py-ewr 2.0.0__py3-none-any.whl → 2.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,190 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: py-ewr
3
- Version: 2.0.0
4
- Summary: Environmental Water Requirement calculator
5
- Home-page: https://github.com/MDBAuth/EWR_tool
6
- Author: Martin Job
7
- Author-email: Martin.Job@mdba.gov.au
8
- Project-URL: Bug Tracker, https://github.com/MDBAuth/EWR_tool/issues
9
- Classifier: Programming Language :: Python :: 3
10
- Classifier: License :: OSI Approved :: GNU General Public License (GPL)
11
- Classifier: Operating System :: OS Independent
12
- Classifier: Development Status :: 4 - Beta
13
- Classifier: Programming Language :: Python
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.8
16
- Classifier: Programming Language :: Python :: 3.9
17
- Classifier: Programming Language :: Python :: 3.10
18
- Classifier: Programming Language :: Python :: 3.11
19
- Classifier: Framework :: Pytest
20
- Description-Content-Type: text/markdown
21
- License-File: LICENSE
22
- Requires-Dist: ipython ==8.8.0
23
- Requires-Dist: ipywidgets ==7.7.0
24
- Requires-Dist: pandas ==2.0.3
25
- Requires-Dist: requests ==2.25.1
26
- Requires-Dist: tqdm ==4.64.0
27
- Requires-Dist: mdba-gauge-getter ==0.5.0
28
- Requires-Dist: cachetools ==5.2.0
29
-
30
- [![CI](https://github.com/MDBAuth/EWR_tool/actions/workflows/test-release.yml/badge.svg)]()
31
- [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/py-ewr)](https://pypi.org/project/py-ewr/)
32
- [![PyPI](https://img.shields.io/pypi/v/py-ewr)](https://pypi.org/project/py-ewr/)
33
- [![DOI](https://zenodo.org/badge/342122359.svg)](https://zenodo.org/badge/latestdoi/342122359)
34
-
35
- ### **EWR tool version 2.0.0 README**
36
-
37
- ### **Installation**
38
-
39
- Note - requires Python 3.8 or newer
40
-
41
- Step 1.
42
- Upgrade pip
43
- ```bash
44
- python -m pip install –-upgrade pip
45
- ```
46
-
47
- Step 2.
48
- ```bash
49
- pip install py-ewr
50
- ```
51
-
52
- ### Run Timeseries with ObservedHandler
53
-
54
- ```python
55
- from datetime import datetime
56
-
57
- from py_ewr.observed_handling import ObservedHandler
58
-
59
- dates = {'start_date': datetime(2020, 7, 1),
60
- 'end_date': datetime(2021, 6, 30)}
61
-
62
- # Get allowances:
63
-
64
- MINT = (100 - 0)/100
65
- MAXT = (100 + 0 )/100
66
- DUR = (100 - 0 )/100
67
- DRAW = (100 -0 )/100
68
-
69
- allowance ={'minThreshold': MINT, 'maxThreshold': MAXT, 'duration': DUR, 'drawdown': DRAW}
70
-
71
- gauges = ['419039']
72
- climate = "Standard - 1911 to 2018 climate categorisation"
73
-
74
- # instantiate ObservedHandler
75
-
76
- ewr_oh = ObservedHandler(gauges=gauges, dates=dates , allowance=allowance, climate=climate)
77
-
78
-
79
- # ObservedHandler methods
80
-
81
- # returns a pandas DataFrame with ewr results for the timeseries
82
- ewr_results = ewr_oh.get_ewr_results()
83
-
84
- # returns a pandas DataFrame with the yearly ewr results for the timeseries
85
- yearly_ewr_results = ewr_oh.get_yearly_ewr_results()
86
-
87
- # returns a pandas DataFrame with all events of the timeseries
88
- all_events = ewr_oh.get_all_events()
89
-
90
- # returns a pandas DataFrame with all interEvents of the timeseries
91
- all_interEvents = ewr_oh.get_all_interEvents()
92
-
93
- # returns a pandas DataFrame with all successful events of the timeseries
94
- all_successfulEvents = ewr_oh.get_all_successful_events()
95
-
96
- # returns a pandas DataFrame with all interevent periods between the successful events of the timeseries
97
- all_successful_interEvents = ewr_oh.get_all_successful_interEvents()
98
-
99
-
100
- # with the returned object you can use any pandas method like pd.DateFrame.to_csv() etc.
101
-
102
- ```
103
-
104
- ### Run Timeseries with ScenarioHandler
105
-
106
- ```python
107
- from py_ewr.scenario_handling import ScenarioHandler
108
-
109
- # pass a list of location of the scenario files
110
- # this example will pass a IQQDM format scenario read the pdf manual for details
111
- loaded_files = ["419039_gauge_data_IQQDM.csv"]
112
-
113
- # Get allowances:
114
-
115
- MINT = (100 - 0)/100
116
- MAXT = (100 + 0 )/100
117
- DUR = (100 - 0 )/100
118
- DRAW = (100 -0 )/100
119
-
120
- allowance ={'minThreshold': MINT, 'maxThreshold': MAXT, 'duration': DUR, 'drawdown': DRAW}
121
-
122
- # Current model format options: 'Bigmod - MDBA', 'Source - NSW (res.csv)', 'IQQM - NSW 10,000 years' - see manual for formatting requirements
123
- ewr_sh = ScenarioHandler(scenario_files = loaded_files,
124
- model_format = 'IQQM - NSW 10,000 years',
125
- allowance = allowance,
126
- climate = 'Standard - 1911 to 2018 climate categorisation' )
127
-
128
-
129
- # ScenarioHandler methods
130
-
131
- # returns a pandas DataFrame with ewr results for the timeseries
132
- ewr_results = ewr_sh.get_ewr_results()
133
-
134
- # returns a pandas DataFrame with the yearly ewr results for the timeseries
135
- yearly_ewr_results = ewr_sh.get_yearly_ewr_results()
136
-
137
- # returns a pandas DataFrame with all events of the timeseries
138
- all_events = ewr_sh.get_all_events()
139
-
140
- # returns a pandas DataFrame with all interEvents of the timeseries
141
- all_interEvents = ewr_sh.get_all_interEvents()
142
-
143
- # returns a pandas DataFrame with all successful events of the timeseries
144
- all_successfulEvents = ewr_sh.get_all_successful_events()
145
-
146
- # returns a pandas DataFrame with all interevent periods between the successful events of the timeseries
147
- all_successful_interEvents = ewr_sh.get_all_successful_interEvents()
148
-
149
- # with the returned object you can use any pandas method like pd.DateFrame.to_csv() etc.
150
-
151
- ```
152
-
153
- ### **Purpose**
154
- This tool has two purposes:
155
- 1. Operational: Tracking EWR success at gauges of interest in real time.
156
- 2. Planning: Comparing EWR success between scenarios (i.e. model runs)
157
-
158
- **Support**
159
- For issues relating to the script, a tutorial, or feedback please contact Lara Palmer at lara.palmer@mdba.gov.au, Martin Job at martin.job@mdba.gov.au, or Joel Bailey at joel.bailey@mdba.gov.au
160
-
161
-
162
- **Disclaimer**
163
- Every effort has been taken to ensure the EWR database represents the original EWRs from state long term water plans as best as possible, and that the code within this tool has been developed to interpret and analyse these EWRs in an accurate way. However, there may still be unresolved bugs in the database and/or EWR tool. Please report any bugs to the issues tab under this GitHub project so we can investigate further.
164
-
165
-
166
- **Notes on development of the dataset of EWRs**
167
- The MDBA has worked with NSW to ensure scientific robustness of EWRs has been maintained when translating from raw EWRs in the LTWPs to the machine readable format found in the dataset used by this tool.
168
-
169
- **Compatibility**
170
-
171
- NSW:
172
- - All NSW catchments
173
-
174
- Work is currently underway to migrate the EWRs in the remaining Basin catchments.
175
-
176
- **Input data**
177
- - EWR information: This tool accesses the EWRs in the Environmental Assets & Functions Database (EAFD)
178
- - Climate data from the AWRA-L model
179
- - Gauge data from the relevant state websites
180
- - Scenario data input by the user
181
- - Model metadata for location association between gauge ID's and model nodes
182
-
183
- **Running the tool**
184
- Consult the user manual for instructions on how to run the tool. Please email the above email addresses for a copy of the user manual.
185
-
186
- **Climate sequence**
187
- NSW Long Term Watering Plans (LTWP) define climate using the Resource Availability Scenarios (RAS). However, until this process can be completed the climate categories defined using outputs from the AWRA-L model will be used.
188
- In the current version of the tool the climate sequence is not used.
189
-
190
-
@@ -1,17 +0,0 @@
1
- py_ewr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- py_ewr/data_inputs.py,sha256=tBSqSwORvwCfBjgmrmx3XzVR7bA7rRvqjdi_jghQ_fk,26795
3
- py_ewr/evaluate_EWRs.py,sha256=4xdoWkWi6w_eqtnzPPmLy9weVlL7Kk0HuPbbDvEInRo,273559
4
- py_ewr/observed_handling.py,sha256=5ypCpthFuoTaHCMS5yYYoAC4tkUO9oFZW9H2n6s4xo8,18560
5
- py_ewr/scenario_handling.py,sha256=PAILFIVIeC2sOPsYmCEULIDgzVxigVTlZ5Gl214kNS4,26493
6
- py_ewr/summarise_results.py,sha256=smLSSdPc11G6dQuXcXrrDrM70IeyPUpB3o0LYJfA7DU,29983
7
- py_ewr/climate_data/climate_cats.csv,sha256=6-kdl2LGZsaWewvF1_2MKg86xTi7FSQNFtv7ErHwCN0,21459
8
- py_ewr/climate_data/climate_cats_10000year.csv,sha256=UJGVS_8K_vvGskcQ-qEKDlL-2LOcpp9N9xZr7IE3FBM,269220
9
- py_ewr/model_metadata/SiteID_MDBA.csv,sha256=M4osmvCQq6PKuZEXw0Tk-Y1WmX5Tna3c5RGQdDPQrvE,158958
10
- py_ewr/model_metadata/SiteID_NSW.csv,sha256=UVBxN43Z5KWCvWhQ5Rh6TNEn35q4_sjPxKyHg8wPFws,6805
11
- py_ewr/parameter_metadata/ewr_calc_config.json,sha256=asKPuwx9tfwZ-7AK47tQb58j0-DnqvicbIyzLzrlEao,17558
12
- py_ewr/parameter_metadata/parameter_sheet.csv,sha256=jF6qW9LDwvLxZdBuMfA6NJZ1l62AovIs2YNn8tj-mDk,617996
13
- py_ewr-2.0.0.dist-info/LICENSE,sha256=ogEPNDSH0_dhiv_lT3ifVIdgIzHAqNA_SemnxUfPBJk,7048
14
- py_ewr-2.0.0.dist-info/METADATA,sha256=GNlJ6OZRTLRmbPjLhT__XY6y8L5glvS7_EiAB2Kpsh4,6979
15
- py_ewr-2.0.0.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
16
- py_ewr-2.0.0.dist-info/top_level.txt,sha256=n3725d-64Cjyb-YMUMV64UAuIflzUh2_UZSxiIbrur4,7
17
- py_ewr-2.0.0.dist-info/RECORD,,