py-ewr 2.3.7__py3-none-any.whl → 2.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_ewr/data_inputs.py +199 -98
- py_ewr/evaluate_EWRs.py +529 -1149
- py_ewr/model_metadata/EWR_Sitelist_FIRM_20250718.csv +255 -0
- py_ewr/observed_handling.py +13 -13
- py_ewr/parameter_metadata/ewr_calc_config.json +3 -3
- py_ewr/parameter_metadata/objective_reference_NB_SA_WIM_NE_LACH_BIDG_MLD_ACT.csv +806 -0
- py_ewr/parameter_metadata/parameter_sheet.csv +3443 -3445
- py_ewr/parameter_metadata/parameter_sheet_NB_SA_WIM_NE_LACH_BIDG_MLD_ACT.csv +3127 -0
- py_ewr/parameter_metadata/parameter_sheet_NB_SA_WIM_NE_LACH_BIDG_MLD_ACT_added_act_env.csv +3188 -0
- py_ewr/scenario_handling.py +166 -42
- py_ewr/summarise_results.py +75 -87
- {py_ewr-2.3.7.dist-info → py_ewr-2.3.8.dist-info}/METADATA +90 -55
- py_ewr-2.3.8.dist-info/RECORD +21 -0
- {py_ewr-2.3.7.dist-info → py_ewr-2.3.8.dist-info}/WHEEL +1 -1
- py_ewr/parameter_metadata/ewr2obj.csv +0 -43331
- py_ewr/parameter_metadata/obj2target.csv +0 -7941
- py_ewr/parameter_metadata/obj2yrtarget.csv +0 -106
- py_ewr-2.3.7.dist-info/RECORD +0 -20
- {py_ewr-2.3.7.dist-info → py_ewr-2.3.8.dist-info/licenses}/LICENSE +0 -0
- {py_ewr-2.3.7.dist-info → py_ewr-2.3.8.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: py_ewr
|
|
3
|
-
Version: 2.3.
|
|
3
|
+
Version: 2.3.8
|
|
4
4
|
Summary: Environmental Water Requirement calculator
|
|
5
5
|
Home-page: https://github.com/MDBAuth/EWR_tool
|
|
6
6
|
Author: Martin Job
|
|
@@ -34,6 +34,7 @@ Dynamic: classifier
|
|
|
34
34
|
Dynamic: description
|
|
35
35
|
Dynamic: description-content-type
|
|
36
36
|
Dynamic: home-page
|
|
37
|
+
Dynamic: license-file
|
|
37
38
|
Dynamic: project-url
|
|
38
39
|
Dynamic: requires-dist
|
|
39
40
|
Dynamic: summary
|
|
@@ -43,23 +44,29 @@ Dynamic: summary
|
|
|
43
44
|
[](https://pypi.org/project/py-ewr/)
|
|
44
45
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
45
46
|
|
|
46
|
-
### **
|
|
47
|
+
### **ewr tool version 2.3.8 README**
|
|
47
48
|
|
|
48
49
|
### **Notes on recent version updates**
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
- Including draft objective mapping files in the package (see below sub heading **Objective mapping** for more information). Objective mapping has been therefore pulled out of the parameter sheet
|
|
52
|
-
- Including an example parallel processing script for running the EWR tool
|
|
50
|
+
|
|
51
|
+
#### EWR handling and outputs
|
|
53
52
|
- Adding handling for cases where there are single MDBA bigmod site IDs mapping to multiple different gauges
|
|
54
|
-
- Fix SDL resource unit mapping in the parameter sheet
|
|
55
|
-
- Adding lat and lon to the parameter sheet
|
|
56
|
-
- ten thousand year handling - this has been brought back online.
|
|
57
|
-
- Remove TQDM loading bars
|
|
58
|
-
- Adding new model format handling - 'IQQM - netcdf'
|
|
59
|
-
- Standard time-series handling added - each column needs a gauge, followed by and underscore, followed by either flow or level (e.g. 409025_flow). This handling also has missing date filling - so any missing dates will be filled with NaN values in all columns.
|
|
60
|
-
- bug fixes: spells of length equal to the minimum required spell length were getting filtered out of the successful events table and successful interevents table, fixed misclassification of some gauges to flow, level, and lake level categories
|
|
61
53
|
- New EWRs: New Qld EWRs - SF_FD and BF_FD used to look into the FD EWRs in closer detail.
|
|
62
54
|
- Adding state and Surface Water SDL (SWSDL) to py-ewr output tables
|
|
55
|
+
- Including metadata report (this is still being ironed out and tested)
|
|
56
|
+
- New handling capabilities for FIRM model formated files
|
|
57
|
+
|
|
58
|
+
#### Model metadata
|
|
59
|
+
- Added new FIRM ID file mapping FIRM ID to gauge number.
|
|
60
|
+
|
|
61
|
+
#### parameter metadata
|
|
62
|
+
- Updated parameter sheet
|
|
63
|
+
- Fix SDL resource unit mapping in the parameter sheet
|
|
64
|
+
- Adding lat and lon to the parameter sheet
|
|
65
|
+
- Added in model handling for FIRM model outputs
|
|
66
|
+
- Various minor variable renamings for consistency
|
|
67
|
+
- Renamed MaxLevelRise to MaxLevelChange
|
|
68
|
+
- Removed AnnualFlowSum column from parameter sheet
|
|
69
|
+
- New format of objective mapping includes the adding of objective mapping back into the parameter sheet and one secondary dataframe (objective_reference.csv) in parameter metadata.
|
|
63
70
|
|
|
64
71
|
### **Installation**
|
|
65
72
|
|
|
@@ -77,13 +84,14 @@ pip install py-ewr
|
|
|
77
84
|
```
|
|
78
85
|
|
|
79
86
|
### Option 1: Running the observed mode of the tool
|
|
80
|
-
The
|
|
87
|
+
The ewr tool will use a second program called gauge getter to first download the river data at the locations and dates selected and then run this through the ewr tool.
|
|
88
|
+
For more information please visit the [MDBA Gauge Getter](https://github.com/MDBAuth/MDBA_Gauge_Getter) github page.
|
|
81
89
|
|
|
82
90
|
```python
|
|
83
91
|
|
|
84
92
|
from datetime import datetime
|
|
85
93
|
|
|
86
|
-
#USER INPUT REQUIRED>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
|
94
|
+
# USER INPUT REQUIRED>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
|
87
95
|
|
|
88
96
|
dates = {'start_date': datetime(YYYY, 7, 1),
|
|
89
97
|
'end_date': datetime(YYYY, 6, 30)}
|
|
@@ -98,15 +106,15 @@ gauges = ['Gauge1', 'Gauge2']
|
|
|
98
106
|
|
|
99
107
|
from py_ewr.observed_handling import ObservedHandler
|
|
100
108
|
|
|
101
|
-
# Running the
|
|
109
|
+
# Running the ewr tool:
|
|
102
110
|
ewr_oh = ObservedHandler(gauges=gauges, dates=dates)
|
|
103
111
|
|
|
104
112
|
# Generating tables:
|
|
105
|
-
# Table 1: Summarised
|
|
113
|
+
# Table 1: Summarised ewr results for the entire timeseries
|
|
106
114
|
ewr_results = ewr_oh.get_ewr_results()
|
|
107
115
|
|
|
108
|
-
# Table 2: Summarised
|
|
109
|
-
|
|
116
|
+
# Table 2: Summarised ewr results, aggregated to water years:
|
|
117
|
+
yearly_results = ewr_oh.get_yearly_results()
|
|
110
118
|
|
|
111
119
|
# Table 3: All events details regardless of duration
|
|
112
120
|
all_events = ewr_oh.get_all_events()
|
|
@@ -122,14 +130,23 @@ all_successful_interEvents = ewr_oh.get_all_successful_interEvents()
|
|
|
122
130
|
|
|
123
131
|
```
|
|
124
132
|
|
|
125
|
-
### Option 2: Running model scenarios through the
|
|
133
|
+
### Option 2: Running model scenarios through the ewr tool
|
|
126
134
|
|
|
127
|
-
1. Tell the tool where the model files are (can either be local or in a remote location)
|
|
135
|
+
1. Tell the tool where the model files are (can either be local or in a remote location). For each scenario list the file path of each file. Python will default to the path relative to the directory it is being run from, but if you put a full file path you can choose any file.
|
|
136
|
+
```python
|
|
137
|
+
scenarios = {'Scenario1': ['path/to/file1', 'path/to/file2', 'path/to/file3'],
|
|
138
|
+
'Scenario2': ['path/to/file1', 'path/to/file2', 'path/to/file3']}
|
|
139
|
+
```
|
|
128
140
|
2. Tell the tool what format the model files are in. The current model format options are:
|
|
129
141
|
- 'Bigmod - MDBA'
|
|
130
142
|
Bigmod formatted outputs
|
|
143
|
+
|
|
131
144
|
- 'Source - NSW (res.csv)'
|
|
132
145
|
Source res.csv formatted outputs
|
|
146
|
+
|
|
147
|
+
- 'FIRM - MDBA'
|
|
148
|
+
FIRM ID formatted outputs
|
|
149
|
+
|
|
133
150
|
- 'Standard time-series'
|
|
134
151
|
The first column header should be *Date* with the date values in the YYYY-MM-DD format.
|
|
135
152
|
The next columns should have the *gauge* followed by *_* followed by either *flow* or *level*
|
|
@@ -151,23 +168,31 @@ all_successful_interEvents = ewr_oh.get_all_successful_interEvents()
|
|
|
151
168
|
|
|
152
169
|
|
|
153
170
|
```python
|
|
154
|
-
#USER INPUT REQUIRED>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
|
171
|
+
# USER INPUT REQUIRED>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
|
155
172
|
|
|
156
173
|
# Minimum 1 scenario and 1 related file required
|
|
157
|
-
scenarios = {'Scenario1': ['
|
|
158
|
-
'Scenario2': ['
|
|
174
|
+
scenarios = {'Scenario1': ['path/to/file1', 'path/to/file2', 'path/to/file3'],
|
|
175
|
+
'Scenario2': ['path/to/file1', 'path/to/file2', 'path/to/file3']}
|
|
159
176
|
|
|
160
177
|
model_format = 'Bigmod - MDBA'
|
|
161
178
|
|
|
179
|
+
#----- other model formats include -----#
|
|
180
|
+
# 'Bigmod - MDBA'
|
|
181
|
+
# 'Source - NSW (res.csv)'
|
|
182
|
+
# 'FIRM - MDBA'
|
|
183
|
+
# 'Standard time-series'
|
|
184
|
+
# 'ten thousand year'
|
|
185
|
+
|
|
162
186
|
# END USER INPUT<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
|
|
163
187
|
|
|
164
188
|
```
|
|
189
|
+
File names will be incorporated into the Scenario column of the ewr tool output tables for tracebility of ewr tool output and corresponding model file. In the code written below, scenario name will be appendeded to the file name. eg. Scenario_name1_all_results.csv, therefore it is suggested to have informative scenario names that can traceback to your model files as well.
|
|
165
190
|
|
|
166
191
|
``` python
|
|
167
192
|
from py_ewr.scenario_handling import ScenarioHandler
|
|
168
193
|
import pandas as pd
|
|
169
194
|
|
|
170
|
-
|
|
195
|
+
summary_results_dict = {}
|
|
171
196
|
yearly_results_dict = {}
|
|
172
197
|
all_events_dict = {}
|
|
173
198
|
all_interEvents_dict = {}
|
|
@@ -175,25 +200,25 @@ all_successful_Events_dict = {}
|
|
|
175
200
|
all_successful_interEvents_dict = {}
|
|
176
201
|
|
|
177
202
|
for scenario_name, scenario_list in scenarios.items():
|
|
178
|
-
|
|
179
|
-
|
|
203
|
+
summary_results = pd.DataFrame()
|
|
204
|
+
yearly_results = pd.DataFrame()
|
|
180
205
|
all_events = pd.DataFrame()
|
|
181
206
|
all_interEvents = pd.DataFrame()
|
|
182
207
|
all_successful_Events = pd.DataFrame()
|
|
183
208
|
all_successful_interEvents = pd.DataFrame()
|
|
184
209
|
for file in scenarios[scenario_name]:
|
|
185
210
|
|
|
186
|
-
# Running the
|
|
211
|
+
# Running the ewr tool:
|
|
187
212
|
ewr_sh = ScenarioHandler(scenario_file = file,
|
|
188
213
|
model_format = model_format)
|
|
189
214
|
|
|
190
215
|
# Return each table and stitch the different files of the same scenario together:
|
|
191
|
-
# Table 1: Summarised
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
# Table 2: Summarised
|
|
195
|
-
|
|
196
|
-
|
|
216
|
+
# Table 1: Summarised ewr results for the entire timeseries
|
|
217
|
+
temp_summary_results = ewr_sh.get_ewr_results()
|
|
218
|
+
summary_results = pd.concat([summary_results, temp_summary_results], axis = 0)
|
|
219
|
+
# Table 2: Summarised ewr results, aggregated to water years:
|
|
220
|
+
temp_yearly_results = ewr_sh.get_yearly_ewr_results()
|
|
221
|
+
yearly_results = pd.concat([yearly_results, temp_yearly_results], axis = 0)
|
|
197
222
|
# Table 3: All events details regardless of duration
|
|
198
223
|
temp_all_events = ewr_sh.get_all_events()
|
|
199
224
|
all_events = pd.concat([all_events, temp_all_events], axis = 0)
|
|
@@ -209,64 +234,74 @@ for scenario_name, scenario_list in scenarios.items():
|
|
|
209
234
|
|
|
210
235
|
|
|
211
236
|
# Optional code to output results to csv files:
|
|
212
|
-
|
|
213
|
-
|
|
237
|
+
summary_results.to_csv(scenario_name + 'summary_results.csv')
|
|
238
|
+
yearly_results.to_csv(scenario_name + 'yearly_results.csv')
|
|
214
239
|
all_events.to_csv(scenario_name + 'all_events.csv')
|
|
215
240
|
all_interEvents.to_csv(scenario_name + 'all_interevents.csv')
|
|
216
241
|
all_successful_Events.to_csv(scenario_name + 'all_successful_Events.csv')
|
|
217
242
|
all_successful_interEvents.to_csv(scenario_name + 'all_successful_interEvents.csv')
|
|
218
243
|
|
|
219
244
|
# Save the final tables to the dictionaries:
|
|
220
|
-
|
|
221
|
-
yearly_results_dict[scenario_name] =
|
|
222
|
-
all_events_dict[scenario_name] =
|
|
245
|
+
summary_results_dict[scenario_name] = summary_results
|
|
246
|
+
yearly_results_dict[scenario_name] = yearly_results
|
|
247
|
+
all_events_dict[scenario_name] = all_events
|
|
223
248
|
all_interEvents_dict[scenario_name] = all_interEvents
|
|
224
249
|
all_successful_Events_dict[scenario_name] = all_successful_Events
|
|
225
250
|
all_successful_interEvents_dict[scenario_name] = all_successful_interEvents
|
|
226
251
|
|
|
227
252
|
|
|
228
253
|
```
|
|
229
|
-
|
|
254
|
+
#### Optional arguments for ScenarioHandler
|
|
255
|
+
```python
|
|
256
|
+
ewr_sh = ScenarioHandler(scenario_file = file,
|
|
257
|
+
model_format = model_format,
|
|
258
|
+
parameter_sheet = parameter_sheet,
|
|
259
|
+
calc_config_path = calc_config_path)
|
|
260
|
+
```
|
|
261
|
+
You may add a custom parameter sheet and or calc_config_file to your EWR tool run using the ```parameter_sheet``` and ```calc_config_path``` arguments. These arguments take a string file path pointing to files. Please check this ewr_calc_config.json file found in parameter metadata to see if any EWRs in your custom parameter sheet are not represented in the calc_config_file. For an EWR to be calculated, it must be found in both calc_config.json and the parameter sheet.
|
|
230
262
|
|
|
231
263
|
### **Purpose**
|
|
232
264
|
This tool has two purposes:
|
|
233
|
-
1. Operational: Tracking
|
|
234
|
-
2. Planning: Comparing
|
|
265
|
+
1. Operational: Tracking ewr success at gauges of interest in real time - option 1 above.
|
|
266
|
+
2. Planning: Comparing ewr success between scenarios (i.e. model runs) - option 2 above.
|
|
235
267
|
|
|
236
268
|
**Support**
|
|
237
|
-
For issues relating to the script, a tutorial, or feedback please contact
|
|
269
|
+
For issues relating to the script, a tutorial, or feedback please contact Martin Job at martin.job@mdba.gov.au, Sirous Safari Pour at sirous.safaripour@mdba.gov.au, Elisha Freedman at elisha.freedman@mdba.gov.au, Joel Bailey at joel.bailey@mdba.gov.au, or Lara Palmer at lara.palmer@mdba.gov.au.
|
|
238
270
|
|
|
239
271
|
|
|
240
272
|
**Disclaimer**
|
|
241
|
-
Every effort has been taken to ensure the
|
|
273
|
+
Every effort has been taken to ensure the ewr database represents the original EWRs from state Long Term Water Plans (LTWPs) and Environmental Water Management Plans (EWMPs) as best as possible, and that the code within this tool has been developed to interpret and analyse these EWRs in an accurate way. However, there may still be unresolved bugs in the ewr parameter sheet and/or ewr tool. Please report any bugs to the issues tab under the GitHub project so we can investigate further.
|
|
242
274
|
|
|
243
275
|
|
|
244
276
|
**Notes on development of the dataset of EWRs**
|
|
245
277
|
The MDBA has worked with Basin state representatives to ensure scientific integrity of EWRs has been maintained when translating from raw EWRs in the Basin state LTWPs and EWMPs to the machine readable format found in the parameter sheet within this tool.
|
|
246
278
|
|
|
279
|
+
Environmental Water Requirements (EWRs) in the tool are subject to change when the relevant documents including Long Term Water Plans (LTWPs) and Environmental Water Management Plans (EWMPs) are updated or move from draft to final versions. LTWPs that are currently in draft form include the ACT and the upper Murrumbidgee section of the NSW Murrumbidgee LTWP.
|
|
280
|
+
|
|
247
281
|
**Compatibility**
|
|
248
282
|
|
|
249
|
-
NSW:
|
|
250
283
|
- All Queensland catchments
|
|
251
284
|
- All New South Wales catchments
|
|
252
285
|
- All South Australian catchments
|
|
253
286
|
- All EWRs from river based Environmental Water Management Plans (EWMPs) in Victoria*
|
|
287
|
+
- All EWRs for ACT (draft version)
|
|
254
288
|
|
|
255
|
-
*
|
|
289
|
+
*The wetland EWMPS and mixed wetland-river EWMPs in Victoria are in progress. The MDBA will work with our Victorian colleagues to ensure any updated EWRs in these plans are integrated into the tool where possible.
|
|
256
290
|
|
|
257
291
|
**Input data**
|
|
258
292
|
|
|
259
293
|
- Gauge data from the relevant Basin state websites and the Bureau of Meteorology website
|
|
260
294
|
- Scenario data input by the user
|
|
261
295
|
- Model metadata for location association between gauge ID's and model nodes
|
|
262
|
-
|
|
296
|
+
#### optional
|
|
297
|
+
- ewr parameter sheet
|
|
298
|
+
- calc_config.json
|
|
263
299
|
|
|
264
|
-
**
|
|
300
|
+
**Objective mapping**
|
|
301
|
+
The objective mapping is located in the EWR tool package. This is intended to be used to link EWRs to the detailed objectives, theme level targets and specific goals. The objective reference file is located in the py_ewr/parameter_metadata folder:
|
|
265
302
|
|
|
266
|
-
|
|
303
|
+
parameter_sheet.csv (EnvObj column)
|
|
304
|
+
obj_reference.csv
|
|
267
305
|
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
- ewr2obj.csv: For each planning unit, gauge, ewr combination there are either one or many env_obj codes. These env_obj codes come under one of five different theme level targets (Native Fish, Native vegetation, Waterbirds, Other species or Ecosystem functions)
|
|
271
|
-
- obj2target.csv: env_obj's are unique to their planning unit in the LTWP (noting there are often a lot of similarities between env_obj's in the same states). The plain english wording of the env objectives is also contained in this csv. The LTWP, planning unit and env_obj rows are repeated for each specific goal related to that LTWP, planning unit and env_obj.
|
|
272
|
-
- obj2yrtarget.csv: The environmental objectives are related to 5, 10 and 20 year targets
|
|
306
|
+
Contains the individual environmnetal objectives listed in the 'EnvObj' column of the parameter sheet and their ecological targets (Target) and plain english description of objectives (Objectives) for each planning unit, long term water plan (LTWPShortName), and surface water sustainable diversion limit (SWSDLName).
|
|
307
|
+
the function ```get_obj_mapping()``` is available to automatically merge the information from obj_reference.csv with the parameter sheet to link these objectives with their specific ewr_codes.
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
py_ewr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
py_ewr/data_inputs.py,sha256=-DLkAJXG_nre5YRg7zqV6TbwjWHAE17uEYDz3mNlGpA,27617
|
|
3
|
+
py_ewr/evaluate_EWRs.py,sha256=uzreM0mYNh7efbJb_BkpijpYSymFdN9OdDUUjsCYU9A,204277
|
|
4
|
+
py_ewr/io.py,sha256=Is0xPAzLx6-ylpTFyYJxMimkNVxxoTxUcknTk6bQbgs,840
|
|
5
|
+
py_ewr/observed_handling.py,sha256=XCjLFnIdhWpQLXKOyXmk0oc8MGkNLPG4VVsu-_tkWss,18236
|
|
6
|
+
py_ewr/scenario_handling.py,sha256=ke38gimVb-Maqe01AE2WvpAEleqmKfLZwoLrYi6GbsQ,54142
|
|
7
|
+
py_ewr/summarise_results.py,sha256=AvhlByCPJDSyoliuiZoZNlVmCicBYaDplM7fKIeEGdM,31602
|
|
8
|
+
py_ewr/model_metadata/EWR_Sitelist_FIRM_20250718.csv,sha256=FjiKIfNIjHXWuZCczvC9J1K7dxohBWTrWMYUVnp7m-Q,14240
|
|
9
|
+
py_ewr/model_metadata/SiteID_MDBA.csv,sha256=-nPEWzqW60HBh3y7u8Ofiq8aYTyZqhQ-8eakuDVdUg4,168770
|
|
10
|
+
py_ewr/model_metadata/SiteID_NSW.csv,sha256=UVBxN43Z5KWCvWhQ5Rh6TNEn35q4_sjPxKyHg8wPFws,6805
|
|
11
|
+
py_ewr/model_metadata/iqqm_stations.csv,sha256=vl4CPtPslG5VplSzf_yLZulTrmab-mEBHOfzFtS1kf4,110
|
|
12
|
+
py_ewr/parameter_metadata/ewr_calc_config.json,sha256=udg-nvUMkLav1SCa6vLmqumTgMJnJudHsoIWZVvjaqI,18369
|
|
13
|
+
py_ewr/parameter_metadata/objective_reference_NB_SA_WIM_NE_LACH_BIDG_MLD_ACT.csv,sha256=N28O2sjsON1SDfgqggxw--QPzmwXQNumwnpQDEQ35Ak,131944
|
|
14
|
+
py_ewr/parameter_metadata/parameter_sheet.csv,sha256=l-DO-bW_2F3PR1PZbn3np5E_vPLMaTGkGmv68l1KaEM,759290
|
|
15
|
+
py_ewr/parameter_metadata/parameter_sheet_NB_SA_WIM_NE_LACH_BIDG_MLD_ACT.csv,sha256=yuGZOf_DC_2_n28IYmpQG1neXy6gpd5gIc75GO5RykQ,820586
|
|
16
|
+
py_ewr/parameter_metadata/parameter_sheet_NB_SA_WIM_NE_LACH_BIDG_MLD_ACT_added_act_env.csv,sha256=AB-G0IFpGzx0MhKGM-vXirsirl4sTxxeULSrbcrwgCE,836107
|
|
17
|
+
py_ewr-2.3.8.dist-info/licenses/LICENSE,sha256=ogEPNDSH0_dhiv_lT3ifVIdgIzHAqNA_SemnxUfPBJk,7048
|
|
18
|
+
py_ewr-2.3.8.dist-info/METADATA,sha256=SYPFLvw0J8YxBAHBLy2bxXt9jwPa5oLBgjk0mBND9h4,14329
|
|
19
|
+
py_ewr-2.3.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
20
|
+
py_ewr-2.3.8.dist-info/top_level.txt,sha256=n3725d-64Cjyb-YMUMV64UAuIflzUh2_UZSxiIbrur4,7
|
|
21
|
+
py_ewr-2.3.8.dist-info/RECORD,,
|