py-ewr 2.2.4__py3-none-any.whl → 2.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_ewr/data_inputs.py +18 -4
- py_ewr/evaluate_EWRs.py +76 -32
- py_ewr/model_metadata/SiteID_MDBA.csv +2695 -2686
- py_ewr/observed_handling.py +6 -7
- py_ewr/parameter_metadata/ewr2obj.csv +40590 -0
- py_ewr/parameter_metadata/obj2target.csv +8962 -0
- py_ewr/parameter_metadata/obj2yrtarget.csv +106 -0
- py_ewr/parameter_metadata/parameter_sheet.csv +3459 -3447
- py_ewr/scenario_handling.py +83 -62
- py_ewr/summarise_results.py +38 -3
- {py_ewr-2.2.4.dist-info → py_ewr-2.2.6.dist-info}/METADATA +50 -26
- py_ewr-2.2.6.dist-info/RECORD +20 -0
- {py_ewr-2.2.4.dist-info → py_ewr-2.2.6.dist-info}/WHEEL +1 -1
- py_ewr-2.2.4.dist-info/RECORD +0 -17
- {py_ewr-2.2.4.dist-info → py_ewr-2.2.6.dist-info}/LICENSE +0 -0
- {py_ewr-2.2.4.dist-info → py_ewr-2.2.6.dist-info}/top_level.txt +0 -0
py_ewr/data_inputs.py
CHANGED
|
@@ -121,7 +121,7 @@ def get_MDBA_codes() -> pd.DataFrame:
|
|
|
121
121
|
pd.DataFrame: dataframe for linking MDBA model nodes to gauges
|
|
122
122
|
|
|
123
123
|
'''
|
|
124
|
-
metadata = pd.read_csv( BASE_PATH / 'model_metadata/SiteID_MDBA.csv', engine = 'python', dtype=str
|
|
124
|
+
metadata = pd.read_csv( BASE_PATH / 'model_metadata/SiteID_MDBA.csv', engine = 'python', dtype=str)#, encoding='windows-1252')
|
|
125
125
|
|
|
126
126
|
return metadata
|
|
127
127
|
|
|
@@ -392,12 +392,12 @@ def get_gauges(category: str, ewr_table_path: str = None) -> set:
|
|
|
392
392
|
multi_gauges = get_multi_gauges('gauges')
|
|
393
393
|
multi_gauges = list(multi_gauges.values())
|
|
394
394
|
if category == 'all gauges':
|
|
395
|
-
return set(EWR_table['Gauge'].to_list()
|
|
395
|
+
return set(EWR_table['Gauge'].to_list()+menindee_gauges+wp_gauges+multi_gauges+flow_barrage_gauges+level_barrage_gauges+qld_flow_gauges+qld_level_gauges+vic_level_gauges)
|
|
396
396
|
elif category == 'flow gauges':
|
|
397
397
|
return set(EWR_table['Gauge'].to_list() + multi_gauges + flow_barrage_gauges + qld_flow_gauges)
|
|
398
398
|
elif category == 'level gauges':
|
|
399
399
|
level_gauges = EWR_table[EWR_table['FlowLevelVolume']=='L']['Gauge'].to_list()
|
|
400
|
-
return set(menindee_gauges + wp_gauges + level_barrage_gauges + qld_level_gauges + level_gauges)
|
|
400
|
+
return set(menindee_gauges + wp_gauges + level_barrage_gauges + qld_level_gauges + level_gauges + vic_level_gauges)
|
|
401
401
|
else:
|
|
402
402
|
raise ValueError('''No gauge category sent to the "get_gauges" function''')
|
|
403
403
|
|
|
@@ -439,4 +439,18 @@ def gauge_groups(parameter_sheet: pd.DataFrame) -> dict:
|
|
|
439
439
|
|
|
440
440
|
return flow_gauges, level_gauges, lake_level_gauges
|
|
441
441
|
|
|
442
|
-
# def gauges_to_measurand()
|
|
442
|
+
# def gauges_to_measurand()
|
|
443
|
+
|
|
444
|
+
def get_causal_ewr() -> dict:
|
|
445
|
+
|
|
446
|
+
ewr2obj_path = os.path.join(BASE_PATH, "parameter_metadata/ewr2obj.csv")
|
|
447
|
+
obj2target_path = os.path.join(BASE_PATH, "parameter_metadata/obj2target.csv")
|
|
448
|
+
obj2yrtarget_path = os.path.join(BASE_PATH, "parameter_metadata/obj2yrtarget.csv")
|
|
449
|
+
|
|
450
|
+
causal_ewr = {
|
|
451
|
+
"ewr2obj": pd.read_csv(ewr2obj_path),
|
|
452
|
+
"obj2target": pd.read_csv(obj2target_path),
|
|
453
|
+
"obj2yrtarget":pd.read_csv(obj2yrtarget_path)
|
|
454
|
+
}
|
|
455
|
+
|
|
456
|
+
return causal_ewr
|
py_ewr/evaluate_EWRs.py
CHANGED
|
@@ -445,10 +445,19 @@ def get_index_date(date_index:Any)-> datetime.date:
|
|
|
445
445
|
"""
|
|
446
446
|
if type(date_index) == pd._libs.tslibs.timestamps.Timestamp:
|
|
447
447
|
return date_index.date()
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
448
|
+
if type(date_index) == pd._libs.tslibs.period.Period:
|
|
449
|
+
date_index_str = date_index.strftime('%Y-%m-%d')
|
|
450
|
+
# For dates between the years 100 and 999 we need to add a 0 onto the date string so strptime doesnt break
|
|
451
|
+
if ((int(date_index_str.split('-')[0]) >= 100) and (int(date_index_str.split('-')[0]) < 1000)):
|
|
452
|
+
date_index_str = '0' + date_index_str
|
|
453
|
+
n = datetime.datetime.strptime(date_index_str, '%Y-%m-%d').date()
|
|
454
|
+
return n
|
|
455
|
+
if type(date_index) == str:
|
|
456
|
+
n = datetime.datetime.strptime(date_index, '%Y-%m-%d').date()
|
|
457
|
+
return n
|
|
458
|
+
if type(date_index) == datetime.date:
|
|
451
459
|
return date_index
|
|
460
|
+
# return date_index #TODO: should this break? i.e. we arent expecting other date formats
|
|
452
461
|
|
|
453
462
|
#----------------------------------- EWR handling functions --------------------------------------#
|
|
454
463
|
|
|
@@ -1958,7 +1967,8 @@ def water_stability_check(EWR_info:Dict, iteration:int, flows:List, all_events:D
|
|
|
1958
1967
|
if levels_are_stable:
|
|
1959
1968
|
# record event opportunity for the next n days for the total period of (EggDaysSpell)+ larvae (LarvaeDaysSpell)
|
|
1960
1969
|
# if the last day of the event is not over the last day of the event window
|
|
1961
|
-
iteration_date =
|
|
1970
|
+
iteration_date = get_index_date(flow_date)
|
|
1971
|
+
# iteration_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
1962
1972
|
last_day_window = get_last_day_of_window(iteration_date, EWR_info['end_month'])
|
|
1963
1973
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
1964
1974
|
if is_date_in_window(iteration_date, last_day_window, event_size):
|
|
@@ -1995,7 +2005,8 @@ def water_stability_level_check(EWR_info:Dict, iteration:int, all_events:Dict, w
|
|
|
1995
2005
|
if levels_are_stable:
|
|
1996
2006
|
# record event opportunity for the next n days for the total period of (EggDaysSpell)+ larvae (LarvaeDaysSpell)
|
|
1997
2007
|
# if the last day of the event is not over the last day of the event window
|
|
1998
|
-
iteration_date =
|
|
2008
|
+
iteration_date = get_index_date(flow_date)
|
|
2009
|
+
# iteration_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
1999
2010
|
last_day_window = get_last_day_of_window(iteration_date, EWR_info['end_month'])
|
|
2000
2011
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
2001
2012
|
if is_date_in_window(iteration_date, last_day_window, event_size):
|
|
@@ -2617,7 +2628,8 @@ def create_water_stability_event(flow_date: pd.Timestamp, flows:List, iteration:
|
|
|
2617
2628
|
"""
|
|
2618
2629
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
2619
2630
|
event_flows = flows[iteration: iteration + event_size]
|
|
2620
|
-
start_event_date =
|
|
2631
|
+
start_event_date = get_index_date(flow_date)
|
|
2632
|
+
# start_event_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
2621
2633
|
event_dates = [ start_event_date + timedelta(i) for i in range(event_size)]
|
|
2622
2634
|
|
|
2623
2635
|
return [(d, flow) for d, flow in zip(event_dates, event_flows)]
|
|
@@ -3800,6 +3812,7 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3800
3812
|
Returns:
|
|
3801
3813
|
tuple: final output with the calculation of volume all_events, durations
|
|
3802
3814
|
"""
|
|
3815
|
+
#TODO can we clean up the flow_date and iteration_date parts
|
|
3803
3816
|
event = []
|
|
3804
3817
|
total_event = 0
|
|
3805
3818
|
all_events = construct_event_dict(water_years)
|
|
@@ -3807,19 +3820,25 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3807
3820
|
gap_track = 0
|
|
3808
3821
|
for i, flow in enumerate(flows[:-1]):
|
|
3809
3822
|
flow_date = dates[i]
|
|
3823
|
+
iteration_date = get_index_date(flow_date)
|
|
3810
3824
|
flow_percent_change = calc_flow_percent_change(i, flows)
|
|
3811
3825
|
trigger_day = date(dates[i].year,EWR_info["trigger_month"], EWR_info["trigger_day"])
|
|
3812
3826
|
cut_date = calc_nest_cut_date(EWR_info, i, dates)
|
|
3813
|
-
is_in_trigger_window =
|
|
3814
|
-
and
|
|
3827
|
+
is_in_trigger_window = iteration_date >= trigger_day \
|
|
3828
|
+
and iteration_date <= trigger_day + timedelta(days=14) #.to_timestamp() .to_timestamp()
|
|
3829
|
+
# is_in_trigger_window = dates[i].date() >= trigger_day \
|
|
3830
|
+
# and dates[i].date() <= trigger_day + timedelta(days=14) #.to_timestamp() .to_timestamp()
|
|
3815
3831
|
iteration_no_event = 0
|
|
3816
3832
|
|
|
3817
3833
|
## if there IS an ongoing event check if we are on the trigger season window
|
|
3818
3834
|
# if yes then check the current flow
|
|
3819
3835
|
if total_event > 0:
|
|
3820
|
-
if (
|
|
3836
|
+
if (iteration_date >= trigger_day) and (iteration_date <= cut_date):
|
|
3821
3837
|
event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, i, flow, event, all_events,
|
|
3822
3838
|
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event) #.to_timestamp() .to_timestamp()
|
|
3839
|
+
# if (dates[i].date() >= trigger_day) and (dates[i].date() <= cut_date):
|
|
3840
|
+
# event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, i, flow, event, all_events,
|
|
3841
|
+
# gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event) #.to_timestamp() .to_timestamp()
|
|
3823
3842
|
|
|
3824
3843
|
# this path will only be executed if an event extends beyond the cut date
|
|
3825
3844
|
else:
|
|
@@ -3840,18 +3859,23 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3840
3859
|
|
|
3841
3860
|
# Check final iteration in the flow timeseries, saving any ongoing events/event gaps to their spots in the dictionaries:
|
|
3842
3861
|
# reset all variable to last flow
|
|
3843
|
-
|
|
3862
|
+
|
|
3863
|
+
# flow_date = dates[-1].date()#.to_timestamp()
|
|
3864
|
+
flow_date = dates[-1]
|
|
3865
|
+
iteration_date = get_index_date(dates[-1])
|
|
3844
3866
|
flow_percent_change = calc_flow_percent_change(-1, flows)
|
|
3845
3867
|
trigger_day = date(dates[-1].year,EWR_info["trigger_month"], EWR_info["trigger_day"])
|
|
3846
3868
|
cut_date = calc_nest_cut_date(EWR_info, -1, dates)
|
|
3847
|
-
is_in_trigger_window =
|
|
3848
|
-
and
|
|
3869
|
+
is_in_trigger_window = iteration_date >= trigger_day - timedelta(days=7) \
|
|
3870
|
+
and iteration_date <= trigger_day + timedelta(days=7) #.to_timestamp() .to_timestamp()
|
|
3871
|
+
# is_in_trigger_window = dates[-1].date() >= trigger_day - timedelta(days=7) \
|
|
3872
|
+
# and dates[-1].date() <= trigger_day + timedelta(days=7) #.to_timestamp() .to_timestamp()
|
|
3849
3873
|
iteration_no_event = 0
|
|
3850
3874
|
|
|
3851
3875
|
if total_event > 0:
|
|
3852
3876
|
|
|
3853
|
-
if (
|
|
3854
|
-
and (
|
|
3877
|
+
if (iteration_date >= trigger_day ) \
|
|
3878
|
+
and (iteration_date <= cut_date): # Was flow_date instead of iteration date in both instances
|
|
3855
3879
|
event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, -1, flows[-1], event, all_events,
|
|
3856
3880
|
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event)
|
|
3857
3881
|
|
|
@@ -4835,7 +4859,7 @@ def event_stats(df:pd.DataFrame, PU_df:pd.DataFrame, gauge:str, EWR:str, EWR_inf
|
|
|
4835
4859
|
years_with_events = get_event_years_volume_achieved(events, unique_water_years)
|
|
4836
4860
|
|
|
4837
4861
|
YWE = pd.Series(name = str(EWR + '_eventYears'), data = years_with_events, index = unique_water_years)
|
|
4838
|
-
PU_df = pd.concat([PU_df, YWE], axis = 1)
|
|
4862
|
+
# PU_df = pd.concat([PU_df, YWE], axis = 1)
|
|
4839
4863
|
# Number of event achievements:
|
|
4840
4864
|
num_event_achievements = get_achievements(EWR_info, events, unique_water_years, durations)
|
|
4841
4865
|
|
|
@@ -4843,64 +4867,84 @@ def event_stats(df:pd.DataFrame, PU_df:pd.DataFrame, gauge:str, EWR:str, EWR_inf
|
|
|
4843
4867
|
num_event_achievements = get_achievements_connecting_events(events, unique_water_years)
|
|
4844
4868
|
|
|
4845
4869
|
NEA = pd.Series(name = str(EWR + '_numAchieved'), data= num_event_achievements, index = unique_water_years)
|
|
4846
|
-
PU_df = pd.concat([PU_df, NEA], axis = 1)
|
|
4870
|
+
# PU_df = pd.concat([PU_df, NEA], axis = 1)
|
|
4847
4871
|
# Total number of events THIS ONE IS ONLY ACHIEVED due to Filter Applied
|
|
4848
4872
|
num_events = get_number_events(EWR_info, events, unique_water_years, durations)
|
|
4849
4873
|
NE = pd.Series(name = str(EWR + '_numEvents'), data= num_events, index = unique_water_years)
|
|
4850
|
-
PU_df = pd.concat([PU_df, NE], axis = 1)
|
|
4874
|
+
# PU_df = pd.concat([PU_df, NE], axis = 1)
|
|
4851
4875
|
# Total number of events THIS ONE IS ALL EVENTS
|
|
4852
4876
|
num_events_all = get_all_events(events)
|
|
4853
4877
|
NEALL = pd.Series(name = str(EWR + '_numEventsAll'), data= num_events_all, index = unique_water_years)
|
|
4854
|
-
PU_df = pd.concat([PU_df, NEALL], axis = 1)
|
|
4878
|
+
# PU_df = pd.concat([PU_df, NEALL], axis = 1)
|
|
4855
4879
|
# Max inter event period
|
|
4856
4880
|
max_inter_period = get_max_inter_event_days(no_events, unique_water_years)
|
|
4857
4881
|
MIP = pd.Series(name = str(EWR + '_maxInterEventDays'), data= max_inter_period, index = unique_water_years)
|
|
4858
|
-
PU_df = pd.concat([PU_df, MIP], axis = 1)
|
|
4882
|
+
# PU_df = pd.concat([PU_df, MIP], axis = 1)
|
|
4859
4883
|
# Max inter event period achieved
|
|
4860
4884
|
max_inter_period_achieved = get_event_max_inter_event_achieved(EWR_info, no_events, unique_water_years)
|
|
4861
4885
|
MIPA = pd.Series(name = str(EWR + '_maxInterEventDaysAchieved'), data= max_inter_period_achieved, index = unique_water_years)
|
|
4862
|
-
PU_df = pd.concat([PU_df, MIPA], axis = 1)
|
|
4886
|
+
# PU_df = pd.concat([PU_df, MIPA], axis = 1)
|
|
4863
4887
|
# Average length of events
|
|
4864
4888
|
av_length = get_average_event_length(events, unique_water_years)
|
|
4865
4889
|
AL = pd.Series(name = str(EWR + '_eventLength'), data = av_length, index = unique_water_years)
|
|
4866
|
-
PU_df = pd.concat([PU_df, AL], axis = 1)
|
|
4890
|
+
# PU_df = pd.concat([PU_df, AL], axis = 1)
|
|
4867
4891
|
# Average length of events ONLY the ACHIEVED
|
|
4868
4892
|
av_length_achieved = get_average_event_length_achieved(EWR_info, events)
|
|
4869
4893
|
ALA = pd.Series(name = str(EWR + '_eventLengthAchieved' ), data = av_length_achieved, index = unique_water_years)
|
|
4870
|
-
PU_df = pd.concat([PU_df, ALA], axis = 1)
|
|
4894
|
+
# PU_df = pd.concat([PU_df, ALA], axis = 1)
|
|
4871
4895
|
# Total event days
|
|
4872
4896
|
total_days = get_total_days(events, unique_water_years)
|
|
4873
|
-
|
|
4874
|
-
PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4897
|
+
TD_A = pd.Series(name = str(EWR + '_totalEventDays'), data = total_days, index = unique_water_years)
|
|
4898
|
+
# PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4875
4899
|
# Total event days ACHIEVED
|
|
4876
4900
|
total_days_achieved = get_achieved_event_days(EWR_info, events)
|
|
4877
4901
|
TDA = pd.Series(name = str(EWR + '_totalEventDaysAchieved'), data = total_days_achieved, index = unique_water_years)
|
|
4878
|
-
PU_df = pd.concat([PU_df, TDA], axis = 1)
|
|
4902
|
+
# PU_df = pd.concat([PU_df, TDA], axis = 1)
|
|
4879
4903
|
# Max event days
|
|
4880
4904
|
max_days = get_max_event_days(events, unique_water_years)
|
|
4881
4905
|
MD = pd.Series(name = str(EWR + '_maxEventDays'), data = max_days, index = unique_water_years)
|
|
4882
|
-
PU_df = pd.concat([PU_df, MD], axis = 1)
|
|
4906
|
+
# PU_df = pd.concat([PU_df, MD], axis = 1)
|
|
4883
4907
|
# Max rolling consecutive event days
|
|
4884
4908
|
try:
|
|
4885
4909
|
max_consecutive_days = get_max_consecutive_event_days(events, unique_water_years)
|
|
4886
4910
|
MR = pd.Series(name = str(EWR + '_maxRollingEvents'), data = max_consecutive_days, index = unique_water_years)
|
|
4887
|
-
PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4911
|
+
# PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4888
4912
|
except Exception as e:
|
|
4889
4913
|
max_consecutive_days = [0]*len(unique_water_years)
|
|
4890
4914
|
MR = pd.Series(name = str(EWR + '_maxRollingEvents'), data = max_consecutive_days, index = unique_water_years)
|
|
4891
|
-
PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4915
|
+
# PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4892
4916
|
log.error(e)
|
|
4893
4917
|
# Max rolling duration achieved
|
|
4894
4918
|
achieved_max_rolling_duration = get_max_rolling_duration_achievement(durations, max_consecutive_days)
|
|
4895
4919
|
MRA = pd.Series(name = str(EWR + '_maxRollingAchievement'), data = achieved_max_rolling_duration, index = unique_water_years)
|
|
4896
|
-
PU_df = pd.concat([PU_df, MRA], axis = 1)
|
|
4920
|
+
# PU_df = pd.concat([PU_df, MRA], axis = 1)
|
|
4897
4921
|
# Append information around available and missing data:
|
|
4898
4922
|
yearly_gap = get_data_gap(df, water_years, gauge)
|
|
4899
4923
|
total_days = get_total_series_days(water_years)
|
|
4900
4924
|
YG = pd.Series(name = str(EWR + '_missingDays'), data = yearly_gap, index = unique_water_years)
|
|
4901
|
-
|
|
4902
|
-
PU_df = pd.concat([PU_df, YG], axis = 1)
|
|
4903
|
-
PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4925
|
+
TD_B = pd.Series(name = str(EWR + '_totalPossibleDays'), data = total_days, index = unique_water_years)
|
|
4926
|
+
# PU_df = pd.concat([PU_df, YG], axis = 1)
|
|
4927
|
+
# PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4928
|
+
PU_df = pd.concat(
|
|
4929
|
+
[PU_df,
|
|
4930
|
+
YWE,
|
|
4931
|
+
NEA,
|
|
4932
|
+
NE,
|
|
4933
|
+
NEALL,
|
|
4934
|
+
MIP,
|
|
4935
|
+
MIPA,
|
|
4936
|
+
AL,
|
|
4937
|
+
ALA,
|
|
4938
|
+
TD_A,
|
|
4939
|
+
TDA,
|
|
4940
|
+
MD,
|
|
4941
|
+
MR,
|
|
4942
|
+
MRA,
|
|
4943
|
+
YG,
|
|
4944
|
+
TD_B
|
|
4945
|
+
],
|
|
4946
|
+
axis=1
|
|
4947
|
+
)
|
|
4904
4948
|
|
|
4905
4949
|
return PU_df
|
|
4906
4950
|
|