py-ewr 2.2.3__py3-none-any.whl → 2.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_ewr/data_inputs.py +24 -0
- py_ewr/evaluate_EWRs.py +39 -15
- py_ewr/observed_handling.py +8 -9
- py_ewr/parameter_metadata/ewr2obj.csv +40590 -0
- py_ewr/parameter_metadata/obj2target.csv +8962 -0
- py_ewr/parameter_metadata/obj2yrtarget.csv +106 -0
- py_ewr/scenario_handling.py +36 -2
- py_ewr/summarise_results.py +38 -3
- {py_ewr-2.2.3.dist-info → py_ewr-2.2.5.dist-info}/METADATA +4 -4
- py_ewr-2.2.5.dist-info/RECORD +20 -0
- {py_ewr-2.2.3.dist-info → py_ewr-2.2.5.dist-info}/WHEEL +1 -1
- py_ewr-2.2.3.dist-info/RECORD +0 -17
- {py_ewr-2.2.3.dist-info → py_ewr-2.2.5.dist-info}/LICENSE +0 -0
- {py_ewr-2.2.3.dist-info → py_ewr-2.2.5.dist-info}/top_level.txt +0 -0
py_ewr/data_inputs.py
CHANGED
|
@@ -416,3 +416,27 @@ def get_scenario_gauges(gauge_results: dict) -> list:
|
|
|
416
416
|
for gauge in scenario.keys():
|
|
417
417
|
scenario_gauges.append(gauge)
|
|
418
418
|
return list(set(scenario_gauges))
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
def gauge_groups(parameter_sheet: pd.DataFrame) -> dict:
|
|
422
|
+
'''
|
|
423
|
+
Returns a dictionary of flow, level, and lake level gauges based on the parameter sheet and some hard coding of other EWRs
|
|
424
|
+
|
|
425
|
+
Args:
|
|
426
|
+
parameter_sheet (pd.DataFrame): input parameter sheet
|
|
427
|
+
|
|
428
|
+
Returns:
|
|
429
|
+
dict: keys as flow, level, and lake level gauges, values as the list of gauges
|
|
430
|
+
'''
|
|
431
|
+
|
|
432
|
+
# Hard coded gauges for the CLLMM EWRs
|
|
433
|
+
hard_code_levels = ['A4260527', 'A4260524', 'A4260633', 'A4261209', 'A4261165']
|
|
434
|
+
hard_code_lake_levels = ['A4261133', 'A4260574', 'A4260575']
|
|
435
|
+
|
|
436
|
+
flow_gauges = set(parameter_sheet[parameter_sheet['GaugeType'] == 'F']['Gauge']) + set(parameter_sheet['Multigauge'])
|
|
437
|
+
level_gauges = set(parameter_sheet[parameter_sheet['GaugeType'] == 'L']['Gauge']) + set(parameter_sheet['WeirpoolGauge']) + set(hard_code_levels)
|
|
438
|
+
lake_level_gauges = set(parameter_sheet[parameter_sheet['GaugeType'] == 'LL']['Gauge'])+set(hard_code_lake_levels)
|
|
439
|
+
|
|
440
|
+
return flow_gauges, level_gauges, lake_level_gauges
|
|
441
|
+
|
|
442
|
+
# def gauges_to_measurand()
|
py_ewr/evaluate_EWRs.py
CHANGED
|
@@ -446,9 +446,18 @@ def get_index_date(date_index:Any)-> datetime.date:
|
|
|
446
446
|
if type(date_index) == pd._libs.tslibs.timestamps.Timestamp:
|
|
447
447
|
return date_index.date()
|
|
448
448
|
if type(date_index) == pd._libs.tslibs.period.Period:
|
|
449
|
-
|
|
450
|
-
|
|
449
|
+
date_index_str = date_index.strftime('%Y-%m-%d')
|
|
450
|
+
# For dates between the years 100 and 999 we need to add a 0 onto the date string so strptime doesnt break
|
|
451
|
+
if ((int(date_index_str.split('-')[0]) >= 100) and (int(date_index_str.split('-')[0]) < 1000)):
|
|
452
|
+
date_index_str = '0' + date_index_str
|
|
453
|
+
n = datetime.datetime.strptime(date_index_str, '%Y-%m-%d').date()
|
|
454
|
+
return n
|
|
455
|
+
if type(date_index) == str:
|
|
456
|
+
n = datetime.datetime.strptime(date_index, '%Y-%m-%d').date()
|
|
457
|
+
return n
|
|
458
|
+
if type(date_index) == datetime.date:
|
|
451
459
|
return date_index
|
|
460
|
+
# return date_index #TODO: should this break? i.e. we arent expecting other date formats
|
|
452
461
|
|
|
453
462
|
#----------------------------------- EWR handling functions --------------------------------------#
|
|
454
463
|
|
|
@@ -1958,7 +1967,8 @@ def water_stability_check(EWR_info:Dict, iteration:int, flows:List, all_events:D
|
|
|
1958
1967
|
if levels_are_stable:
|
|
1959
1968
|
# record event opportunity for the next n days for the total period of (EggDaysSpell)+ larvae (LarvaeDaysSpell)
|
|
1960
1969
|
# if the last day of the event is not over the last day of the event window
|
|
1961
|
-
iteration_date = flow_date
|
|
1970
|
+
iteration_date = get_index_date(flow_date)
|
|
1971
|
+
# iteration_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
1962
1972
|
last_day_window = get_last_day_of_window(iteration_date, EWR_info['end_month'])
|
|
1963
1973
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
1964
1974
|
if is_date_in_window(iteration_date, last_day_window, event_size):
|
|
@@ -1995,7 +2005,8 @@ def water_stability_level_check(EWR_info:Dict, iteration:int, all_events:Dict, w
|
|
|
1995
2005
|
if levels_are_stable:
|
|
1996
2006
|
# record event opportunity for the next n days for the total period of (EggDaysSpell)+ larvae (LarvaeDaysSpell)
|
|
1997
2007
|
# if the last day of the event is not over the last day of the event window
|
|
1998
|
-
iteration_date = flow_date
|
|
2008
|
+
iteration_date = get_index_date(flow_date)
|
|
2009
|
+
# iteration_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
1999
2010
|
last_day_window = get_last_day_of_window(iteration_date, EWR_info['end_month'])
|
|
2000
2011
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
2001
2012
|
if is_date_in_window(iteration_date, last_day_window, event_size):
|
|
@@ -2604,7 +2615,7 @@ def lower_lakes_level_check(EWR_info: dict, levels: pd.Series, event: list, all_
|
|
|
2604
2615
|
#------------------------------------ Calculation functions --------------------------------------#
|
|
2605
2616
|
|
|
2606
2617
|
|
|
2607
|
-
def create_water_stability_event(flow_date: pd.
|
|
2618
|
+
def create_water_stability_event(flow_date: pd.Timestamp, flows:List, iteration: int, EWR_info:dict)->List:#pd.Period
|
|
2608
2619
|
"""create overlapping event that meets an achievement for fish recruitment water stability
|
|
2609
2620
|
|
|
2610
2621
|
Args:
|
|
@@ -2617,7 +2628,8 @@ def create_water_stability_event(flow_date: pd.Period, flows:List, iteration: in
|
|
|
2617
2628
|
"""
|
|
2618
2629
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
2619
2630
|
event_flows = flows[iteration: iteration + event_size]
|
|
2620
|
-
start_event_date = flow_date
|
|
2631
|
+
start_event_date = get_index_date(flow_date)
|
|
2632
|
+
# start_event_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
2621
2633
|
event_dates = [ start_event_date + timedelta(i) for i in range(event_size)]
|
|
2622
2634
|
|
|
2623
2635
|
return [(d, flow) for d, flow in zip(event_dates, event_flows)]
|
|
@@ -3800,6 +3812,7 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3800
3812
|
Returns:
|
|
3801
3813
|
tuple: final output with the calculation of volume all_events, durations
|
|
3802
3814
|
"""
|
|
3815
|
+
#TODO can we clean up the flow_date and iteration_date parts
|
|
3803
3816
|
event = []
|
|
3804
3817
|
total_event = 0
|
|
3805
3818
|
all_events = construct_event_dict(water_years)
|
|
@@ -3807,19 +3820,25 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3807
3820
|
gap_track = 0
|
|
3808
3821
|
for i, flow in enumerate(flows[:-1]):
|
|
3809
3822
|
flow_date = dates[i]
|
|
3823
|
+
iteration_date = get_index_date(flow_date)
|
|
3810
3824
|
flow_percent_change = calc_flow_percent_change(i, flows)
|
|
3811
3825
|
trigger_day = date(dates[i].year,EWR_info["trigger_month"], EWR_info["trigger_day"])
|
|
3812
3826
|
cut_date = calc_nest_cut_date(EWR_info, i, dates)
|
|
3813
|
-
is_in_trigger_window =
|
|
3814
|
-
and
|
|
3827
|
+
is_in_trigger_window = iteration_date >= trigger_day \
|
|
3828
|
+
and iteration_date <= trigger_day + timedelta(days=14) #.to_timestamp() .to_timestamp()
|
|
3829
|
+
# is_in_trigger_window = dates[i].date() >= trigger_day \
|
|
3830
|
+
# and dates[i].date() <= trigger_day + timedelta(days=14) #.to_timestamp() .to_timestamp()
|
|
3815
3831
|
iteration_no_event = 0
|
|
3816
3832
|
|
|
3817
3833
|
## if there IS an ongoing event check if we are on the trigger season window
|
|
3818
3834
|
# if yes then check the current flow
|
|
3819
3835
|
if total_event > 0:
|
|
3820
|
-
if (
|
|
3836
|
+
if (iteration_date >= trigger_day) and (iteration_date <= cut_date):
|
|
3821
3837
|
event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, i, flow, event, all_events,
|
|
3822
|
-
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event)
|
|
3838
|
+
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event) #.to_timestamp() .to_timestamp()
|
|
3839
|
+
# if (dates[i].date() >= trigger_day) and (dates[i].date() <= cut_date):
|
|
3840
|
+
# event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, i, flow, event, all_events,
|
|
3841
|
+
# gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event) #.to_timestamp() .to_timestamp()
|
|
3823
3842
|
|
|
3824
3843
|
# this path will only be executed if an event extends beyond the cut date
|
|
3825
3844
|
else:
|
|
@@ -3840,18 +3859,23 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3840
3859
|
|
|
3841
3860
|
# Check final iteration in the flow timeseries, saving any ongoing events/event gaps to their spots in the dictionaries:
|
|
3842
3861
|
# reset all variable to last flow
|
|
3843
|
-
|
|
3862
|
+
|
|
3863
|
+
# flow_date = dates[-1].date()#.to_timestamp()
|
|
3864
|
+
flow_date = dates[-1]
|
|
3865
|
+
iteration_date = get_index_date(dates[-1])
|
|
3844
3866
|
flow_percent_change = calc_flow_percent_change(-1, flows)
|
|
3845
3867
|
trigger_day = date(dates[-1].year,EWR_info["trigger_month"], EWR_info["trigger_day"])
|
|
3846
3868
|
cut_date = calc_nest_cut_date(EWR_info, -1, dates)
|
|
3847
|
-
is_in_trigger_window =
|
|
3848
|
-
and
|
|
3869
|
+
is_in_trigger_window = iteration_date >= trigger_day - timedelta(days=7) \
|
|
3870
|
+
and iteration_date <= trigger_day + timedelta(days=7) #.to_timestamp() .to_timestamp()
|
|
3871
|
+
# is_in_trigger_window = dates[-1].date() >= trigger_day - timedelta(days=7) \
|
|
3872
|
+
# and dates[-1].date() <= trigger_day + timedelta(days=7) #.to_timestamp() .to_timestamp()
|
|
3849
3873
|
iteration_no_event = 0
|
|
3850
3874
|
|
|
3851
3875
|
if total_event > 0:
|
|
3852
3876
|
|
|
3853
|
-
if (
|
|
3854
|
-
and (
|
|
3877
|
+
if (iteration_date >= trigger_day ) \
|
|
3878
|
+
and (iteration_date <= cut_date): # Was flow_date instead of iteration date in both instances
|
|
3855
3879
|
event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, -1, flows[-1], event, all_events,
|
|
3856
3880
|
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event)
|
|
3857
3881
|
|
py_ewr/observed_handling.py
CHANGED
|
@@ -35,7 +35,6 @@ def categorise_gauges(gauges: list, ewr_table_path:str = None) -> tuple:
|
|
|
35
35
|
if gauge in gauges:
|
|
36
36
|
level_gauges.append(gauge)
|
|
37
37
|
lake_level_gauges_to_add = EWR_TABLE[EWR_TABLE['GaugeType']=='LL']['Gauge'].to_list()
|
|
38
|
-
# print(lake_level_gauges_to_add)
|
|
39
38
|
for gauge in lake_level_gauges_to_add:
|
|
40
39
|
if gauge in gauges:
|
|
41
40
|
lake_level_gauges.append(gauge)
|
|
@@ -130,7 +129,7 @@ def observed_cleaner(input_df: pd.DataFrame, dates: dict) -> pd.DataFrame:
|
|
|
130
129
|
start_date = datetime(dates['start_date'].year, dates['start_date'].month, dates['start_date'].day)
|
|
131
130
|
end_date = datetime(dates['end_date'].year, dates['end_date'].month, dates['end_date'].day)
|
|
132
131
|
|
|
133
|
-
df_index = pd.date_range(start=start_date,end=end_date - timedelta(days=1))
|
|
132
|
+
df_index = pd.date_range(start=start_date,end=end_date - timedelta(days=1))#.to_period()
|
|
134
133
|
gauge_data_df = pd.DataFrame()
|
|
135
134
|
gauge_data_df['Date'] = df_index
|
|
136
135
|
gauge_data_df = gauge_data_df.set_index('Date')
|
|
@@ -139,7 +138,7 @@ def observed_cleaner(input_df: pd.DataFrame, dates: dict) -> pd.DataFrame:
|
|
|
139
138
|
|
|
140
139
|
|
|
141
140
|
input_df['Date'] = pd.to_datetime(input_df['DATETIME'], format = '%Y-%m-%d')
|
|
142
|
-
input_df['Date'] = input_df['Date'].apply(lambda x: x.to_period(freq='D'))
|
|
141
|
+
# input_df['Date'] = input_df['Date'].apply(lambda x: x.to_period(freq='D'))
|
|
143
142
|
|
|
144
143
|
# Check with states for more codes:
|
|
145
144
|
bad_data_codes = data_inputs.get_bad_QA_codes()
|
|
@@ -178,12 +177,12 @@ class ObservedHandler:
|
|
|
178
177
|
|
|
179
178
|
# Classify gauges:
|
|
180
179
|
flow_gauges, level_gauges, lake_level_gauges = categorise_gauges(self.gauges, self.parameter_sheet)
|
|
181
|
-
print('flow gauges')
|
|
182
|
-
print(flow_gauges)
|
|
183
|
-
print('level gauges')
|
|
184
|
-
print(level_gauges)
|
|
185
|
-
print('lake level gauges')
|
|
186
|
-
print(lake_level_gauges)
|
|
180
|
+
# print('flow gauges')
|
|
181
|
+
# print(flow_gauges)
|
|
182
|
+
# print('level gauges')
|
|
183
|
+
# print(level_gauges)
|
|
184
|
+
# print('lake level gauges')
|
|
185
|
+
# print(lake_level_gauges)
|
|
187
186
|
# Call state API for flow and level gauge data, then combine to single dataframe
|
|
188
187
|
log.info(f'Including gauges: flow gauges: { ", ".join(flow_gauges)} level gauges: { ", ".join(level_gauges)} lake level gauges: { ", ".join(lake_level_gauges)}')
|
|
189
188
|
|