py-ewr 2.2.5__py3-none-any.whl → 2.2.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py_ewr/data_inputs.py CHANGED
@@ -121,7 +121,7 @@ def get_MDBA_codes() -> pd.DataFrame:
121
121
  pd.DataFrame: dataframe for linking MDBA model nodes to gauges
122
122
 
123
123
  '''
124
- metadata = pd.read_csv( BASE_PATH / 'model_metadata/SiteID_MDBA.csv', engine = 'python', dtype=str, encoding='windows-1252')
124
+ metadata = pd.read_csv( BASE_PATH / 'model_metadata/SiteID_MDBA.csv', engine = 'python', dtype=str)#, encoding='windows-1252')
125
125
 
126
126
  return metadata
127
127
 
@@ -392,12 +392,12 @@ def get_gauges(category: str, ewr_table_path: str = None) -> set:
392
392
  multi_gauges = get_multi_gauges('gauges')
393
393
  multi_gauges = list(multi_gauges.values())
394
394
  if category == 'all gauges':
395
- return set(EWR_table['Gauge'].to_list() + menindee_gauges + wp_gauges + multi_gauges)
395
+ return set(EWR_table['Gauge'].to_list()+menindee_gauges+wp_gauges+multi_gauges+flow_barrage_gauges+level_barrage_gauges+qld_flow_gauges+qld_level_gauges+vic_level_gauges)
396
396
  elif category == 'flow gauges':
397
397
  return set(EWR_table['Gauge'].to_list() + multi_gauges + flow_barrage_gauges + qld_flow_gauges)
398
398
  elif category == 'level gauges':
399
399
  level_gauges = EWR_table[EWR_table['FlowLevelVolume']=='L']['Gauge'].to_list()
400
- return set(menindee_gauges + wp_gauges + level_barrage_gauges + qld_level_gauges + level_gauges)
400
+ return set(menindee_gauges + wp_gauges + level_barrage_gauges + qld_level_gauges + level_gauges + vic_level_gauges)
401
401
  else:
402
402
  raise ValueError('''No gauge category sent to the "get_gauges" function''')
403
403
 
@@ -439,4 +439,18 @@ def gauge_groups(parameter_sheet: pd.DataFrame) -> dict:
439
439
 
440
440
  return flow_gauges, level_gauges, lake_level_gauges
441
441
 
442
- # def gauges_to_measurand()
442
+ # def gauges_to_measurand()
443
+
444
+ def get_causal_ewr() -> dict:
445
+
446
+ ewr2obj_path = os.path.join(BASE_PATH, "parameter_metadata/ewr2obj.csv")
447
+ obj2target_path = os.path.join(BASE_PATH, "parameter_metadata/obj2target.csv")
448
+ obj2yrtarget_path = os.path.join(BASE_PATH, "parameter_metadata/obj2yrtarget.csv")
449
+
450
+ causal_ewr = {
451
+ "ewr2obj": pd.read_csv(ewr2obj_path),
452
+ "obj2target": pd.read_csv(obj2target_path),
453
+ "obj2yrtarget":pd.read_csv(obj2yrtarget_path)
454
+ }
455
+
456
+ return causal_ewr
py_ewr/evaluate_EWRs.py CHANGED
@@ -4859,7 +4859,7 @@ def event_stats(df:pd.DataFrame, PU_df:pd.DataFrame, gauge:str, EWR:str, EWR_inf
4859
4859
  years_with_events = get_event_years_volume_achieved(events, unique_water_years)
4860
4860
 
4861
4861
  YWE = pd.Series(name = str(EWR + '_eventYears'), data = years_with_events, index = unique_water_years)
4862
- PU_df = pd.concat([PU_df, YWE], axis = 1)
4862
+ # PU_df = pd.concat([PU_df, YWE], axis = 1)
4863
4863
  # Number of event achievements:
4864
4864
  num_event_achievements = get_achievements(EWR_info, events, unique_water_years, durations)
4865
4865
 
@@ -4867,64 +4867,84 @@ def event_stats(df:pd.DataFrame, PU_df:pd.DataFrame, gauge:str, EWR:str, EWR_inf
4867
4867
  num_event_achievements = get_achievements_connecting_events(events, unique_water_years)
4868
4868
 
4869
4869
  NEA = pd.Series(name = str(EWR + '_numAchieved'), data= num_event_achievements, index = unique_water_years)
4870
- PU_df = pd.concat([PU_df, NEA], axis = 1)
4870
+ # PU_df = pd.concat([PU_df, NEA], axis = 1)
4871
4871
  # Total number of events THIS ONE IS ONLY ACHIEVED due to Filter Applied
4872
4872
  num_events = get_number_events(EWR_info, events, unique_water_years, durations)
4873
4873
  NE = pd.Series(name = str(EWR + '_numEvents'), data= num_events, index = unique_water_years)
4874
- PU_df = pd.concat([PU_df, NE], axis = 1)
4874
+ # PU_df = pd.concat([PU_df, NE], axis = 1)
4875
4875
  # Total number of events THIS ONE IS ALL EVENTS
4876
4876
  num_events_all = get_all_events(events)
4877
4877
  NEALL = pd.Series(name = str(EWR + '_numEventsAll'), data= num_events_all, index = unique_water_years)
4878
- PU_df = pd.concat([PU_df, NEALL], axis = 1)
4878
+ # PU_df = pd.concat([PU_df, NEALL], axis = 1)
4879
4879
  # Max inter event period
4880
4880
  max_inter_period = get_max_inter_event_days(no_events, unique_water_years)
4881
4881
  MIP = pd.Series(name = str(EWR + '_maxInterEventDays'), data= max_inter_period, index = unique_water_years)
4882
- PU_df = pd.concat([PU_df, MIP], axis = 1)
4882
+ # PU_df = pd.concat([PU_df, MIP], axis = 1)
4883
4883
  # Max inter event period achieved
4884
4884
  max_inter_period_achieved = get_event_max_inter_event_achieved(EWR_info, no_events, unique_water_years)
4885
4885
  MIPA = pd.Series(name = str(EWR + '_maxInterEventDaysAchieved'), data= max_inter_period_achieved, index = unique_water_years)
4886
- PU_df = pd.concat([PU_df, MIPA], axis = 1)
4886
+ # PU_df = pd.concat([PU_df, MIPA], axis = 1)
4887
4887
  # Average length of events
4888
4888
  av_length = get_average_event_length(events, unique_water_years)
4889
4889
  AL = pd.Series(name = str(EWR + '_eventLength'), data = av_length, index = unique_water_years)
4890
- PU_df = pd.concat([PU_df, AL], axis = 1)
4890
+ # PU_df = pd.concat([PU_df, AL], axis = 1)
4891
4891
  # Average length of events ONLY the ACHIEVED
4892
4892
  av_length_achieved = get_average_event_length_achieved(EWR_info, events)
4893
4893
  ALA = pd.Series(name = str(EWR + '_eventLengthAchieved' ), data = av_length_achieved, index = unique_water_years)
4894
- PU_df = pd.concat([PU_df, ALA], axis = 1)
4894
+ # PU_df = pd.concat([PU_df, ALA], axis = 1)
4895
4895
  # Total event days
4896
4896
  total_days = get_total_days(events, unique_water_years)
4897
- TD = pd.Series(name = str(EWR + '_totalEventDays'), data = total_days, index = unique_water_years)
4898
- PU_df = pd.concat([PU_df, TD], axis = 1)
4897
+ TD_A = pd.Series(name = str(EWR + '_totalEventDays'), data = total_days, index = unique_water_years)
4898
+ # PU_df = pd.concat([PU_df, TD], axis = 1)
4899
4899
  # Total event days ACHIEVED
4900
4900
  total_days_achieved = get_achieved_event_days(EWR_info, events)
4901
4901
  TDA = pd.Series(name = str(EWR + '_totalEventDaysAchieved'), data = total_days_achieved, index = unique_water_years)
4902
- PU_df = pd.concat([PU_df, TDA], axis = 1)
4902
+ # PU_df = pd.concat([PU_df, TDA], axis = 1)
4903
4903
  # Max event days
4904
4904
  max_days = get_max_event_days(events, unique_water_years)
4905
4905
  MD = pd.Series(name = str(EWR + '_maxEventDays'), data = max_days, index = unique_water_years)
4906
- PU_df = pd.concat([PU_df, MD], axis = 1)
4906
+ # PU_df = pd.concat([PU_df, MD], axis = 1)
4907
4907
  # Max rolling consecutive event days
4908
4908
  try:
4909
4909
  max_consecutive_days = get_max_consecutive_event_days(events, unique_water_years)
4910
4910
  MR = pd.Series(name = str(EWR + '_maxRollingEvents'), data = max_consecutive_days, index = unique_water_years)
4911
- PU_df = pd.concat([PU_df, MR], axis = 1)
4911
+ # PU_df = pd.concat([PU_df, MR], axis = 1)
4912
4912
  except Exception as e:
4913
4913
  max_consecutive_days = [0]*len(unique_water_years)
4914
4914
  MR = pd.Series(name = str(EWR + '_maxRollingEvents'), data = max_consecutive_days, index = unique_water_years)
4915
- PU_df = pd.concat([PU_df, MR], axis = 1)
4915
+ # PU_df = pd.concat([PU_df, MR], axis = 1)
4916
4916
  log.error(e)
4917
4917
  # Max rolling duration achieved
4918
4918
  achieved_max_rolling_duration = get_max_rolling_duration_achievement(durations, max_consecutive_days)
4919
4919
  MRA = pd.Series(name = str(EWR + '_maxRollingAchievement'), data = achieved_max_rolling_duration, index = unique_water_years)
4920
- PU_df = pd.concat([PU_df, MRA], axis = 1)
4920
+ # PU_df = pd.concat([PU_df, MRA], axis = 1)
4921
4921
  # Append information around available and missing data:
4922
4922
  yearly_gap = get_data_gap(df, water_years, gauge)
4923
4923
  total_days = get_total_series_days(water_years)
4924
4924
  YG = pd.Series(name = str(EWR + '_missingDays'), data = yearly_gap, index = unique_water_years)
4925
- TD = pd.Series(name = str(EWR + '_totalPossibleDays'), data = total_days, index = unique_water_years)
4926
- PU_df = pd.concat([PU_df, YG], axis = 1)
4927
- PU_df = pd.concat([PU_df, TD], axis = 1)
4925
+ TD_B = pd.Series(name = str(EWR + '_totalPossibleDays'), data = total_days, index = unique_water_years)
4926
+ # PU_df = pd.concat([PU_df, YG], axis = 1)
4927
+ # PU_df = pd.concat([PU_df, TD], axis = 1)
4928
+ PU_df = pd.concat(
4929
+ [PU_df,
4930
+ YWE,
4931
+ NEA,
4932
+ NE,
4933
+ NEALL,
4934
+ MIP,
4935
+ MIPA,
4936
+ AL,
4937
+ ALA,
4938
+ TD_A,
4939
+ TDA,
4940
+ MD,
4941
+ MR,
4942
+ MRA,
4943
+ YG,
4944
+ TD_B
4945
+ ],
4946
+ axis=1
4947
+ )
4928
4948
 
4929
4949
  return PU_df
4930
4950