pwb-toolbox 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pwb_toolbox/backtest/__init__.py +2 -50
- pwb_toolbox/backtest/base_strategy.py +1 -1
- pwb_toolbox/backtest/engine.py +33 -0
- pwb_toolbox/backtest/ib_connector.py +69 -0
- pwb_toolbox/datasets/__init__.py +7 -4
- pwb_toolbox/performance/__init__.py +123 -0
- pwb_toolbox/performance/metrics.py +465 -0
- pwb_toolbox/performance/plots.py +415 -0
- pwb_toolbox/performance/trade_stats.py +138 -0
- {pwb_toolbox-0.1.7.dist-info → pwb_toolbox-0.1.9.dist-info}/METADATA +62 -2
- pwb_toolbox-0.1.9.dist-info/RECORD +15 -0
- pwb_toolbox/backtest/execution_models/__init__.py +0 -153
- pwb_toolbox/backtest/insight.py +0 -21
- pwb_toolbox/backtest/portfolio_models/__init__.py +0 -290
- pwb_toolbox/backtest/risk_models/__init__.py +0 -175
- pwb_toolbox/backtest/universe_models/__init__.py +0 -183
- pwb_toolbox-0.1.7.dist-info/RECORD +0 -14
- {pwb_toolbox-0.1.7.dist-info → pwb_toolbox-0.1.9.dist-info}/WHEEL +0 -0
- {pwb_toolbox-0.1.7.dist-info → pwb_toolbox-0.1.9.dist-info}/licenses/LICENSE.txt +0 -0
- {pwb_toolbox-0.1.7.dist-info → pwb_toolbox-0.1.9.dist-info}/top_level.txt +0 -0
pwb_toolbox/backtest/__init__.py
CHANGED
@@ -1,51 +1,3 @@
|
|
1
1
|
from .base_strategy import BaseStrategy
|
2
|
-
|
3
|
-
from .
|
4
|
-
|
5
|
-
from .portfolio_models import (
|
6
|
-
PortfolioConstructionModel,
|
7
|
-
EqualWeightingPortfolioConstructionModel,
|
8
|
-
InsightWeightingPortfolioConstructionModel,
|
9
|
-
MeanVarianceOptimizationPortfolioConstructionModel,
|
10
|
-
BlackLittermanOptimizationPortfolioConstructionModel,
|
11
|
-
RiskParityPortfolioConstructionModel,
|
12
|
-
UnconstrainedMeanVariancePortfolioConstructionModel,
|
13
|
-
TargetPercentagePortfolioConstructionModel,
|
14
|
-
DollarCostAveragingPortfolioConstructionModel,
|
15
|
-
InsightRatioPortfolioConstructionModel,
|
16
|
-
)
|
17
|
-
|
18
|
-
__all__ = [
|
19
|
-
"Direction",
|
20
|
-
"Insight",
|
21
|
-
"PortfolioConstructionModel",
|
22
|
-
"EqualWeightingPortfolioConstructionModel",
|
23
|
-
"InsightWeightingPortfolioConstructionModel",
|
24
|
-
"MeanVarianceOptimizationPortfolioConstructionModel",
|
25
|
-
"BlackLittermanOptimizationPortfolioConstructionModel",
|
26
|
-
"RiskParityPortfolioConstructionModel",
|
27
|
-
"UnconstrainedMeanVariancePortfolioConstructionModel",
|
28
|
-
"TargetPercentagePortfolioConstructionModel",
|
29
|
-
"DollarCostAveragingPortfolioConstructionModel",
|
30
|
-
"InsightRatioPortfolioConstructionModel",
|
31
|
-
"RiskManagementModel",
|
32
|
-
"TrailingStopRiskManagementModel",
|
33
|
-
"MaximumDrawdownPercentPerSecurity",
|
34
|
-
"MaximumDrawdownPercentPortfolio",
|
35
|
-
"MaximumUnrealizedProfitPercentPerSecurity",
|
36
|
-
"MaximumTotalPortfolioExposure",
|
37
|
-
"SectorExposureRiskManagementModel",
|
38
|
-
"MaximumOrderQuantityPercentPerSecurity",
|
39
|
-
"CompositeRiskManagementModel",
|
40
|
-
]
|
41
|
-
from .risk_models import (
|
42
|
-
RiskManagementModel,
|
43
|
-
TrailingStopRiskManagementModel,
|
44
|
-
MaximumDrawdownPercentPerSecurity,
|
45
|
-
MaximumDrawdownPercentPortfolio,
|
46
|
-
MaximumUnrealizedProfitPercentPerSecurity,
|
47
|
-
MaximumTotalPortfolioExposure,
|
48
|
-
SectorExposureRiskManagementModel,
|
49
|
-
MaximumOrderQuantityPercentPerSecurity,
|
50
|
-
CompositeRiskManagementModel,
|
51
|
-
)
|
2
|
+
from .engine import run_strategy
|
3
|
+
from .ib_connector import IBConnector, run_ib_strategy
|
@@ -0,0 +1,33 @@
|
|
1
|
+
import backtrader as bt
|
2
|
+
import pandas as pd
|
3
|
+
import pwb_toolbox.datasets as pwb_ds
|
4
|
+
|
5
|
+
|
6
|
+
def run_strategy(signal, signal_kwargs, portfolio, symbols, start_date, leverage, cash):
|
7
|
+
"""Run a tactical asset allocation strategy with Backtrader."""
|
8
|
+
# Load the data from https://paperswithbacktest.com/datasets
|
9
|
+
pivot_df = pwb_ds.get_pricing(
|
10
|
+
symbol_list=symbols,
|
11
|
+
fields=["open", "high", "low", "close"],
|
12
|
+
start_date=start_date,
|
13
|
+
extend=True, # Extend the dataset with proxy data
|
14
|
+
)
|
15
|
+
# Create trading-day index (optional but keeps Cerebro happy)
|
16
|
+
trading_days = pd.bdate_range(pivot_df.index.min(), pivot_df.index.max())
|
17
|
+
pivot_df = pivot_df.reindex(trading_days)
|
18
|
+
pivot_df.ffill(inplace=True) # forward-fill holidays
|
19
|
+
pivot_df.bfill(inplace=True) # back-fill leading IPO gaps
|
20
|
+
cerebro = bt.Cerebro()
|
21
|
+
for symbol in symbols:
|
22
|
+
data = bt.feeds.PandasData(dataname=pivot_df[symbol].copy())
|
23
|
+
cerebro.adddata(data, name=symbol)
|
24
|
+
cerebro.addstrategy(
|
25
|
+
portfolio,
|
26
|
+
total_days=len(trading_days),
|
27
|
+
leverage=0.9,
|
28
|
+
signal_cls=signal,
|
29
|
+
signal_kwargs=signal_kwargs,
|
30
|
+
)
|
31
|
+
cerebro.broker.set_cash(cash)
|
32
|
+
strategy = cerebro.run()[0]
|
33
|
+
return strategy
|
@@ -0,0 +1,69 @@
|
|
1
|
+
"""Lightweight helpers for running Interactive Brokers backtests."""
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
from typing import Iterable, Mapping, Type
|
6
|
+
|
7
|
+
import backtrader as bt
|
8
|
+
|
9
|
+
|
10
|
+
class IBConnector:
|
11
|
+
"""Utility for creating Backtrader IB stores and data feeds."""
|
12
|
+
|
13
|
+
def __init__(
|
14
|
+
self,
|
15
|
+
host: str = "127.0.0.1",
|
16
|
+
port: int = 7497,
|
17
|
+
client_id: int = 1,
|
18
|
+
store_class: Type[bt.stores.IBStore] | None = None,
|
19
|
+
feed_class: Type[bt.feeds.IBData] | None = None,
|
20
|
+
) -> None:
|
21
|
+
self.host = host
|
22
|
+
self.port = port
|
23
|
+
self.client_id = client_id
|
24
|
+
self.store_class = store_class or bt.stores.IBStore
|
25
|
+
self.feed_class = feed_class or bt.feeds.IBData
|
26
|
+
|
27
|
+
def get_store(self) -> bt.stores.IBStore:
|
28
|
+
"""Instantiate and return an ``IBStore``."""
|
29
|
+
return self.store_class(host=self.host, port=self.port, clientId=self.client_id)
|
30
|
+
|
31
|
+
def create_feed(self, **kwargs) -> bt.feeds.IBData:
|
32
|
+
"""Create an ``IBData`` feed bound to the connector's store."""
|
33
|
+
store = kwargs.pop("store", None) or self.get_store()
|
34
|
+
return self.feed_class(store=store, **kwargs)
|
35
|
+
|
36
|
+
|
37
|
+
def run_ib_strategy(
|
38
|
+
strategy: type[bt.Strategy],
|
39
|
+
data_config: Iterable[Mapping[str, object]],
|
40
|
+
**ib_kwargs,
|
41
|
+
):
|
42
|
+
"""Run ``strategy`` with Interactive Brokers data feeds.
|
43
|
+
|
44
|
+
Parameters
|
45
|
+
----------
|
46
|
+
strategy:
|
47
|
+
The ``bt.Strategy`` subclass to execute.
|
48
|
+
data_config:
|
49
|
+
Iterable of dictionaries passed to ``IBData`` for each feed.
|
50
|
+
ib_kwargs:
|
51
|
+
Arguments forwarded to :class:`IBConnector`.
|
52
|
+
Examples
|
53
|
+
--------
|
54
|
+
>>> data_cfg = [{"dataname": "AAPL", "name": "AAPL", "what": "MIDPOINT"}]
|
55
|
+
>>> run_ib_strategy(MyStrategy, data_cfg, host="127.0.0.1")
|
56
|
+
|
57
|
+
"""
|
58
|
+
connector = IBConnector(**ib_kwargs)
|
59
|
+
cerebro = bt.Cerebro()
|
60
|
+
store = connector.get_store()
|
61
|
+
cerebro.broker = store.getbroker()
|
62
|
+
|
63
|
+
for cfg in data_config:
|
64
|
+
data = connector.create_feed(store=store, **cfg)
|
65
|
+
name = cfg.get("name")
|
66
|
+
cerebro.adddata(data, name=name)
|
67
|
+
|
68
|
+
cerebro.addstrategy(strategy)
|
69
|
+
return cerebro.run()
|
pwb_toolbox/datasets/__init__.py
CHANGED
@@ -6,9 +6,12 @@ import re
|
|
6
6
|
import datasets as ds
|
7
7
|
import pandas as pd
|
8
8
|
|
9
|
-
|
10
|
-
|
11
|
-
|
9
|
+
|
10
|
+
def _get_hf_token() -> str:
|
11
|
+
token = os.getenv("HF_ACCESS_TOKEN")
|
12
|
+
if not token:
|
13
|
+
raise ValueError("HF_ACCESS_TOKEN not set")
|
14
|
+
return token
|
12
15
|
|
13
16
|
|
14
17
|
DAILY_PRICE_DATASETS = [
|
@@ -552,7 +555,7 @@ def load_dataset(
|
|
552
555
|
to_usd=True,
|
553
556
|
rate_to_price=True,
|
554
557
|
):
|
555
|
-
dataset = ds.load_dataset(f"paperswithbacktest/{path}", token=
|
558
|
+
dataset = ds.load_dataset(f"paperswithbacktest/{path}", token=_get_hf_token())
|
556
559
|
df = dataset["train"].to_pandas()
|
557
560
|
|
558
561
|
if path in DAILY_PRICE_DATASETS or path in DAILY_FINANCIAL_DATASETS:
|
@@ -0,0 +1,123 @@
|
|
1
|
+
from .metrics import (
|
2
|
+
total_return,
|
3
|
+
cagr,
|
4
|
+
returns_table,
|
5
|
+
rolling_cumulative_return,
|
6
|
+
annualized_volatility,
|
7
|
+
max_drawdown,
|
8
|
+
ulcer_index,
|
9
|
+
ulcer_performance_index,
|
10
|
+
parametric_var,
|
11
|
+
parametric_expected_shortfall,
|
12
|
+
tail_ratio,
|
13
|
+
sharpe_ratio,
|
14
|
+
sortino_ratio,
|
15
|
+
calmar_ratio,
|
16
|
+
omega_ratio,
|
17
|
+
information_ratio,
|
18
|
+
capm_alpha_beta,
|
19
|
+
skewness,
|
20
|
+
kurtosis,
|
21
|
+
variance_ratio,
|
22
|
+
acf,
|
23
|
+
pacf,
|
24
|
+
fama_french_3factor,
|
25
|
+
fama_french_5factor,
|
26
|
+
cumulative_excess_return,
|
27
|
+
)
|
28
|
+
|
29
|
+
from .trade_stats import (
|
30
|
+
hit_rate,
|
31
|
+
average_win_loss,
|
32
|
+
expectancy,
|
33
|
+
profit_factor,
|
34
|
+
trade_duration_distribution,
|
35
|
+
turnover,
|
36
|
+
trade_implementation_shortfall,
|
37
|
+
cumulative_implementation_shortfall,
|
38
|
+
slippage_stats,
|
39
|
+
latency_stats,
|
40
|
+
)
|
41
|
+
|
42
|
+
__all__ = [
|
43
|
+
"total_return",
|
44
|
+
"cagr",
|
45
|
+
"returns_table",
|
46
|
+
"rolling_cumulative_return",
|
47
|
+
"annualized_volatility",
|
48
|
+
"max_drawdown",
|
49
|
+
"ulcer_index",
|
50
|
+
"ulcer_performance_index",
|
51
|
+
"parametric_var",
|
52
|
+
"parametric_expected_shortfall",
|
53
|
+
"tail_ratio",
|
54
|
+
"sharpe_ratio",
|
55
|
+
"sortino_ratio",
|
56
|
+
"calmar_ratio",
|
57
|
+
"omega_ratio",
|
58
|
+
"information_ratio",
|
59
|
+
"capm_alpha_beta",
|
60
|
+
"skewness",
|
61
|
+
"kurtosis",
|
62
|
+
"variance_ratio",
|
63
|
+
"acf",
|
64
|
+
"pacf",
|
65
|
+
"fama_french_3factor",
|
66
|
+
"fama_french_5factor",
|
67
|
+
"cumulative_excess_return",
|
68
|
+
"hit_rate",
|
69
|
+
"average_win_loss",
|
70
|
+
"expectancy",
|
71
|
+
"profit_factor",
|
72
|
+
"trade_duration_distribution",
|
73
|
+
"turnover",
|
74
|
+
"trade_implementation_shortfall",
|
75
|
+
"cumulative_implementation_shortfall",
|
76
|
+
"slippage_stats",
|
77
|
+
"latency_stats",
|
78
|
+
]
|
79
|
+
|
80
|
+
try: # pragma: no cover - optional plotting deps
|
81
|
+
from .plots import (
|
82
|
+
plot_equity_curve,
|
83
|
+
plot_return_heatmap,
|
84
|
+
plot_underwater,
|
85
|
+
plot_rolling_volatility,
|
86
|
+
plot_rolling_var,
|
87
|
+
plot_rolling_sharpe,
|
88
|
+
plot_rolling_sortino,
|
89
|
+
plot_return_scatter,
|
90
|
+
plot_cumulative_excess_return,
|
91
|
+
plot_factor_exposures,
|
92
|
+
plot_trade_return_hist,
|
93
|
+
plot_return_by_holding_period,
|
94
|
+
plot_exposure_ts,
|
95
|
+
plot_cumulative_shortfall,
|
96
|
+
plot_alpha_vs_return,
|
97
|
+
plot_qq_returns,
|
98
|
+
plot_rolling_skewness,
|
99
|
+
plot_rolling_kurtosis,
|
100
|
+
)
|
101
|
+
|
102
|
+
__all__ += [
|
103
|
+
"plot_equity_curve",
|
104
|
+
"plot_return_heatmap",
|
105
|
+
"plot_underwater",
|
106
|
+
"plot_rolling_volatility",
|
107
|
+
"plot_rolling_var",
|
108
|
+
"plot_rolling_sharpe",
|
109
|
+
"plot_rolling_sortino",
|
110
|
+
"plot_return_scatter",
|
111
|
+
"plot_cumulative_excess_return",
|
112
|
+
"plot_factor_exposures",
|
113
|
+
"plot_trade_return_hist",
|
114
|
+
"plot_return_by_holding_period",
|
115
|
+
"plot_exposure_ts",
|
116
|
+
"plot_cumulative_shortfall",
|
117
|
+
"plot_alpha_vs_return",
|
118
|
+
"plot_qq_returns",
|
119
|
+
"plot_rolling_skewness",
|
120
|
+
"plot_rolling_kurtosis",
|
121
|
+
]
|
122
|
+
except Exception: # pragma: no cover - matplotlib may be missing
|
123
|
+
pass
|