py-ewr 2.3.2__py3-none-any.whl → 2.3.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_ewr/evaluate_EWRs.py +0 -1
- py_ewr/model_metadata/SiteID_MDBA.csv +5 -2
- py_ewr/parameter_metadata/ewr_calc_config.json +14 -2
- py_ewr/scenario_handling.py +9 -9
- {py_ewr-2.3.2.dist-info → py_ewr-2.3.4.dist-info}/METADATA +12 -3
- {py_ewr-2.3.2.dist-info → py_ewr-2.3.4.dist-info}/RECORD +9 -9
- {py_ewr-2.3.2.dist-info → py_ewr-2.3.4.dist-info}/WHEEL +1 -1
- {py_ewr-2.3.2.dist-info → py_ewr-2.3.4.dist-info}/LICENSE +0 -0
- {py_ewr-2.3.2.dist-info → py_ewr-2.3.4.dist-info}/top_level.txt +0 -0
py_ewr/evaluate_EWRs.py
CHANGED
|
@@ -1148,7 +1148,6 @@ def barrage_level_handle(PU: str, gauge: str, EWR: str, EWR_table: pd.DataFrame,
|
|
|
1148
1148
|
Returns:
|
|
1149
1149
|
tuple[pd.DataFrame, tuple[dict]]: EWR results for the current planning unit iteration (updated); dictionary of EWR event information
|
|
1150
1150
|
"""
|
|
1151
|
-
print(df_L.head())
|
|
1152
1151
|
barrage_level_gauges = data_inputs.get_barrage_level_gauges()
|
|
1153
1152
|
all_required_gauges = barrage_level_gauges.get(gauge)
|
|
1154
1153
|
# if all_required_gauges:
|
|
@@ -847,7 +847,7 @@ EUROBIN,Ovens River at Eurobin,,403250A,4
|
|
|
847
847
|
EURSTP,Euroa STP,,,4
|
|
848
848
|
EUS2MIL,Euston to Mildura Reach,,,
|
|
849
849
|
EUSTDS,River Murray D/S Euston Weir,,414203,4
|
|
850
|
-
EUSTON
|
|
850
|
+
EUSTON,River Murray U/S Euston Weir,,414209,4
|
|
851
851
|
EUSTUS,River Murray U/S Euston Weir,,414209,4
|
|
852
852
|
EWDFFCL,Env water Flora Fauna -Cardross Lakes,Environmental Water Deliveries from Flora & Fauna Ent,,4
|
|
853
853
|
EWEI,Lake Alexandrina U/S Ewe Island and Barrages,Ewe Island Dual Vertical Slot fishway,,5
|
|
@@ -1348,8 +1348,9 @@ LOCK7US,River Murray U/S Lock 7,,A4260508,5
|
|
|
1348
1348
|
LOCK8DS,River Murray D/S Lock 8,,4260507,5
|
|
1349
1349
|
LOCK8US,River Murray U/S Lock 8,,426506,5
|
|
1350
1350
|
LOCK8US,River Murray U/S Lock 8,,A426506,5
|
|
1351
|
+
LOCK8US,River Murray U/S Lock 8,,A4260506,5
|
|
1351
1352
|
LOCK9DS,River Murray D/S Lock 9,,4260505,5
|
|
1352
|
-
LOCK 9
|
|
1353
|
+
LOCK 9,River Murray U/S Lock 9,SAMPLE AT GAUGING STATION,A4260501,5
|
|
1353
1354
|
LOCK9US,River Murray U/S Lock 9,SAMPLE AT GAUGING STATION,A4260501,5
|
|
1354
1355
|
LOCKING,Lockington Main Drain,Lockington Main Drain Shepparton,407712,4
|
|
1355
1356
|
LOCKRIC,Lockington Main Drain adj to Richardsons,Lockington Main Drain adjacent to Richardsons,,4
|
|
@@ -2696,7 +2697,9 @@ Pattos Pipe,Pattos Pipe,North Redbank,Pattos Pipe,2
|
|
|
2696
2697
|
Pump direct from river,Pump direct from river,"North Redbank, pumped direct from river",Pump direct from river,2
|
|
2697
2698
|
Pumped from Yanga Lake,Pumped from Yanga Lake,Yanga (South Redbank),Pumped from Yanga Lake,2
|
|
2698
2699
|
410738,Murrumbidgee River at Mt. MacDonald,"ACT - Environment, Planning and Sustainable Development Directorate",410738,3
|
|
2700
|
+
11UBMAC,Murrumbidgee River at Mt. MacDonald,"ACT - Environment, Planning and Sustainable Development Directorate",410738,3
|
|
2699
2701
|
410761,Murrumbidgee River below Lobbs Hole Creek,"ACT - Environment, Planning and Sustainable Development Directorate",410761,3
|
|
2702
|
+
11UBLOB,Murrumbidgee River below Lobbs Hole Creek,"ACT - Environment, Planning and Sustainable Development Directorate",410761,3
|
|
2700
2703
|
410700,Cotter River at Kiosk,ACT - Icon Water Limited,410700,3
|
|
2701
2704
|
410747,Cotter River below Bendora Dam,ACT - Icon Water Limited,410747,3
|
|
2702
2705
|
410752,Cotter River below Corin Dam,ACT - Icon Water Limited,410752,3
|
|
@@ -517,7 +517,19 @@
|
|
|
517
517
|
"BF4-single-F",
|
|
518
518
|
"BF5-single-F",
|
|
519
519
|
"BF_FD1-single-F",
|
|
520
|
-
"BF_FD2-single-F"
|
|
520
|
+
"BF_FD2-single-F",
|
|
521
|
+
"BF1_1-single-F",
|
|
522
|
+
"BF1_2-single-F",
|
|
523
|
+
"BF1_3-single-F",
|
|
524
|
+
"BF1_4-single-F",
|
|
525
|
+
"BF1_5-single-F",
|
|
526
|
+
"BF1_6-single-F",
|
|
527
|
+
"BF1_7-single-F",
|
|
528
|
+
"BF1_8-single-F",
|
|
529
|
+
"BF1_9-single-F",
|
|
530
|
+
"BF1_10-single-F",
|
|
531
|
+
"BF1_11-single-F",
|
|
532
|
+
"BF1_12-single-F"
|
|
521
533
|
],
|
|
522
534
|
"ctf_handle_multi": [
|
|
523
535
|
"CF-multigauge-F"
|
|
@@ -663,4 +675,4 @@
|
|
|
663
675
|
"level_change_handle": [
|
|
664
676
|
"FLR-single-L"
|
|
665
677
|
]
|
|
666
|
-
}
|
|
678
|
+
}
|
py_ewr/scenario_handling.py
CHANGED
|
@@ -336,7 +336,7 @@ def cleaner_standard_timeseries(input_df: pd.DataFrame, ewr_table_path: str = No
|
|
|
336
336
|
log.info('Could not identify gauge in column name:', gauge, ', skipping analysis of data in this column.')
|
|
337
337
|
return df_flow, df_level
|
|
338
338
|
|
|
339
|
-
def cleaner_netcdf_werp(input_df: pd.DataFrame, stations: dict) -> pd.DataFrame:
|
|
339
|
+
def cleaner_netcdf_werp(input_df: pd.DataFrame, stations: dict, ewr_table_path: str) -> pd.DataFrame:
|
|
340
340
|
|
|
341
341
|
'''Ingests dataframe, cleans up into a format matching IQQM csv
|
|
342
342
|
|
|
@@ -370,8 +370,8 @@ def cleaner_netcdf_werp(input_df: pd.DataFrame, stations: dict) -> pd.DataFrame:
|
|
|
370
370
|
cleaned_df.index.names = ['Date']
|
|
371
371
|
|
|
372
372
|
# Split gauges into flow and level, allocate to respective dataframe
|
|
373
|
-
flow_gauges = data_inputs.get_gauges('flow gauges')
|
|
374
|
-
level_gauges = data_inputs.get_gauges('level gauges')
|
|
373
|
+
flow_gauges = data_inputs.get_gauges('flow gauges', ewr_table_path=ewr_table_path)
|
|
374
|
+
level_gauges = data_inputs.get_gauges('level gauges', ewr_table_path=ewr_table_path)
|
|
375
375
|
df_flow = pd.DataFrame(index = cleaned_df.index)
|
|
376
376
|
df_level = pd.DataFrame(index = cleaned_df.index)
|
|
377
377
|
for gauge in cleaned_df.columns:
|
|
@@ -455,7 +455,7 @@ def match_MDBA_nodes(input_df: pd.DataFrame, model_metadata: pd.DataFrame, ewr_t
|
|
|
455
455
|
df_flow = pd.DataFrame(index = input_df.index)
|
|
456
456
|
df_level = pd.DataFrame(index = input_df.index)
|
|
457
457
|
|
|
458
|
-
unique_gauges = data_inputs.get_gauges('all gauges')
|
|
458
|
+
unique_gauges = data_inputs.get_gauges('all gauges', ewr_table_path=ewr_table_path)
|
|
459
459
|
flow_gauges = data_inputs.get_gauges('flow gauges', ewr_table_path=ewr_table_path)
|
|
460
460
|
level_gauges = data_inputs.get_gauges('level gauges', ewr_table_path=ewr_table_path)
|
|
461
461
|
|
|
@@ -534,7 +534,7 @@ def match_MDBA_nodes(input_df: pd.DataFrame, model_metadata: pd.DataFrame, ewr_t
|
|
|
534
534
|
|
|
535
535
|
# return df_flow, df_level
|
|
536
536
|
|
|
537
|
-
def match_NSW_nodes(input_df: pd.DataFrame, model_metadata: pd.DataFrame) -> tuple:
|
|
537
|
+
def match_NSW_nodes(input_df: pd.DataFrame, model_metadata: pd.DataFrame, ewr_table_path: str) -> tuple:
|
|
538
538
|
'''Checks if the source file columns have EWRs available, returns a flow and level dataframe with only
|
|
539
539
|
the columns with EWRs available. Renames columns to gauges
|
|
540
540
|
|
|
@@ -546,8 +546,8 @@ def match_NSW_nodes(input_df: pd.DataFrame, model_metadata: pd.DataFrame) -> tup
|
|
|
546
546
|
tuple[pd.DataFrame, pd.DataFrame]: flow dataframe, water level dataframe
|
|
547
547
|
|
|
548
548
|
'''
|
|
549
|
-
flow_gauges = data_inputs.get_gauges('flow gauges')
|
|
550
|
-
level_gauges = data_inputs.get_gauges('level gauges')
|
|
549
|
+
flow_gauges = data_inputs.get_gauges('flow gauges', ewr_table_path=ewr_table_path)
|
|
550
|
+
level_gauges = data_inputs.get_gauges('level gauges', ewr_table_path=ewr_table_path)
|
|
551
551
|
df_flow = pd.DataFrame(index = input_df.index)
|
|
552
552
|
df_level = pd.DataFrame(index = input_df.index)
|
|
553
553
|
for col in input_df.columns:
|
|
@@ -622,7 +622,7 @@ class ScenarioHandler:
|
|
|
622
622
|
|
|
623
623
|
elif self.model_format == 'IQQM - netcdf':
|
|
624
624
|
df_unpacked = unpack_netcdf_as_dataframe(scenarios[scenario])
|
|
625
|
-
df_F, df_L = cleaner_netcdf_werp(df_unpacked, data_inputs.get_iqqm_codes())
|
|
625
|
+
df_F, df_L = cleaner_netcdf_werp(df_unpacked, data_inputs.get_iqqm_codes(),self.parameter_sheet)
|
|
626
626
|
|
|
627
627
|
elif self.model_format == 'ten thousand year':
|
|
628
628
|
df = pd.read_csv(scenarios[scenario], index_col = 'Date')
|
|
@@ -808,4 +808,4 @@ class ScenarioHandler:
|
|
|
808
808
|
if not self.pu_ewr_statistics:
|
|
809
809
|
self.process_scenarios()
|
|
810
810
|
|
|
811
|
-
return summarise_results.summarise(self.pu_ewr_statistics , self.yearly_events, parameter_sheet_path=self.parameter_sheet)
|
|
811
|
+
return summarise_results.summarise(self.pu_ewr_statistics , self.yearly_events, parameter_sheet_path=self.parameter_sheet)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: py_ewr
|
|
3
|
-
Version: 2.3.
|
|
3
|
+
Version: 2.3.4
|
|
4
4
|
Summary: Environmental Water Requirement calculator
|
|
5
5
|
Home-page: https://github.com/MDBAuth/EWR_tool
|
|
6
6
|
Author: Martin Job
|
|
@@ -28,13 +28,22 @@ Requires-Dist: xarray
|
|
|
28
28
|
Requires-Dist: h5py
|
|
29
29
|
Requires-Dist: netCDF4
|
|
30
30
|
Requires-Dist: numpy<2
|
|
31
|
+
Dynamic: author
|
|
32
|
+
Dynamic: author-email
|
|
33
|
+
Dynamic: classifier
|
|
34
|
+
Dynamic: description
|
|
35
|
+
Dynamic: description-content-type
|
|
36
|
+
Dynamic: home-page
|
|
37
|
+
Dynamic: project-url
|
|
38
|
+
Dynamic: requires-dist
|
|
39
|
+
Dynamic: summary
|
|
31
40
|
|
|
32
41
|
[]()
|
|
33
42
|
[](https://pypi.org/project/py-ewr/)
|
|
34
43
|
[](https://pypi.org/project/py-ewr/)
|
|
35
44
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
36
45
|
|
|
37
|
-
### **EWR tool version 2.3.
|
|
46
|
+
### **EWR tool version 2.3.4 README**
|
|
38
47
|
|
|
39
48
|
### **Notes on recent version updates**
|
|
40
49
|
- CLLMM_c and CLLMM_d ewrs are now able to be calculated without all barrage level gauges being present in the model file.
|
|
@@ -1,20 +1,20 @@
|
|
|
1
1
|
py_ewr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
2
|
py_ewr/data_inputs.py,sha256=oUiEiLY_CmbvqF5GlV-3Yfz_JZ1qZNvta-VEYCzAcso,20124
|
|
3
|
-
py_ewr/evaluate_EWRs.py,sha256=
|
|
3
|
+
py_ewr/evaluate_EWRs.py,sha256=pCIqWysUuM-HbYn6U9bQnrHMhTl2CVhjWanpGJ6l0pc,231584
|
|
4
4
|
py_ewr/io.py,sha256=Is0xPAzLx6-ylpTFyYJxMimkNVxxoTxUcknTk6bQbgs,840
|
|
5
5
|
py_ewr/observed_handling.py,sha256=JTSK_2obhqNWJ2QknykywevNMN0fsvGXSejFwUSpMoA,18112
|
|
6
|
-
py_ewr/scenario_handling.py,sha256=
|
|
6
|
+
py_ewr/scenario_handling.py,sha256=D4P1rqrD6_3pwhifHCVVdLSEKsNI4VVzPu60g7ZyRXk,35982
|
|
7
7
|
py_ewr/summarise_results.py,sha256=rFaAUVR4jIsjeRl4ocPFE2RUoJJBZgZ2wPEBh-dfEsc,31761
|
|
8
|
-
py_ewr/model_metadata/SiteID_MDBA.csv,sha256=
|
|
8
|
+
py_ewr/model_metadata/SiteID_MDBA.csv,sha256=orbh3QIRbOkUjCB2hcdpeUvhepnY_3ywldu22s45d5Y,168771
|
|
9
9
|
py_ewr/model_metadata/SiteID_NSW.csv,sha256=UVBxN43Z5KWCvWhQ5Rh6TNEn35q4_sjPxKyHg8wPFws,6805
|
|
10
10
|
py_ewr/model_metadata/iqqm_stations.csv,sha256=vl4CPtPslG5VplSzf_yLZulTrmab-mEBHOfzFtS1kf4,110
|
|
11
11
|
py_ewr/parameter_metadata/ewr2obj.csv,sha256=r2uXzhZ-Rd1u3RLhNXmJnPYcHwouHBehEPnvednfz-I,3948677
|
|
12
|
-
py_ewr/parameter_metadata/ewr_calc_config.json,sha256=
|
|
12
|
+
py_ewr/parameter_metadata/ewr_calc_config.json,sha256=NbhbB_fO0j191XDiz-2TxNasQGGe69FdhLyD0ZMj2eg,17980
|
|
13
13
|
py_ewr/parameter_metadata/obj2target.csv,sha256=f6kLVyBhXUpGR4b0dzLbBvZbfpn3OxOhaB4aouO6Bvw,1593877
|
|
14
14
|
py_ewr/parameter_metadata/obj2yrtarget.csv,sha256=G8XgdCrOpB0xhp6n7DIS4Vcq69Kpgb1Pum7Ay3a_YPU,54882
|
|
15
15
|
py_ewr/parameter_metadata/parameter_sheet.csv,sha256=MxKE-649bIC6HGqh87MT_fR3Lmew8n10Oi6OsAF1N0Q,768524
|
|
16
|
-
py_ewr-2.3.
|
|
17
|
-
py_ewr-2.3.
|
|
18
|
-
py_ewr-2.3.
|
|
19
|
-
py_ewr-2.3.
|
|
20
|
-
py_ewr-2.3.
|
|
16
|
+
py_ewr-2.3.4.dist-info/LICENSE,sha256=ogEPNDSH0_dhiv_lT3ifVIdgIzHAqNA_SemnxUfPBJk,7048
|
|
17
|
+
py_ewr-2.3.4.dist-info/METADATA,sha256=dcU2egWhsIje0d-nFTKImRkNusWuguvndhV40ixSqVg,12902
|
|
18
|
+
py_ewr-2.3.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
19
|
+
py_ewr-2.3.4.dist-info/top_level.txt,sha256=n3725d-64Cjyb-YMUMV64UAuIflzUh2_UZSxiIbrur4,7
|
|
20
|
+
py_ewr-2.3.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|