -0
- py2ls/data/styles/example/style4.pdf +0 -0
- py2ls/data/styles/example/style5.pdf +0 -0
- py2ls/data/styles/example/style6.pdf +0 -0
- py2ls/data/styles/example/style7.pdf +0 -0
- py2ls/data/styles/example/style8.pdf +0 -0
- py2ls/data/styles/example/style9.pdf +0 -0
- py2ls/data/styles/style6.json +31 -20
- py2ls/data/styles/style7.json +201 -0
- py2ls/data/styles/style8.json +199 -0
- py2ls/data/styles/style9.json +215 -0
- py2ls/netfinder.py +0 -8
- py2ls/plot.py +561 -126
- py2ls/stats.py +182 -372
- {py2ls-0.1.9.3.dist-info → py2ls-0.1.9.5.dist-info}/METADATA +1 -1
- {py2ls-0.1.9.3.dist-info → py2ls-0.1.9.5.dist-info}/RECORD +50 -17
- {py2ls-0.1.9.3.dist-info → py2ls-0.1.9.5.dist-info}/WHEEL +0 -0
py2ls/stats.py
CHANGED
|
@@ -12,7 +12,7 @@ warnings.filterwarnings("ignore", category=RuntimeWarning)
|
|
|
12
12
|
|
|
13
13
|
# FuncStars --v 0.1.1
|
|
14
14
|
def FuncStars(
|
|
15
|
-
ax,
|
|
15
|
+
ax=None,
|
|
16
16
|
pval=None,
|
|
17
17
|
ylim=None,
|
|
18
18
|
xlim=None,
|
|
@@ -33,10 +33,11 @@ def FuncStars(
|
|
|
33
33
|
linewidth=0.8,
|
|
34
34
|
nsshow="off",
|
|
35
35
|
symbolcolor="k",
|
|
36
|
-
tailindicator=[0.
|
|
36
|
+
tailindicator=[0.05, 0.05],
|
|
37
37
|
report=None,
|
|
38
38
|
report_scale=-0.1,
|
|
39
39
|
report_loc=None,
|
|
40
|
+
**kwargs
|
|
40
41
|
):
|
|
41
42
|
if ax is None:
|
|
42
43
|
ax = plt.gca()
|
|
@@ -51,138 +52,141 @@ def FuncStars(
|
|
|
51
52
|
yscale = np.float64(yscale)
|
|
52
53
|
if y_loc is None:
|
|
53
54
|
y_loc = np.min(ylim) + yscale * (np.max(ylim) - np.min(ylim))
|
|
55
|
+
else:
|
|
56
|
+
y_loc=y_loc+(1-yscale) * np.abs(np.diff(ylim))+0.1 *y_loc
|
|
54
57
|
xcenter = np.mean([x1, x2])
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
if
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
58
|
+
if pval is not None:
|
|
59
|
+
# ns / *
|
|
60
|
+
if alpha < pval:
|
|
61
|
+
if nsshow == "on":
|
|
62
|
+
ns_str = f"p={round(pval, 3)}" if pval < 0.9 else "ns"
|
|
63
|
+
color = "m" if pval < 0.1 else "k"
|
|
64
|
+
ax.text(
|
|
65
|
+
xcenter,
|
|
66
|
+
y_loc,
|
|
67
|
+
ns_str,
|
|
68
|
+
ha="center",
|
|
69
|
+
va="bottom", # 'center_baseline',
|
|
70
|
+
fontsize=fontsize - 6 if fontsize > 6 else fontsize,
|
|
71
|
+
fontname=fontname,
|
|
72
|
+
color=color,
|
|
73
|
+
rotation=rotation,
|
|
74
|
+
# bbox=dict(facecolor=None, edgecolor=None, color=None, linewidth=None)
|
|
75
|
+
)
|
|
76
|
+
elif 0.01 < pval <= alpha:
|
|
77
|
+
ax.text(
|
|
61
78
|
xcenter,
|
|
62
79
|
y_loc,
|
|
63
|
-
|
|
80
|
+
symbol,
|
|
64
81
|
ha="center",
|
|
65
|
-
va="
|
|
66
|
-
fontsize=fontsize
|
|
82
|
+
va="top",#"center_baseline",
|
|
83
|
+
fontsize=fontsize,
|
|
67
84
|
fontname=fontname,
|
|
68
|
-
color=
|
|
69
|
-
rotation=rotation,
|
|
70
|
-
# bbox=dict(facecolor=None, edgecolor=None, color=None, linewidth=None)
|
|
85
|
+
color=symbolcolor,
|
|
71
86
|
)
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
)
|
|
83
|
-
elif 0.001 < pval <= 0.01:
|
|
84
|
-
plt.text(
|
|
85
|
-
xcenter,
|
|
86
|
-
y_loc,
|
|
87
|
-
symbol * 2,
|
|
88
|
-
ha="center",
|
|
89
|
-
va="center_baseline",
|
|
90
|
-
fontsize=fontsize,
|
|
91
|
-
fontname=fontname,
|
|
92
|
-
color=symbolcolor,
|
|
93
|
-
)
|
|
94
|
-
elif 0 < pval <= 0.001:
|
|
95
|
-
plt.text(
|
|
96
|
-
xcenter,
|
|
97
|
-
y_loc,
|
|
98
|
-
symbol * 3,
|
|
99
|
-
ha="center",
|
|
100
|
-
va="center_baseline",
|
|
101
|
-
fontsize=fontsize,
|
|
102
|
-
fontname=fontname,
|
|
103
|
-
color=symbolcolor,
|
|
104
|
-
)
|
|
105
|
-
# lines indicators
|
|
106
|
-
if linego and 0 < pval <= 0.05:
|
|
107
|
-
# horizontal line
|
|
108
|
-
if yscale <= 0.99:
|
|
109
|
-
plt.plot(
|
|
110
|
-
[x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
111
|
-
[
|
|
112
|
-
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
113
|
-
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
114
|
-
],
|
|
115
|
-
linestyle=linestyle,
|
|
116
|
-
color=linecolor,
|
|
117
|
-
linewidth=linewidth,
|
|
118
|
-
)
|
|
119
|
-
# vertical line
|
|
120
|
-
plt.plot(
|
|
121
|
-
[x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
|
|
122
|
-
[
|
|
123
|
-
y_loc - np.abs(np.diff(ylim)) * tailindicator[0],
|
|
124
|
-
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
125
|
-
],
|
|
126
|
-
linestyle=linestyle,
|
|
127
|
-
color=linecolor,
|
|
128
|
-
linewidth=linewidth,
|
|
129
|
-
)
|
|
130
|
-
plt.plot(
|
|
131
|
-
[x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
132
|
-
[
|
|
133
|
-
y_loc - np.abs(np.diff(ylim)) * tailindicator[1],
|
|
134
|
-
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
135
|
-
],
|
|
136
|
-
linestyle=linestyle,
|
|
137
|
-
color=linecolor,
|
|
138
|
-
linewidth=linewidth,
|
|
139
|
-
)
|
|
140
|
-
else:
|
|
141
|
-
plt.plot(
|
|
142
|
-
[x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
143
|
-
[
|
|
144
|
-
np.min(ylim)
|
|
145
|
-
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
146
|
-
- np.abs(np.diff(ylim)) * 0.002,
|
|
147
|
-
np.min(ylim)
|
|
148
|
-
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
149
|
-
- np.abs(np.diff(ylim)) * 0.002,
|
|
150
|
-
],
|
|
151
|
-
linestyle=linestyle,
|
|
152
|
-
color=linecolor,
|
|
153
|
-
linewidth=linewidth,
|
|
154
|
-
)
|
|
155
|
-
# vertical line
|
|
156
|
-
plt.plot(
|
|
157
|
-
[x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
|
|
158
|
-
[
|
|
159
|
-
np.min(ylim)
|
|
160
|
-
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
161
|
-
- np.abs(np.diff(ylim)) * tailindicator[0],
|
|
162
|
-
np.min(ylim)
|
|
163
|
-
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
164
|
-
- np.abs(np.diff(ylim)) * 0.002,
|
|
165
|
-
],
|
|
166
|
-
linestyle=linestyle,
|
|
167
|
-
color=linecolor,
|
|
168
|
-
linewidth=linewidth,
|
|
87
|
+
elif 0.001 < pval <= 0.01:
|
|
88
|
+
ax.text(
|
|
89
|
+
xcenter,
|
|
90
|
+
y_loc,
|
|
91
|
+
symbol * 2,
|
|
92
|
+
ha="center",
|
|
93
|
+
va="top",#"center_baseline",
|
|
94
|
+
fontsize=fontsize,
|
|
95
|
+
fontname=fontname,
|
|
96
|
+
color=symbolcolor,
|
|
169
97
|
)
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
linestyle=linestyle,
|
|
181
|
-
color=linecolor,
|
|
182
|
-
linewidth=linewidth,
|
|
98
|
+
elif 0 < pval <= 0.001:
|
|
99
|
+
ax.text(
|
|
100
|
+
xcenter,
|
|
101
|
+
y_loc,
|
|
102
|
+
symbol * 3,
|
|
103
|
+
ha="center",
|
|
104
|
+
va="top",#"center_baseline",
|
|
105
|
+
fontsize=fontsize,
|
|
106
|
+
fontname=fontname,
|
|
107
|
+
color=symbolcolor,
|
|
183
108
|
)
|
|
109
|
+
# lines indicators
|
|
110
|
+
if linego and 0 < pval <= 0.05:
|
|
111
|
+
# horizontal line
|
|
112
|
+
if yscale <= 0.99:
|
|
113
|
+
ax.plot(
|
|
114
|
+
[x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
115
|
+
[
|
|
116
|
+
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
117
|
+
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
118
|
+
],
|
|
119
|
+
linestyle=linestyle,
|
|
120
|
+
color=linecolor,
|
|
121
|
+
linewidth=linewidth,
|
|
122
|
+
)
|
|
123
|
+
# vertical line
|
|
124
|
+
ax.plot(
|
|
125
|
+
[x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
|
|
126
|
+
[
|
|
127
|
+
y_loc - np.abs(np.diff(ylim)) * tailindicator[0],
|
|
128
|
+
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
129
|
+
],
|
|
130
|
+
linestyle=linestyle,
|
|
131
|
+
color=linecolor,
|
|
132
|
+
linewidth=linewidth,
|
|
133
|
+
)
|
|
134
|
+
ax.plot(
|
|
135
|
+
[x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
136
|
+
[
|
|
137
|
+
y_loc - np.abs(np.diff(ylim)) * tailindicator[1],
|
|
138
|
+
y_loc - np.abs(np.diff(ylim)) * 0.03,
|
|
139
|
+
],
|
|
140
|
+
linestyle=linestyle,
|
|
141
|
+
color=linecolor,
|
|
142
|
+
linewidth=linewidth,
|
|
143
|
+
)
|
|
144
|
+
else:
|
|
145
|
+
ax.plot(
|
|
146
|
+
[x1 + np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
147
|
+
[
|
|
148
|
+
np.min(ylim)
|
|
149
|
+
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
150
|
+
- np.abs(np.diff(ylim)) * 0.002,
|
|
151
|
+
np.min(ylim)
|
|
152
|
+
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
153
|
+
- np.abs(np.diff(ylim)) * 0.002,
|
|
154
|
+
],
|
|
155
|
+
linestyle=linestyle,
|
|
156
|
+
color=linecolor,
|
|
157
|
+
linewidth=linewidth,
|
|
158
|
+
)
|
|
159
|
+
# vertical line
|
|
160
|
+
ax.plot(
|
|
161
|
+
[x1 + np.abs(np.diff(xlim)) * 0.01, x1 + np.abs(np.diff(xlim)) * 0.01],
|
|
162
|
+
[
|
|
163
|
+
np.min(ylim)
|
|
164
|
+
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
165
|
+
- np.abs(np.diff(ylim)) * tailindicator[0],
|
|
166
|
+
np.min(ylim)
|
|
167
|
+
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
168
|
+
- np.abs(np.diff(ylim)) * 0.002,
|
|
169
|
+
],
|
|
170
|
+
linestyle=linestyle,
|
|
171
|
+
color=linecolor,
|
|
172
|
+
linewidth=linewidth,
|
|
173
|
+
)
|
|
174
|
+
ax.plot(
|
|
175
|
+
[x2 - np.abs(np.diff(xlim)) * 0.01, x2 - np.abs(np.diff(xlim)) * 0.01],
|
|
176
|
+
[
|
|
177
|
+
np.min(ylim)
|
|
178
|
+
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
179
|
+
- np.abs(np.diff(ylim)) * tailindicator[1],
|
|
180
|
+
np.min(ylim)
|
|
181
|
+
+ 0.95 * (np.max(ylim) - np.min(ylim))
|
|
182
|
+
- np.abs(np.diff(ylim)) * 0.002,
|
|
183
|
+
],
|
|
184
|
+
linestyle=linestyle,
|
|
185
|
+
color=linecolor,
|
|
186
|
+
linewidth=linewidth,
|
|
187
|
+
)
|
|
184
188
|
if values_below is not None:
|
|
185
|
-
|
|
189
|
+
ax.text(
|
|
186
190
|
xcenter,
|
|
187
191
|
y_loc * (-0.1),
|
|
188
192
|
values_below,
|
|
@@ -194,7 +198,7 @@ def FuncStars(
|
|
|
194
198
|
)
|
|
195
199
|
# report / comments
|
|
196
200
|
if report is not None:
|
|
197
|
-
|
|
201
|
+
ax.text(
|
|
198
202
|
xcenter,
|
|
199
203
|
report_loc,
|
|
200
204
|
report,
|
|
@@ -261,7 +265,7 @@ def FuncCmpt(x1, x2, pmc="auto", pair="unpaired", verbose=True):
|
|
|
261
265
|
x1, x2, center="median", proportiontocut=0.05
|
|
262
266
|
)
|
|
263
267
|
VarType = True if pval_lev > 0.05 and nX1 == nX2 else False
|
|
264
|
-
print(pair)
|
|
268
|
+
# print(pair)
|
|
265
269
|
if "np" in pair: # 'unpaired'
|
|
266
270
|
if VarType and Normality:
|
|
267
271
|
# The independent t-test requires that the dependent variable is approximately normally
|
|
@@ -278,7 +282,7 @@ def FuncCmpt(x1, x2, pmc="auto", pair="unpaired", verbose=True):
|
|
|
278
282
|
)
|
|
279
283
|
notes_stat = "unpaired t test"
|
|
280
284
|
notes_APA = (
|
|
281
|
-
f"t({nX1+nX2-2})={round(stat_value,
|
|
285
|
+
f"t({nX1+nX2-2})={round(stat_value,3)},p={round(pval,3)}"
|
|
282
286
|
)
|
|
283
287
|
else:
|
|
284
288
|
# If the Levene's Test for Equality of Variances is statistically significant,
|
|
@@ -297,7 +301,7 @@ def FuncCmpt(x1, x2, pmc="auto", pair="unpaired", verbose=True):
|
|
|
297
301
|
notes_stat = "Welchs t-test"
|
|
298
302
|
# note: APA FORMAT
|
|
299
303
|
notes_APA = (
|
|
300
|
-
f"t({nX1+nX2-2})={round(stat_value,
|
|
304
|
+
f"t({nX1+nX2-2})={round(stat_value,3)},p={round(pval,3)}"
|
|
301
305
|
)
|
|
302
306
|
elif "pa" in pair and "np" not in pair: # 'paired'
|
|
303
307
|
# the paired-samples t-test is considered “robust” in handling violations of normality
|
|
@@ -309,7 +313,7 @@ def FuncCmpt(x1, x2, pmc="auto", pair="unpaired", verbose=True):
|
|
|
309
313
|
notes_stat = "paired t test"
|
|
310
314
|
# note: APA FORMAT
|
|
311
315
|
notes_APA = (
|
|
312
|
-
f"t({sum([nX1-1])})={round(stat_value,
|
|
316
|
+
f"t({sum([nX1-1])})={round(stat_value,3)},p={round(pval,3)}"
|
|
313
317
|
)
|
|
314
318
|
elif cfg_pmc == "non-parametric":
|
|
315
319
|
if "np" in pair: # Perform Mann-Whitney
|
|
@@ -318,18 +322,18 @@ def FuncCmpt(x1, x2, pmc="auto", pair="unpaired", verbose=True):
|
|
|
318
322
|
)
|
|
319
323
|
notes_stat = "Mann-Whitney U"
|
|
320
324
|
if nX1 == nX2:
|
|
321
|
-
notes_APA = f"U(n={nX1})={round(stat_value,
|
|
325
|
+
notes_APA = f"U(n={nX1})={round(stat_value,3)},p={round(pval,3)}"
|
|
322
326
|
else:
|
|
323
|
-
notes_APA = f"U(n1={nX1},n2={nX2})={round(stat_value,
|
|
327
|
+
notes_APA = f"U(n1={nX1},n2={nX2})={round(stat_value,3)},p={round(pval,3)}"
|
|
324
328
|
elif "pa" in pair and "np" not in pair: # Wilcoxon signed-rank test
|
|
325
329
|
stat_value, pval = stats.wilcoxon(
|
|
326
330
|
x1, x2, method="exact", nan_policy="omit"
|
|
327
331
|
)
|
|
328
332
|
notes_stat = "Wilcoxon signed-rank"
|
|
329
333
|
if nX1 == nX2:
|
|
330
|
-
notes_APA = f"Z(n={nX1})={round(stat_value,
|
|
334
|
+
notes_APA = f"Z(n={nX1})={round(stat_value,3)},p={round(pval,3)}"
|
|
331
335
|
else:
|
|
332
|
-
notes_APA = f"Z(n1={nX1},n2={nX2})={round(stat_value,
|
|
336
|
+
notes_APA = f"Z(n1={nX1},n2={nX2})={round(stat_value,3)},p={round(pval,3)}"
|
|
333
337
|
|
|
334
338
|
# filling output
|
|
335
339
|
output["stat"] = stat_value
|
|
@@ -383,7 +387,7 @@ def FuncCmpt(x1, x2, pmc="auto", pair="unpaired", verbose=True):
|
|
|
383
387
|
# =============================================================================
|
|
384
388
|
|
|
385
389
|
|
|
386
|
-
def str_mean_sem(data: list, delimit=
|
|
390
|
+
def str_mean_sem(data: list, delimit=3):
|
|
387
391
|
mean_ = np.nanmean(data)
|
|
388
392
|
sem_ = np.nanstd(data, ddof=1) / np.sqrt(sum(~np.isnan(data)))
|
|
389
393
|
return str(round(mean_, delimit)) + "±" + str(round(sem_, delimit))
|
|
@@ -404,6 +408,7 @@ def FuncMultiCmpt(
|
|
|
404
408
|
subject=None,
|
|
405
409
|
group=None,
|
|
406
410
|
verbose=True,
|
|
411
|
+
post_hoc=False
|
|
407
412
|
):
|
|
408
413
|
if group is None:
|
|
409
414
|
group = factor
|
|
@@ -515,12 +520,12 @@ def FuncMultiCmpt(
|
|
|
515
520
|
if "np" in cfg_pair: # 'unpaired'
|
|
516
521
|
res_tab = run_kruskal(data, dv, factor)
|
|
517
522
|
notes_stat = f"Non-parametric Kruskal: {data[factor].nunique()} Way ANOVA"
|
|
518
|
-
notes_APA = f'H({res_tab.ddof1[0]},
|
|
523
|
+
notes_APA = [f'H({res_tab.ddof1[0]},N={data.shape[0]})={round(res_tab.H[0],3)},p={round(res_tab["p-unc"][0],3)}']
|
|
519
524
|
|
|
520
525
|
elif "pa" in cfg_pair and "np" not in cfg_pair: # 'paired'
|
|
521
526
|
res_tab = run_friedman(data, dv, factor, subject, method="chisq")
|
|
522
527
|
notes_stat = f"Non-parametric {data[factor].nunique()} Way Friedman repeated measures ANOVA"
|
|
523
|
-
notes_APA = f'X^2({res_tab.ddof1[0]})={round(res_tab.Q[0],
|
|
528
|
+
notes_APA = [f'X^2({res_tab.ddof1[0]})={round(res_tab.Q[0],3)},p={round(res_tab["p-unc"][0],3)}']
|
|
524
529
|
|
|
525
530
|
# =============================================================================
|
|
526
531
|
# # Post-hoc
|
|
@@ -535,7 +540,10 @@ def FuncMultiCmpt(
|
|
|
535
540
|
go_mix_between = None if ("pa" in cfg_pair) or ("np" not in cfg_pair) else factor
|
|
536
541
|
go_mix_within = within if ("mix" in cfg_pair) or ("both" in cfg_pair) else None
|
|
537
542
|
go_mix_within = factor if ("pa" in cfg_pair) or ("np" not in cfg_pair) else None
|
|
543
|
+
|
|
538
544
|
if res_tab["p-unc"][0] <= 0.05:
|
|
545
|
+
post_hoc=True
|
|
546
|
+
if post_hoc:
|
|
539
547
|
# Pairwise Comparisons
|
|
540
548
|
method_post_hoc = [
|
|
541
549
|
"bonf", # 'bonferroni', # : one-step correction
|
|
@@ -602,7 +610,10 @@ def FuncMultiCmpt(
|
|
|
602
610
|
# # filling output
|
|
603
611
|
# =============================================================================
|
|
604
612
|
|
|
605
|
-
pd.set_option(
|
|
613
|
+
pd.set_option('display.max_columns', None) # Show all columns
|
|
614
|
+
pd.set_option('display.max_colwidth', None) # No limit on column width
|
|
615
|
+
pd.set_option('display.expand_frame_repr', False) # Prevent line-wrapping
|
|
616
|
+
|
|
606
617
|
output["stat"] = notes_stat
|
|
607
618
|
# print(output['APA'])
|
|
608
619
|
output["APA"] = notes_APA
|
|
@@ -616,21 +627,21 @@ def FuncMultiCmpt(
|
|
|
616
627
|
def display_output(output: dict):
|
|
617
628
|
if isinstance(output, pd.DataFrame):
|
|
618
629
|
output = output.to_dict(orient="list")
|
|
619
|
-
# ['res_posthoc', 'stat', 'APA', 'pval', 'res_tab']
|
|
620
|
-
|
|
621
|
-
#
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
except:
|
|
626
|
-
|
|
630
|
+
# ['res_posthoc', 'stat', 'APA', 'pval', 'res_tab']
|
|
631
|
+
|
|
632
|
+
# ? show APA
|
|
633
|
+
# print(f"\n\ndisplay stat_output")
|
|
634
|
+
# try:
|
|
635
|
+
# print(f"APA: {output["APA"]}")
|
|
636
|
+
# except:
|
|
637
|
+
# pass
|
|
627
638
|
try:
|
|
628
|
-
print("
|
|
639
|
+
print("stats table: ⤵")
|
|
629
640
|
display(output["res_tab"])
|
|
630
641
|
except:
|
|
631
642
|
pass
|
|
632
643
|
try:
|
|
633
|
-
print("
|
|
644
|
+
print(f"APA ⤵\n{output["APA"][0]} ⤵\npost-hoc analysis ⤵")
|
|
634
645
|
display(output["res_posthoc"])
|
|
635
646
|
except:
|
|
636
647
|
pass
|
|
@@ -692,17 +703,19 @@ def extract_apa(res_tab):
|
|
|
692
703
|
notes_APA = []
|
|
693
704
|
if "ddof1" in res_tab:
|
|
694
705
|
for irow in range(res_tab.shape[0]):
|
|
695
|
-
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.ddof1[irow]),round(res_tab.ddof2[irow])}={round(res_tab.F[irow],
|
|
696
|
-
notes_APA.append(
|
|
706
|
+
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.ddof1[irow]),round(res_tab.ddof2[irow])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
|
|
707
|
+
notes_APA.append(note_tmp)
|
|
697
708
|
elif "DF" in res_tab:
|
|
709
|
+
print("here")
|
|
710
|
+
display(res_tab)
|
|
698
711
|
for irow in range(res_tab.shape[0] - 1):
|
|
699
|
-
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF[irow]),round(res_tab.DF[res_tab.shape[0]-1])}={round(res_tab.F[irow],
|
|
700
|
-
notes_APA.append(
|
|
701
|
-
notes_APA.append(
|
|
712
|
+
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF[irow]),round(res_tab.DF[res_tab.shape[0]-1])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
|
|
713
|
+
notes_APA.append(note_tmp)
|
|
714
|
+
notes_APA.append(np.nan)
|
|
702
715
|
elif "DF1" in res_tab: # in 'mix' case
|
|
703
716
|
for irow in range(res_tab.shape[0]):
|
|
704
|
-
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF1[irow]),round(res_tab.DF2[irow])}={round(res_tab.F[irow],
|
|
705
|
-
notes_APA.append(
|
|
717
|
+
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF1[irow]),round(res_tab.DF2[irow])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
|
|
718
|
+
notes_APA.append(note_tmp)
|
|
706
719
|
return notes_APA
|
|
707
720
|
|
|
708
721
|
|
|
@@ -856,220 +869,7 @@ def df_wide_long(df):
|
|
|
856
869
|
elif rows > columns:
|
|
857
870
|
return "Long"
|
|
858
871
|
|
|
859
|
-
|
|
860
|
-
# =============================================================================
|
|
861
|
-
# # One-way ANOVA
|
|
862
|
-
# =============================================================================
|
|
863
|
-
# url = "http://stats191.stanford.edu/data/rehab.csv"
|
|
864
|
-
# rehab_table = pd.read_table(url, delimiter=",")
|
|
865
|
-
# rehab_table.to_csv("rehab.table")
|
|
866
|
-
# fig, ax = plt.subplots(figsize=(8, 6))
|
|
867
|
-
# fig = rehab_table.boxplot("Time", "Fitness", ax=ax, grid=False)
|
|
868
|
-
# # fig, ax = plt.subplots(figsize=(8, 6))
|
|
869
|
-
# # set_pub()
|
|
870
|
-
# # sns.boxenplot(x="Time",y="Fitness",data = rehab_table)
|
|
871
|
-
|
|
872
|
-
# out2 = FuncMultiCmpt(pmc='pmc', pair='unpair',
|
|
873
|
-
# data=rehab_table, dv='Time', factor='Fitness')
|
|
874
|
-
# # print(out2['res_tab'])
|
|
875
|
-
# # print(out2['APA'])
|
|
876
|
-
# out2['res_posthoc']
|
|
877
|
-
# out2['res_posthoc']['p-unc'][0]
|
|
878
|
-
# out2['res_posthoc']['p-adjust'][0]
|
|
879
|
-
# out2['res_posthoc']['p-corr'][0]
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
# =============================================================================
|
|
883
|
-
# # Interactions and ANOVA
|
|
884
|
-
# https://www.statsmodels.org/dev/examples/notebooks/generated/interactions_anova.html
|
|
885
|
-
# url = "http://stats191.stanford.edu/data/salary.table"
|
|
886
|
-
# fh = urlopen(url)
|
|
887
|
-
# df = pd.read_table(fh)
|
|
888
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
|
|
889
|
-
# dv='S', factor=['X', 'E', 'M'], group='M')
|
|
890
|
-
# # # two-way anova
|
|
891
|
-
# # https://www.statology.org/two-way-anova-python/
|
|
892
|
-
# # =============================================================================
|
|
893
|
-
# # df = pd.DataFrame({'water': np.repeat(['daily', 'weekly'], 15),
|
|
894
|
-
# # 'sun': np.tile(np.repeat(['low', 'med', 'high'], 5), 2),
|
|
895
|
-
# # 'height': [6, 6, 6, 5, 6, 5, 5, 6, 4, 5,
|
|
896
|
-
# # 6, 6, 7, 8, 7, 3, 4, 4, 4, 5,
|
|
897
|
-
# # 4, 4, 4, 4, 4, 5, 6, 6, 7, 8]})
|
|
898
|
-
# # out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
|
|
899
|
-
# # dv='height', factor=['water','sun'],group='water')
|
|
900
|
-
|
|
901
|
-
|
|
902
|
-
# =============================================================================
|
|
903
|
-
# # two way anova
|
|
904
|
-
# https://www.geeksforgeeks.org/how-to-perform-a-two-way-anova-in-python/
|
|
905
|
-
# =============================================================================
|
|
906
|
-
# df1=pd.DataFrame({'Fertilizer': np.repeat(['daily', 'weekly'], 15),
|
|
907
|
-
# 'Watering': np.repeat(['daily', 'weekly'], 15),
|
|
908
|
-
# 'height': [14, 16, 15, 15, 16, 13, 12, 11,
|
|
909
|
-
# 14, 15, 16, 16, 17, 18, 14, 13,
|
|
910
|
-
# 14, 14, 14, 15, 16, 16, 17, 18,
|
|
911
|
-
# 14, 13, 14, 14, 14, 15]})
|
|
912
|
-
|
|
913
|
-
# df1['subject'] = np.tile(range(0, 15), (1, 2)).T
|
|
914
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df1,
|
|
915
|
-
# dv='height', factor=['Fertilizer','Watering'],group='Watering')
|
|
916
|
-
# # print(out1['stat'])
|
|
917
|
-
# # print(out1['res_tab'])
|
|
918
|
-
|
|
919
|
-
# =============================================================================
|
|
920
|
-
# # welch anova
|
|
921
|
-
# https://www.geeksforgeeks.org/how-to-perform-welchs-anova-in-python/
|
|
922
|
-
# =============================================================================
|
|
923
|
-
# df = pd.DataFrame({'score': [64, 66, 68, 75, 78, 94, 98, 79, 71, 80,
|
|
924
|
-
# 91, 92, 93, 90, 97, 94, 82, 88, 95, 96,
|
|
925
|
-
# 79, 78, 88, 94, 92, 85, 83, 85, 82, 81],
|
|
926
|
-
# 'group': np.repeat(['strat1', 'strat2', 'strat3'],repeats=10)})
|
|
927
|
-
# out1 = FuncMultiCmpt(pmc='auto',pair='unpaired',data=df, dv='score', factor='group', group='group')
|
|
928
|
-
# =============================================================================
|
|
929
|
-
# # two way anova
|
|
930
|
-
# https://www.statology.org/two-way-anova-python/
|
|
931
|
-
# =============================================================================
|
|
932
|
-
# df = pd.DataFrame({'water': np.repeat(['daily', 'weekly'], 15),
|
|
933
|
-
# 'sun': np.tile(np.repeat(['low', 'med', 'high'], 5), 2),
|
|
934
|
-
# 'height': [6, 6, 6, 5, 6, 5, 5, 6, 4, 5,
|
|
935
|
-
# 6, 6, 7, 8, 7, 3, 4, 4, 4, 5,
|
|
936
|
-
# 4, 4, 4, 4, 4, 5, 6, 6, 7, 8]})
|
|
937
|
-
# df['subject'] = np.tile(range(0, 15), (1, 2)).T
|
|
938
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
|
|
939
|
-
# dv='height', factor=['water', 'sun'], subject='subject', group='water')
|
|
940
|
-
# # print(out1['stat'])
|
|
941
|
-
# # print(out1['res_tab'])
|
|
942
|
-
|
|
943
|
-
# =============================================================================
|
|
944
|
-
# # 3-way ANOVA
|
|
945
|
-
# =============================================================================
|
|
946
|
-
# df = pd.DataFrame({'program': np.repeat([1, 2], 20),
|
|
947
|
-
# 'gender': np.tile(np.repeat(['M', 'F'], 10), 2),
|
|
948
|
-
# 'division': np.tile(np.repeat([1, 2], 5), 4),
|
|
949
|
-
# 'height': [7, 7, 8, 8, 7, 6, 6, 5, 6, 5,
|
|
950
|
-
# 5, 5, 4, 5, 4, 3, 3, 4, 3, 3,
|
|
951
|
-
# 6, 6, 5, 4, 5, 4, 5, 4, 4, 3,
|
|
952
|
-
# 2, 2, 1, 4, 4, 2, 1, 1, 2, 1]})
|
|
953
|
-
# df['subject'] = np.tile(range(0, 20), (1, 2)).T
|
|
954
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='unpaired', data=df,
|
|
955
|
-
# dv='height', factor=['gender', 'program', 'division'], subject='subject', group='program')
|
|
956
|
-
# # print(out1['stat'])
|
|
957
|
-
# # print(out1['res_tab'])
|
|
958
|
-
|
|
959
|
-
# =============================================================================
|
|
960
|
-
# # Repeated Measures ANOVA in Python
|
|
961
|
-
# =============================================================================
|
|
962
|
-
# df = pd.DataFrame({'patient': np.repeat([1, 2, 3, 4, 5], 4),
|
|
963
|
-
# 'drug': np.tile([1, 2, 3, 4], 5),
|
|
964
|
-
# 'response': [30, 28, 16, 34,
|
|
965
|
-
# 14, 18, 10, 22,
|
|
966
|
-
# 24, 20, 18, 30,
|
|
967
|
-
# 38, 34, 20, 44,
|
|
968
|
-
# 26, 28, 14, 30]})
|
|
969
|
-
# # df['subject'] = np.tile(range(0, 20), (1, 2)).T
|
|
970
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='paired', data=df,
|
|
971
|
-
# dv='response', factor=['drug'], subject='patient', group='drug')
|
|
972
|
-
# print(out1['stat'])
|
|
973
|
-
# print(out1['res_tab'])
|
|
974
|
-
# print(out1['APA'])
|
|
975
|
-
|
|
976
|
-
# =============================================================================
|
|
977
|
-
# # repeated anova
|
|
978
|
-
# https://www.geeksforgeeks.org/how-to-perform-a-repeated-measures-anova-in-python/
|
|
979
|
-
# =============================================================================
|
|
980
|
-
# df = pd.DataFrame({'Cars': np.repeat([1, 2, 3, 4, 5], 4),
|
|
981
|
-
# 'Engine Oil': np.tile([1, 2, 3, 4], 5),
|
|
982
|
-
# 'Mileage': [36, 38, 30, 29,
|
|
983
|
-
# 34, 38, 30, 29,
|
|
984
|
-
# 34, 28, 38, 32,
|
|
985
|
-
# 38, 34, 20, 44,
|
|
986
|
-
# 26, 28, 34, 50]})
|
|
987
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='paired', data=df,
|
|
988
|
-
# dv='Mileage', factor=['Engine Oil'], subject='Cars', group='Cars')
|
|
989
|
-
# =============================================================================
|
|
990
|
-
# #two-way repeated anova
|
|
991
|
-
# =============================================================================
|
|
992
|
-
# df = pd.read_csv(
|
|
993
|
-
# "https://reneshbedre.github.io/assets/posts/anova/plants_leaves_two_within.csv")
|
|
994
|
-
# df
|
|
995
|
-
# # df['subject'] = np.tile(range(0, 20), (1, 2)).T
|
|
996
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='paired', data=df,
|
|
997
|
-
# dv='num_leaves', factor=['year', 'time'], subject='plants', group='year')
|
|
998
|
-
# print(out1['stat'])
|
|
999
|
-
# print(out1['res_tab'])
|
|
1000
|
-
# print(out1['APA'])
|
|
1001
|
-
|
|
1002
|
-
# =============================================================================
|
|
1003
|
-
# # repeated anova
|
|
1004
|
-
# =============================================================================
|
|
1005
|
-
# df = pd.read_csv('/Users/macjianfeng/Desktop/test.csv')
|
|
1006
|
-
# df.head()
|
|
1007
|
-
# df.loc[df['animal'].str.contains('Sleep'), 'experiment'] = 'sleep'
|
|
1008
|
-
# df.loc[df['animal'].str.contains('Wake'), 'experiment'] = 'wake'
|
|
1009
|
-
# df.loc[df['variable'].str.contains('hypo'), 'region'] = 'hypo'
|
|
1010
|
-
# df.loc[df['variable'].str.contains('cort'), 'region'] = 'cort'
|
|
1011
|
-
# df
|
|
1012
|
-
# for i in range(4):
|
|
1013
|
-
# match i:
|
|
1014
|
-
# case 0:
|
|
1015
|
-
# prot_name = 'A1'
|
|
1016
|
-
# case 1:
|
|
1017
|
-
# prot_name = 'A2'
|
|
1018
|
-
# case 2:
|
|
1019
|
-
# prot_name = '845'
|
|
1020
|
-
# case 3:
|
|
1021
|
-
# prot_name = '831'
|
|
1022
|
-
# df_tmp = df[df["variable"].str.contains(prot_name)]
|
|
1023
|
-
# df_tmp['protein'] = prot_name
|
|
1024
|
-
# df_tmp = df_tmp.reset_index()
|
|
1025
|
-
# print(df_tmp)
|
|
1026
|
-
|
|
1027
|
-
# out1 = FuncMultiCmpt(pmc='pmc', pair='mix', data=df_tmp,
|
|
1028
|
-
# dv='value', between='experiment', within='region', subject='animal', group='experiment')
|
|
1029
|
-
# print(out1['stat'])
|
|
1030
|
-
# print(out1['res_tab'])
|
|
1031
|
-
# # =============================================================================
|
|
1032
|
-
# One-way ANOVA
|
|
1033
|
-
# df1 = pd.read_csv('/Users/macjianfeng/Desktop/Book2.csv')
|
|
1034
|
-
# df2 = df1.melt()
|
|
1035
|
-
# out1 = FuncMultiCmpt(pmc='npmc', pair='unpaired', data=df2,
|
|
1036
|
-
# dv='libido', factor=['brand x', 'brand y', 'brand z'], subject='participant')
|
|
1037
|
-
# print(out1['stat'])
|
|
1038
|
-
# print(out1['res_tab'])
|
|
1039
|
-
# =============================================================================
|
|
1040
|
-
|
|
1041
|
-
|
|
1042
|
-
# =============================================================================
|
|
1043
|
-
# # #One-way ANOVA new example: https://www.pythonfordatascience.org/anova-python/
|
|
1044
|
-
# =============================================================================
|
|
1045
|
-
# df1 = pd.read_csv(
|
|
1046
|
-
# "https://raw.githubusercontent.com/researchpy/Data-sets/master/difficile.csv")
|
|
1047
|
-
# df1.drop('person', axis=1, inplace=True)
|
|
1048
|
-
# # Recoding value from numeric to string
|
|
1049
|
-
# df1['dose'].replace({1: 'placebo', 2: 'low', 3: 'high'}, inplace=True)
|
|
1050
|
-
# df1.head(10)
|
|
1051
|
-
|
|
1052
|
-
# out3= FuncMultiCmpt(pmc='pmc', data=df1, dv='libido', factor='dose')
|
|
1053
|
-
# # print(out3['res_tab'])
|
|
1054
|
-
# # # print(out3['res_posthoc'])
|
|
1055
|
-
# # print(out3['APA'])
|
|
1056
|
-
|
|
1057
|
-
# =============================================================================
|
|
1058
|
-
# https://lifewithdata.com/2023/06/08/how-to-perform-a-two-way-anova-in-python/
|
|
1059
|
-
# =============================================================================
|
|
1060
|
-
# data = {
|
|
1061
|
-
# 'Diet': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C'],
|
|
1062
|
-
# 'Workout': ['Low', 'Medium', 'High', 'Low', 'Medium', 'High', 'Low', 'Medium', 'High', 'Low', 'Medium', 'High'],
|
|
1063
|
-
# 'WeightLoss': [3, 4, 5, 3.2, 5, 6, 5.2, 6, 5.5, 4, 5.5, 6.2]
|
|
1064
|
-
# }
|
|
1065
|
-
# df = pd.DataFrame(data)
|
|
1066
|
-
# out4= FuncMultiCmpt(pmc='pmc', pair='unpaired',data=df, dv='WeightLoss', factor=['Diet','Workout'],group='Diet')
|
|
1067
|
-
|
|
1068
|
-
# =============================================================================
|
|
1069
|
-
# # convert to list to string
|
|
1070
|
-
# =============================================================================
|
|
1071
|
-
|
|
1072
|
-
|
|
872
|
+
|
|
1073
873
|
def sort_rows_move_nan(arr, sort=False):
|
|
1074
874
|
# Handle edge cases where all values are NaN
|
|
1075
875
|
if np.all(np.isnan(arr)):
|
|
@@ -1106,11 +906,11 @@ def sort_rows_move_nan(arr, sort=False):
|
|
|
1106
906
|
return clean_arr_
|
|
1107
907
|
|
|
1108
908
|
|
|
1109
|
-
def df2array(data: pd.DataFrame, x, y, hue=None, sort=False):
|
|
909
|
+
def df2array(data: pd.DataFrame, x=None, y=None, hue=None, sort=False):
|
|
1110
910
|
if hue is None:
|
|
1111
911
|
a = []
|
|
1112
912
|
if sort:
|
|
1113
|
-
np.sort(data[x].unique().tolist()).tolist()
|
|
913
|
+
cat_x=np.sort(data[x].unique().tolist()).tolist()
|
|
1114
914
|
else:
|
|
1115
915
|
cat_x = data[x].unique().tolist()
|
|
1116
916
|
for i, x_ in enumerate(cat_x):
|
|
@@ -1131,7 +931,17 @@ def df2array(data: pd.DataFrame, x, y, hue=None, sort=False):
|
|
|
1131
931
|
a = padcat(a, new_, axis=0)
|
|
1132
932
|
return sort_rows_move_nan(a).T
|
|
1133
933
|
|
|
1134
|
-
|
|
934
|
+
def array2df(data: np.ndarray):
|
|
935
|
+
df = pd.DataFrame()
|
|
936
|
+
df["group"] = (
|
|
937
|
+
np.tile(
|
|
938
|
+
["group" + str(i) for i in range(1, data.shape[1] + 1)], [data.shape[0], 1]
|
|
939
|
+
)
|
|
940
|
+
.reshape(-1, 1, order="F")[:, 0]
|
|
941
|
+
.tolist()
|
|
942
|
+
)
|
|
943
|
+
df["value"] = data.reshape(-1, 1, order="F")
|
|
944
|
+
return df
|
|
1135
945
|
def padcat(*args, fill_value=np.nan, axis=1, order="row"):
|
|
1136
946
|
"""
|
|
1137
947
|
Concatenate vectors with padding.
|