py2ls 0.1.6.2__py3-none-any.whl → 0.1.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py2ls/ips.py +0 -344
- py2ls/plot.py +1109 -0
- {py2ls-0.1.6.2.dist-info → py2ls-0.1.6.3.dist-info}/METADATA +1 -1
- {py2ls-0.1.6.2.dist-info → py2ls-0.1.6.3.dist-info}/RECORD +5 -8
- py2ls/plot/catplot.py +0 -437
- py2ls/plot/figsets.py +0 -372
- py2ls/plot/get_color.py +0 -68
- py2ls/plot/stdshade.py +0 -227
- {py2ls-0.1.6.2.dist-info → py2ls-0.1.6.3.dist-info}/WHEEL +0 -0
@@ -133,17 +133,14 @@ py2ls/data/lang_code_iso639.json,sha256=qZiU7H2RLJjDMXK22C-jhwzLJCI5vKmampjB1ys4
|
|
133
133
|
py2ls/db2ls.py,sha256=MMfFX47aIPIyu7fU9aPvX9lbPRPYOpJ_VXwlnWk-8qo,13615
|
134
134
|
py2ls/doc.py,sha256=xN3g1OWfoaGUhikbJ0NqbN5eKy1VZVvWwRlhHMgyVEc,4243
|
135
135
|
py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
|
136
|
-
py2ls/ips.py,sha256=
|
136
|
+
py2ls/ips.py,sha256=c7wH2UVfxYMQqMhODOdtblsFtU-rjeYtAKYruf-UwOU,86155
|
137
137
|
py2ls/netfinder.py,sha256=ZsLWGYMeRuGvxj2nqE0Z8ANoaVl18Necfw0HQfh2q7I,45548
|
138
|
-
py2ls/plot
|
139
|
-
py2ls/plot/figsets.py,sha256=Oavp-biIuzLy8eWkDYQIMWihe56bLEbfMoPKFY_HWUo,15659
|
140
|
-
py2ls/plot/get_color.py,sha256=TBZG8DPCjT9ut24FlxO60bhOeov1iWqkWC7AzP5xQ6Y,2454
|
141
|
-
py2ls/plot/stdshade.py,sha256=0Znt14wjpO3zr33Sg44fNTlVsJ4yOrnF7QGt18FNPCE,7702
|
138
|
+
py2ls/plot.py,sha256=zDoXxFtSaVr8PP5O3ZEsjQnzqgTV8HJl_jFZriuowvM,43517
|
142
139
|
py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
|
143
140
|
py2ls/sleep_events_detectors.py,sha256=36MCuRrpurn0Uvzpo3p3b3_JlVsRNHSWCXbJxCGM3mg,51546
|
144
141
|
py2ls/stats.py,sha256=Wd9yCKQ_61QD29WMEgMuEcreFxF91NmlPW65iWT2B5w,39041
|
145
142
|
py2ls/translator.py,sha256=6S7MmTZmjj8NljVmj0W5uEauu4ePxso3AMf2LvGVRQA,30516
|
146
143
|
py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
|
147
|
-
py2ls-0.1.6.
|
148
|
-
py2ls-0.1.6.
|
149
|
-
py2ls-0.1.6.
|
144
|
+
py2ls-0.1.6.3.dist-info/METADATA,sha256=5qy26Nvrz9rEAyb2SER_MJxtzFeHWWONfwXWC9uDkWw,17943
|
145
|
+
py2ls-0.1.6.3.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
146
|
+
py2ls-0.1.6.3.dist-info/RECORD,,
|
py2ls/plot/catplot.py
DELETED
@@ -1,437 +0,0 @@
|
|
1
|
-
import matplotlib.pyplot as plt
|
2
|
-
import numpy as np
|
3
|
-
from matplotlib.colors import to_rgba
|
4
|
-
from scipy.stats import gaussian_kde
|
5
|
-
|
6
|
-
def catplot(data, *args, **kwargs):
|
7
|
-
"""
|
8
|
-
catplot(data, opt=None, ax=None)
|
9
|
-
|
10
|
-
Args:
|
11
|
-
data (array): data matrix
|
12
|
-
"""
|
13
|
-
def plot_bars(data_m, opt_b, xloc, ax):
|
14
|
-
bar_positions = get_positions(xloc, opt_b['loc'], opt_b['x_width'], data.shape[0])
|
15
|
-
bar_positions=np.nanmean(bar_positions,axis=0)
|
16
|
-
for i, (x, y) in enumerate(zip(bar_positions, data_m)):
|
17
|
-
color = to_rgba(opt_b['FaceColor'][i % len(opt_b['FaceColor'])])
|
18
|
-
ax.bar(x, y,
|
19
|
-
width=opt_b['x_width'],
|
20
|
-
color=color,
|
21
|
-
edgecolor=opt_b['EdgeColor'],
|
22
|
-
alpha=opt_b['FaceAlpha'])
|
23
|
-
|
24
|
-
def plot_errors(data, data_m, opt_e, xloc, ax):
|
25
|
-
error_positions = get_positions(xloc, opt_e['loc'], opt_e['x_width'], data.shape[0])
|
26
|
-
error_positions=np.nanmean(error_positions,axis=0)
|
27
|
-
errors = np.nanstd(data, axis=0)
|
28
|
-
if opt_e['error'] == 'sem':
|
29
|
-
errors /= np.sqrt(np.sum(~np.isnan(data),axis=0))
|
30
|
-
|
31
|
-
if not isinstance(opt_e['FaceColor'],list):
|
32
|
-
opt_e['FaceColor']=[opt_e['FaceColor']]
|
33
|
-
if not isinstance(opt_e['MarkerEdgeColor'],list):
|
34
|
-
opt_e['MarkerEdgeColor']=[opt_e['MarkerEdgeColor']]
|
35
|
-
for i, (x, y, err) in enumerate(zip(error_positions, data_m, errors)):
|
36
|
-
ax.errorbar(x, y, yerr=err,
|
37
|
-
fmt=opt_e['Marker'],
|
38
|
-
ecolor=opt_e['LineColor'],
|
39
|
-
elinewidth=opt_e['LineWidth'],
|
40
|
-
lw=opt_e['LineWidth'],
|
41
|
-
ls=opt_e['LineStyle'],
|
42
|
-
capsize=opt_e['CapSize'],
|
43
|
-
capthick=opt_e['CapLineWidth'],
|
44
|
-
markersize=opt_e['MarkerSize'],
|
45
|
-
mec=opt_e['MarkerEdgeColor'][i % len(opt_e['MarkerEdgeColor'])],
|
46
|
-
mfc=opt_e['FaceColor'][i % len(opt_e['FaceColor'])],
|
47
|
-
visible=opt_e['Visible']
|
48
|
-
)
|
49
|
-
|
50
|
-
def plot_scatter(data, opt_s, xloc, ax):
|
51
|
-
scatter_positions = get_positions(xloc, opt_s['loc'], opt_s['x_width'], data.shape[0])
|
52
|
-
for i, (x, y) in enumerate(zip(scatter_positions.T, data.T)):
|
53
|
-
color = to_rgba(opt_s['FaceColor'][i % len(opt_s['FaceColor'])])
|
54
|
-
ax.scatter(x, y,
|
55
|
-
color=color,
|
56
|
-
alpha=opt_s['FaceAlpha'],
|
57
|
-
edgecolor=opt_s['MarkerEdgeColor'],
|
58
|
-
s=opt_s['MarkerSize'],
|
59
|
-
marker=opt_s['Marker']
|
60
|
-
)
|
61
|
-
|
62
|
-
def plot_boxplot(data, bx_opt, xloc,ax):
|
63
|
-
if 'l' in bx_opt['loc']:
|
64
|
-
X_bx = xloc - bx_opt['x_width']
|
65
|
-
elif 'r' in bx_opt['loc']:
|
66
|
-
X_bx = xloc + bx_opt['x_width']
|
67
|
-
elif 'i' in bx_opt['loc']:
|
68
|
-
X_bx = xloc
|
69
|
-
X_bx[:, 0] += bx_opt['x_width']
|
70
|
-
X_bx[:, -1] -= bx_opt['x_width']
|
71
|
-
elif 'o' in bx_opt['loc']:
|
72
|
-
X_bx = xloc
|
73
|
-
X_bx[:, 0] -= bx_opt['x_width']
|
74
|
-
X_bx[:, -1] += bx_opt['x_width']
|
75
|
-
elif 'c' in bx_opt['loc'] or 'm' in bx_opt['loc']:
|
76
|
-
X_bx = xloc
|
77
|
-
else:
|
78
|
-
X_bx = xloc
|
79
|
-
|
80
|
-
|
81
|
-
boxprops = dict(color=bx_opt['EdgeColor'],
|
82
|
-
linewidth=bx_opt['BoxLineWidth'])
|
83
|
-
flierprops = dict(marker=bx_opt['OutlierMarker'],
|
84
|
-
markerfacecolor=bx_opt['OutlierColor'],
|
85
|
-
markersize=bx_opt['OutlierSize'])
|
86
|
-
whiskerprops = dict(linestyle=bx_opt['WhiskerLineStyle'],
|
87
|
-
color=bx_opt['WhiskerLineColor'],
|
88
|
-
linewidth=bx_opt['WhiskerLineWidth'])
|
89
|
-
capprops = dict(color=bx_opt['CapLineColor'],
|
90
|
-
linewidth=bx_opt['CapLineWidth'],)
|
91
|
-
medianprops = dict(linestyle=bx_opt['MedianLineStyle'],
|
92
|
-
color=bx_opt['MedianLineColor'],
|
93
|
-
linewidth=bx_opt['MedianLineWidth'])
|
94
|
-
meanprops = dict(linestyle=bx_opt['MeanLineStyle'],
|
95
|
-
color=bx_opt['MeanLineColor'],
|
96
|
-
linewidth=bx_opt['MeanLineWidth'])
|
97
|
-
bxp = ax.boxplot(data,
|
98
|
-
positions=X_bx,
|
99
|
-
notch=bx_opt['Notch'],
|
100
|
-
patch_artist=True,
|
101
|
-
boxprops=boxprops,
|
102
|
-
flierprops=flierprops,
|
103
|
-
whiskerprops=whiskerprops,
|
104
|
-
capwidths=bx_opt['CapSize'],
|
105
|
-
showfliers = bx_opt['Outliers'],
|
106
|
-
showcaps = bx_opt['Caps'],
|
107
|
-
capprops=capprops,
|
108
|
-
medianprops=medianprops,
|
109
|
-
meanline=bx_opt['MeanLine'],
|
110
|
-
showmeans=bx_opt['MeanLine'],
|
111
|
-
meanprops =meanprops,
|
112
|
-
widths=bx_opt['x_width'])
|
113
|
-
|
114
|
-
if bx_opt['BoxLineWidth'] < 0.1:
|
115
|
-
bx_opt['EdgeColor'] = 'none'
|
116
|
-
else:
|
117
|
-
bx_opt['EdgeColor'] = bx_opt['EdgeColor']
|
118
|
-
|
119
|
-
for patch, color in zip(bxp['boxes'], bx_opt['FaceColor']):
|
120
|
-
patch.set_facecolor(to_rgba(color, bx_opt['FaceAlpha']))
|
121
|
-
|
122
|
-
if bx_opt['MedianLineTop']:
|
123
|
-
ax.set_children(ax.get_children()[::-1]) # move median line forward
|
124
|
-
|
125
|
-
def plot_violin(data, opt_v, xloc, ax):
|
126
|
-
violin_positions = get_positions(xloc, opt_v['loc'], opt_v['x_width'], data.shape[0])
|
127
|
-
violin_positions = np.nanmean(violin_positions, axis=0)
|
128
|
-
for i, (x, ys) in enumerate(zip(violin_positions, data.T)):
|
129
|
-
ys = ys[~np.isnan(ys)]
|
130
|
-
if len(ys) > 1:
|
131
|
-
kde = gaussian_kde(ys, bw_method=opt_v['BandWidth'])
|
132
|
-
min_val, max_val = ys.min(), ys.max()
|
133
|
-
y_vals = np.linspace(min_val, max_val, opt_v['NumPoints'])
|
134
|
-
kde_vals = kde(y_vals)
|
135
|
-
kde_vals = kde_vals / kde_vals.max() * opt_v['x_width']
|
136
|
-
if 'r' in opt_v['loc'].lower():
|
137
|
-
ax.fill_betweenx(y_vals, x, x + kde_vals,
|
138
|
-
color=opt_v['FaceColor'][i % len(opt_v['FaceColor'])],
|
139
|
-
alpha=opt_v['FaceAlpha'],
|
140
|
-
edgecolor=opt_v['EdgeColor'])
|
141
|
-
elif 'l' in opt_v['loc'].lower() and not 'f' in opt_v['loc'].lower() :
|
142
|
-
ax.fill_betweenx(y_vals, x - kde_vals, x,
|
143
|
-
color=opt_v['FaceColor'][i % len(opt_v['FaceColor'])],
|
144
|
-
alpha=opt_v['FaceAlpha'],
|
145
|
-
edgecolor=opt_v['EdgeColor'])
|
146
|
-
elif 'o' in opt_v['loc'].lower() or 'both' in opt_v['loc'].lower() :
|
147
|
-
ax.fill_betweenx(y_vals, x - kde_vals, x + kde_vals,
|
148
|
-
color=opt_v['FaceColor'][i % len(opt_v['FaceColor'])],
|
149
|
-
alpha=opt_v['FaceAlpha'],
|
150
|
-
edgecolor=opt_v['EdgeColor'])
|
151
|
-
elif 'i' in opt_v['loc'].lower():
|
152
|
-
if i % 2 == 1: # odd number
|
153
|
-
ax.fill_betweenx(y_vals, x -kde_vals, x,
|
154
|
-
color=opt_v['FaceColor'][i % len(opt_v['FaceColor'])],
|
155
|
-
alpha=opt_v['FaceAlpha'],
|
156
|
-
edgecolor=opt_v['EdgeColor'])
|
157
|
-
else:
|
158
|
-
ax.fill_betweenx(y_vals, x, x+kde_vals,
|
159
|
-
color=opt_v['FaceColor'][i % len(opt_v['FaceColor'])],
|
160
|
-
alpha=opt_v['FaceAlpha'],
|
161
|
-
edgecolor=opt_v['EdgeColor'])
|
162
|
-
elif 'f' in opt_v['loc'].lower():
|
163
|
-
ax.fill_betweenx(y_vals, x - kde_vals, x + kde_vals,
|
164
|
-
color=opt_v['FaceColor'][i % len(opt_v['FaceColor'])],
|
165
|
-
alpha=opt_v['FaceAlpha'],
|
166
|
-
edgecolor=opt_v['EdgeColor'])
|
167
|
-
|
168
|
-
def plot_lines(data, opt_l, opt_s, ax):
|
169
|
-
scatter_positions = get_positions(xloc, opt_s['loc'], opt_s['x_width'], data.shape[0])
|
170
|
-
for incol in range(data.shape[1]-1):
|
171
|
-
for irow in range(data.shape[0]):
|
172
|
-
if not np.isnan(data[irow, incol]):
|
173
|
-
if opt_l['LineStyle'] is not None and not opt_l['LineStyle'] =='none':
|
174
|
-
x_data = [scatter_positions[irow, incol], scatter_positions[irow, incol + 1]]
|
175
|
-
y_data = [data[irow, incol], data[irow, incol + 1]]
|
176
|
-
|
177
|
-
|
178
|
-
ax.plot(x_data, y_data,
|
179
|
-
color=opt_l['LineColor'],
|
180
|
-
linestyle=opt_l['LineStyle'],
|
181
|
-
linewidth=opt_l['LineWidth'],
|
182
|
-
alpha=opt_l['LineAlpha'])
|
183
|
-
|
184
|
-
def get_positions(xloc, loc_type, x_width, n_row=None):
|
185
|
-
if 'rand' in loc_type:
|
186
|
-
scatter_positions = np.zeros((n_row, len(xloc)))
|
187
|
-
np.random.seed(111)
|
188
|
-
for i, x in enumerate(xloc):
|
189
|
-
scatter_positions[:, i] = np.random.uniform(x - x_width, x + x_width, n_row)
|
190
|
-
return scatter_positions
|
191
|
-
elif 'l' in loc_type:
|
192
|
-
return np.tile(xloc - x_width,(n_row,1))
|
193
|
-
elif 'r' in loc_type and not 'd' in loc_type:
|
194
|
-
return np.tile(xloc + x_width,(n_row,1))
|
195
|
-
elif 'i' in loc_type:
|
196
|
-
return np.tile(np.concatenate([xloc[:1] + x_width, xloc[1:-1], xloc[-1:] - x_width]),(n_row,1))
|
197
|
-
elif 'o' in loc_type:
|
198
|
-
return np.tile(np.concatenate([xloc[:1] - x_width, xloc[1:-1], xloc[-1:] + x_width]),(n_row,1))
|
199
|
-
else:
|
200
|
-
return np.tile(xloc,(n_row,1))
|
201
|
-
|
202
|
-
opt = kwargs.get('opt',{})
|
203
|
-
ax = kwargs.get('ax',None)
|
204
|
-
if 'ax' not in locals() or ax is None:
|
205
|
-
ax=plt.gca()
|
206
|
-
|
207
|
-
default_colors = np.array([
|
208
|
-
[0, 0, 0],
|
209
|
-
[234, 37, 46],
|
210
|
-
[0, 154, 222],
|
211
|
-
[175, 89, 186],
|
212
|
-
[255, 198, 37],
|
213
|
-
[242, 133, 34]
|
214
|
-
]) / 255.0
|
215
|
-
|
216
|
-
opt.setdefault('c', default_colors)
|
217
|
-
if len(opt['c']) < data.shape[1]:
|
218
|
-
additional_colors = plt.cm.winter(np.linspace(0, 1, data.shape[1] - len(opt['c'])))
|
219
|
-
opt['c'] = np.vstack([opt['c'], additional_colors[:, :3]])
|
220
|
-
|
221
|
-
opt.setdefault('loc', {})
|
222
|
-
opt['loc'].setdefault('go', 0)
|
223
|
-
opt['loc'].setdefault('xloc', np.arange(1, data.shape[1] + 1))
|
224
|
-
|
225
|
-
# export setting
|
226
|
-
opt.setdefault('export', False)
|
227
|
-
opt['export'].setdefault('path', None)
|
228
|
-
print(opt['export'])
|
229
|
-
|
230
|
-
opt.setdefault('b', {})
|
231
|
-
opt['b'].setdefault('go', 0)
|
232
|
-
opt['b'].setdefault('EdgeColor', 'k')
|
233
|
-
opt['b'].setdefault('FaceAlpha', 1)
|
234
|
-
opt['b'].setdefault('EdgeAlpha', 1)
|
235
|
-
opt['b'].setdefault('LineStyle', '-')
|
236
|
-
opt['b'].setdefault('x_width', 0.5)
|
237
|
-
opt['b'].setdefault('ShowBaseLine', 'off')
|
238
|
-
opt['b'].setdefault('loc', 'c')
|
239
|
-
opt['b'].setdefault('FaceColor', opt['c'])
|
240
|
-
|
241
|
-
opt.setdefault('e', {})
|
242
|
-
opt['e'].setdefault('go', 1)
|
243
|
-
opt['e'].setdefault('LineWidth', 1)
|
244
|
-
opt['e'].setdefault('CapLineWidth', 1)
|
245
|
-
opt['e'].setdefault('CapSize', opt['b']['x_width'] * 100 * 0.1)
|
246
|
-
opt['e'].setdefault('Marker', 'none')
|
247
|
-
opt['e'].setdefault('LineStyle', 'none')
|
248
|
-
opt['e'].setdefault('LineColor', 'k')
|
249
|
-
opt['e'].setdefault('LineJoin', 'round')
|
250
|
-
opt['e'].setdefault('MarkerSize', 'auto')
|
251
|
-
opt['e'].setdefault('FaceColor', opt['c'])
|
252
|
-
opt['e'].setdefault('MarkerEdgeColor', 'none')
|
253
|
-
opt['e'].setdefault('Visible', True)
|
254
|
-
opt['e'].setdefault('Orientation', 'vertical')
|
255
|
-
opt['e'].setdefault('error', 'sem')
|
256
|
-
opt['e'].setdefault('loc', 'c')
|
257
|
-
opt['e'].setdefault('x_width', opt['b']['x_width'] / 5)
|
258
|
-
opt['e'].setdefault('cap_dir', 'b')
|
259
|
-
|
260
|
-
opt.setdefault('s', {})
|
261
|
-
opt['s'].setdefault('go', 1)
|
262
|
-
opt['s'].setdefault('x_width', opt['b']['x_width'] / 5)
|
263
|
-
opt['s'].setdefault('Marker', 'o')
|
264
|
-
opt['s'].setdefault('MarkerSize', 6) # Set default size for markers
|
265
|
-
opt['s'].setdefault('LineWidth', 1)
|
266
|
-
opt['s'].setdefault('FaceColor', opt['c'])
|
267
|
-
opt['s'].setdefault('FaceAlpha', 0.6)
|
268
|
-
opt['s'].setdefault('loc', 'random')
|
269
|
-
opt['s'].setdefault('MarkerEdgeColor', None)
|
270
|
-
|
271
|
-
opt.setdefault('bx', {})
|
272
|
-
opt['bx'].setdefault('go', 0)
|
273
|
-
opt['bx'].setdefault('EdgeColor', 'k')
|
274
|
-
opt['bx'].setdefault('FaceAlpha', 1)
|
275
|
-
opt['bx'].setdefault('EdgeAlpha', 1)
|
276
|
-
opt['bx'].setdefault('LineStyle', '-')
|
277
|
-
opt['bx'].setdefault('x_width', 0.5)
|
278
|
-
opt['bx'].setdefault('ShowBaseLine', 'off')
|
279
|
-
opt['bx'].setdefault('loc', 'c')
|
280
|
-
opt['bx'].setdefault('FaceColor', opt['c'])
|
281
|
-
opt['bx'].setdefault('Notch', False)
|
282
|
-
opt['bx'].setdefault('MedianStyle', 'line')
|
283
|
-
opt['bx'].setdefault('Outliers', 'on')
|
284
|
-
opt['bx'].setdefault('OutlierMarker', '+')
|
285
|
-
opt['bx'].setdefault('OutlierColor', 'r')
|
286
|
-
opt['bx'].setdefault('OutlierSize', 6)
|
287
|
-
opt['bx'].setdefault('PlotStyle', 'traditional')
|
288
|
-
opt['bx'].setdefault('FactorDirection', 'auto')
|
289
|
-
opt['bx'].setdefault('Whisker', 1.5)
|
290
|
-
opt['bx'].setdefault('Orientation', 'vertical')
|
291
|
-
opt['bx'].setdefault('BoxLineWidth', 1.5)
|
292
|
-
opt['bx'].setdefault('FaceColor', 'k')
|
293
|
-
opt['bx'].setdefault('WhiskerLineStyle', '-')
|
294
|
-
opt['bx'].setdefault('WhiskerLineColor', 'k')
|
295
|
-
opt['bx'].setdefault('WhiskerLineWidth', 1.5)
|
296
|
-
opt['bx'].setdefault('Caps', True)
|
297
|
-
opt['bx'].setdefault('CapLineColor', 'k')
|
298
|
-
opt['bx'].setdefault('CapLineWidth', 1.5)
|
299
|
-
opt['bx'].setdefault('CapSize', 0.35)
|
300
|
-
opt['bx'].setdefault('MedianLineStyle', '-')
|
301
|
-
opt['bx'].setdefault('MedianLineColor', 'k')
|
302
|
-
opt['bx'].setdefault('MedianLineWidth', 1.5)
|
303
|
-
opt['bx'].setdefault('MedianLineTop', False)
|
304
|
-
opt['bx'].setdefault('MeanLine', False)
|
305
|
-
opt['bx'].setdefault('showmeans', opt['bx']['MeanLine'])
|
306
|
-
opt['bx'].setdefault('MeanLineStyle', '-')
|
307
|
-
opt['bx'].setdefault('MeanLineColor', 'b')
|
308
|
-
opt['bx'].setdefault('MeanLineWidth', 1.5)
|
309
|
-
|
310
|
-
# Violin plot options
|
311
|
-
opt.setdefault('v', {})
|
312
|
-
opt['v'].setdefault('go', 1)
|
313
|
-
opt['v'].setdefault('x_width', 0.3)
|
314
|
-
opt['v'].setdefault('loc', 'r')
|
315
|
-
opt['v'].setdefault('EdgeColor', 'none')
|
316
|
-
opt['v'].setdefault('FaceColor', opt['c'])
|
317
|
-
opt['v'].setdefault('FaceAlpha', 0.3)
|
318
|
-
opt['v'].setdefault('BandWidth', 'scott')
|
319
|
-
opt['v'].setdefault('Function', 'pdf')
|
320
|
-
opt['v'].setdefault('Kernel', 'gau')
|
321
|
-
opt['v'].setdefault('NumPoints', 500)
|
322
|
-
opt['v'].setdefault('BoundaryCorrection', 'reflection')
|
323
|
-
|
324
|
-
# line plot options
|
325
|
-
opt.setdefault('l', {})
|
326
|
-
opt['l'].setdefault('go', 0)
|
327
|
-
opt['l'].setdefault('LineStyle', '-')
|
328
|
-
opt['l'].setdefault('LineColor', 'k')
|
329
|
-
opt['l'].setdefault('LineWidth', 0.5)
|
330
|
-
opt['l'].setdefault('LineAlpha', 0.5)
|
331
|
-
|
332
|
-
data_m = np.nanmean(data, axis=0)
|
333
|
-
nr, nc = data.shape
|
334
|
-
|
335
|
-
xloc = opt['loc']['xloc']
|
336
|
-
|
337
|
-
if opt['b']['go']:
|
338
|
-
plot_bars(data_m, opt['b'], xloc, ax)
|
339
|
-
|
340
|
-
if opt['e']['go']:
|
341
|
-
plot_errors(data, data_m, opt['e'], xloc, ax)
|
342
|
-
|
343
|
-
if opt['s']['go']:
|
344
|
-
plot_scatter(data, opt['s'], xloc, ax)
|
345
|
-
|
346
|
-
if opt['bx']['go']:
|
347
|
-
plot_boxplot(data, opt['bx'], xloc, ax)
|
348
|
-
if opt['v']['go']:
|
349
|
-
plot_violin(data, opt['v'], xloc, ax)
|
350
|
-
if opt['l']['go'] and opt['s']['go']:
|
351
|
-
plot_lines(data, opt['l'], opt['s'], ax)
|
352
|
-
|
353
|
-
return ax
|
354
|
-
|
355
|
-
# from py2ls.ips import get_color,figsets
|
356
|
-
# opt={}
|
357
|
-
# opt = {
|
358
|
-
# 'export':{'path':get_cwd()},
|
359
|
-
# 'c': get_color(5,cmap='jet',by='linspace'), # Custom colors for 3 categories
|
360
|
-
# 'b': {
|
361
|
-
# 'go': 0,
|
362
|
-
# 'x_width': 0.85,
|
363
|
-
# 'FaceAlpha': 0.7,
|
364
|
-
# 'EdgeColor':'none'
|
365
|
-
# },
|
366
|
-
# 'e': {
|
367
|
-
# 'loc':'r',
|
368
|
-
# 'go': 1,
|
369
|
-
# 'error': 'sem',
|
370
|
-
# 'Marker':'d',
|
371
|
-
# 'CapSize': 1,
|
372
|
-
# 'LineWidth':1,
|
373
|
-
# 'CapLineWidth':8,
|
374
|
-
# 'LineStyle':'--',
|
375
|
-
# 'MarkerSize':6,
|
376
|
-
# 'LineColor':'k',
|
377
|
-
# 'FaceColor':get_color(10),
|
378
|
-
# 'MarkerEdgeColor':'none',
|
379
|
-
# 'Visible':True
|
380
|
-
# },
|
381
|
-
# 's': {
|
382
|
-
# 'go': 1,
|
383
|
-
# 'x_width':0.2,
|
384
|
-
# 'loc':'random',
|
385
|
-
# 'Marker': 'o',
|
386
|
-
# # 'MarkerSize': 20,
|
387
|
-
# 'FaceAlpha': 1,
|
388
|
-
# 'FaceColor':'k',
|
389
|
-
# 'LineWidth':1
|
390
|
-
|
391
|
-
# },
|
392
|
-
# 'bx':{
|
393
|
-
# 'go':1,
|
394
|
-
# 'FaceAlpha':0.8,
|
395
|
-
# 'EdgeColor':'none',
|
396
|
-
# 'loc':'c',
|
397
|
-
# 'x_width':0.2,
|
398
|
-
# 'WhiskerLineWidth':1,
|
399
|
-
# 'MedianLineWidth':2,
|
400
|
-
# # 'MedianLineColor':'r',
|
401
|
-
# 'OutlierMarker':'+',
|
402
|
-
# 'OutlierColor':'r',
|
403
|
-
# 'CapSize':.2,
|
404
|
-
# # 'Caps':False,
|
405
|
-
# # 'CapLineColor':'r',
|
406
|
-
# # 'CapLineWidth':8,
|
407
|
-
# # 'MeanLine':True,
|
408
|
-
# # 'FaceColor':['r','g','b','m','c']
|
409
|
-
# },
|
410
|
-
# 'v':{
|
411
|
-
# 'go':0,
|
412
|
-
# 'loc':'r',
|
413
|
-
# 'x_width':0.2,
|
414
|
-
# 'FaceAlpha':0.51,
|
415
|
-
# },
|
416
|
-
# 'l':{
|
417
|
-
# 'go':1,
|
418
|
-
# 'LineColor':'k'
|
419
|
-
# }
|
420
|
-
# }
|
421
|
-
# data1 = np.random.rand(10, 5)
|
422
|
-
# data2 = np.random.rand(10, 5)
|
423
|
-
# fig, axs=plt.subplots(1,2,figsize=(6,2.5))
|
424
|
-
# catplot(data1, opt=opt,ax=axs[0])
|
425
|
-
# catplot(data2, opt=opt,ax=axs[1])
|
426
|
-
# figsets(sp=5,
|
427
|
-
# ax=axs[0],
|
428
|
-
# xticks=np.arange(1,6,1),
|
429
|
-
# xtickslabel=['glua1','glua2','a','b','c'],
|
430
|
-
# xlabel='proteins',
|
431
|
-
# xangle=90,
|
432
|
-
# yticks=np.arange(0,2,0.5),
|
433
|
-
# xlim=[0.75, 5.1],
|
434
|
-
# ticks=dict(pad=1,c='k'))
|
435
|
-
|
436
|
-
# figsave("/Users/macjianfeng/Dropbox/Downloads/",'test.pdf')
|
437
|
-
|