pvlib 0.9.4a1__py3-none-any.whl → 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pvlib/__init__.py +3 -2
- pvlib/atmosphere.py +23 -173
- pvlib/bifacial/infinite_sheds.py +88 -277
- pvlib/bifacial/utils.py +270 -28
- pvlib/data/adr-library-cec-inverters-2019-03-05.csv +5009 -0
- pvlib/data/precise_iv_curves1.json +10251 -0
- pvlib/data/precise_iv_curves2.json +10251 -0
- pvlib/data/precise_iv_curves_parameter_sets1.csv +33 -0
- pvlib/data/precise_iv_curves_parameter_sets2.csv +33 -0
- pvlib/data/test_psm3_2017.csv +17521 -17521
- pvlib/data/test_psm3_2019_5min.csv +288 -288
- pvlib/data/test_read_psm3.csv +17522 -17522
- pvlib/data/test_read_pvgis_horizon.csv +49 -0
- pvlib/data/variables_style_rules.csv +3 -0
- pvlib/iam.py +207 -51
- pvlib/inverter.py +6 -1
- pvlib/iotools/__init__.py +7 -2
- pvlib/iotools/acis.py +516 -0
- pvlib/iotools/midc.py +4 -4
- pvlib/iotools/psm3.py +59 -42
- pvlib/iotools/pvgis.py +84 -28
- pvlib/iotools/sodapro.py +8 -6
- pvlib/iotools/srml.py +121 -18
- pvlib/iotools/surfrad.py +2 -2
- pvlib/iotools/tmy.py +146 -102
- pvlib/irradiance.py +270 -15
- pvlib/ivtools/sde.py +14 -20
- pvlib/ivtools/sdm.py +31 -20
- pvlib/ivtools/utils.py +127 -6
- pvlib/location.py +3 -2
- pvlib/modelchain.py +67 -70
- pvlib/pvarray.py +225 -0
- pvlib/pvsystem.py +169 -539
- pvlib/shading.py +43 -2
- pvlib/singlediode.py +216 -66
- pvlib/snow.py +36 -15
- pvlib/soiling.py +3 -3
- pvlib/spa.py +327 -368
- pvlib/spectrum/__init__.py +8 -2
- pvlib/spectrum/mismatch.py +335 -0
- pvlib/temperature.py +124 -13
- pvlib/tests/bifacial/test_infinite_sheds.py +44 -106
- pvlib/tests/bifacial/test_utils.py +102 -5
- pvlib/tests/conftest.py +0 -31
- pvlib/tests/iotools/test_acis.py +213 -0
- pvlib/tests/iotools/test_midc.py +6 -6
- pvlib/tests/iotools/test_psm3.py +7 -5
- pvlib/tests/iotools/test_pvgis.py +21 -14
- pvlib/tests/iotools/test_sodapro.py +1 -1
- pvlib/tests/iotools/test_srml.py +71 -6
- pvlib/tests/iotools/test_tmy.py +43 -8
- pvlib/tests/ivtools/test_sde.py +19 -17
- pvlib/tests/ivtools/test_sdm.py +9 -4
- pvlib/tests/ivtools/test_utils.py +96 -1
- pvlib/tests/test_atmosphere.py +8 -64
- pvlib/tests/test_clearsky.py +0 -1
- pvlib/tests/test_iam.py +74 -1
- pvlib/tests/test_irradiance.py +56 -2
- pvlib/tests/test_location.py +1 -1
- pvlib/tests/test_modelchain.py +33 -76
- pvlib/tests/test_pvarray.py +46 -0
- pvlib/tests/test_pvsystem.py +366 -201
- pvlib/tests/test_shading.py +35 -0
- pvlib/tests/test_singlediode.py +306 -29
- pvlib/tests/test_snow.py +84 -1
- pvlib/tests/test_soiling.py +8 -7
- pvlib/tests/test_solarposition.py +7 -7
- pvlib/tests/test_spa.py +6 -7
- pvlib/tests/test_spectrum.py +145 -1
- pvlib/tests/test_temperature.py +29 -11
- pvlib/tests/test_tools.py +41 -0
- pvlib/tests/test_tracking.py +0 -149
- pvlib/tools.py +49 -25
- pvlib/tracking.py +1 -269
- pvlib-0.10.0.dist-info/AUTHORS.md +35 -0
- {pvlib-0.9.4a1.dist-info → pvlib-0.10.0.dist-info}/LICENSE +5 -2
- {pvlib-0.9.4a1.dist-info → pvlib-0.10.0.dist-info}/METADATA +3 -13
- {pvlib-0.9.4a1.dist-info → pvlib-0.10.0.dist-info}/RECORD +80 -75
- {pvlib-0.9.4a1.dist-info → pvlib-0.10.0.dist-info}/WHEEL +1 -1
- pvlib/data/adr-library-2013-10-01.csv +0 -1762
- pvlib/forecast.py +0 -1211
- pvlib/iotools/ecmwf_macc.py +0 -312
- pvlib/tests/iotools/test_ecmwf_macc.py +0 -162
- pvlib/tests/test_forecast.py +0 -228
- pvlib-0.9.4a1.dist-info/AUTHORS.md +0 -32
- {pvlib-0.9.4a1.dist-info → pvlib-0.10.0.dist-info}/top_level.txt +0 -0
pvlib/iotools/acis.py
ADDED
|
@@ -0,0 +1,516 @@
|
|
|
1
|
+
import requests
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
VARIABLE_MAP = {
|
|
7
|
+
# time series names
|
|
8
|
+
'pcpn': 'precipitation',
|
|
9
|
+
'maxt': 'temp_air_max',
|
|
10
|
+
'avgt': 'temp_air_average',
|
|
11
|
+
'obst': 'temp_air_observation',
|
|
12
|
+
'mint': 'temp_air_min',
|
|
13
|
+
'cdd': 'cooling_degree_days',
|
|
14
|
+
'hdd': 'heating_degree_days',
|
|
15
|
+
'gdd': 'growing_degree_days',
|
|
16
|
+
'snow': 'snowfall',
|
|
17
|
+
'snwd': 'snowdepth',
|
|
18
|
+
|
|
19
|
+
# metadata names
|
|
20
|
+
'lat': 'latitude',
|
|
21
|
+
'lon': 'longitude',
|
|
22
|
+
'elev': 'altitude',
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def _get_acis(start, end, params, map_variables, url, **kwargs):
|
|
27
|
+
"""
|
|
28
|
+
generic helper for the public get_acis_X functions
|
|
29
|
+
"""
|
|
30
|
+
params = {
|
|
31
|
+
# use pd.to_datetime so that strings (e.g. '2021-01-01') are accepted
|
|
32
|
+
'sdate': pd.to_datetime(start).strftime('%Y-%m-%d'),
|
|
33
|
+
'edate': pd.to_datetime(end).strftime('%Y-%m-%d'),
|
|
34
|
+
'output': 'json',
|
|
35
|
+
**params, # endpoint-specific parameters
|
|
36
|
+
}
|
|
37
|
+
response = requests.post(url,
|
|
38
|
+
json=params,
|
|
39
|
+
headers={"Content-Type": "application/json"},
|
|
40
|
+
**kwargs)
|
|
41
|
+
response.raise_for_status()
|
|
42
|
+
payload = response.json()
|
|
43
|
+
|
|
44
|
+
# somewhat inconveniently, the ACIS API tends to return errors as "valid"
|
|
45
|
+
# responses instead of using proper HTTP error codes:
|
|
46
|
+
if "error" in payload:
|
|
47
|
+
raise requests.HTTPError(payload['error'], response=response)
|
|
48
|
+
|
|
49
|
+
columns = ['date'] + [e['name'] for e in params['elems']]
|
|
50
|
+
df = pd.DataFrame(payload['data'], columns=columns)
|
|
51
|
+
df = df.set_index('date')
|
|
52
|
+
df.index = pd.to_datetime(df.index)
|
|
53
|
+
df.index.name = None
|
|
54
|
+
|
|
55
|
+
metadata = payload['meta']
|
|
56
|
+
|
|
57
|
+
try:
|
|
58
|
+
# for StnData endpoint, unpack combination "ll" into lat, lon
|
|
59
|
+
metadata['lon'], metadata['lat'] = metadata.pop('ll')
|
|
60
|
+
except KeyError:
|
|
61
|
+
pass
|
|
62
|
+
|
|
63
|
+
try:
|
|
64
|
+
metadata['elev'] = metadata['elev'] * 0.3048 # feet to meters
|
|
65
|
+
except KeyError:
|
|
66
|
+
# some queries don't return elevation
|
|
67
|
+
pass
|
|
68
|
+
|
|
69
|
+
if map_variables:
|
|
70
|
+
df = df.rename(columns=VARIABLE_MAP)
|
|
71
|
+
|
|
72
|
+
for key in list(metadata.keys()):
|
|
73
|
+
if key in VARIABLE_MAP:
|
|
74
|
+
metadata[VARIABLE_MAP[key]] = metadata.pop(key)
|
|
75
|
+
|
|
76
|
+
return df, metadata
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def get_acis_prism(latitude, longitude, start, end, map_variables=True,
|
|
80
|
+
url="https://data.rcc-acis.org/GridData", **kwargs):
|
|
81
|
+
"""
|
|
82
|
+
Retrieve estimated daily precipitation and temperature data from PRISM
|
|
83
|
+
via the Applied Climate Information System (ACIS).
|
|
84
|
+
|
|
85
|
+
ACIS [2]_, [3]_ aggregates and provides access to climate data
|
|
86
|
+
from many underlying sources. This function retrieves daily data from
|
|
87
|
+
the Parameter-elevation Regressions on Independent Slopes Model
|
|
88
|
+
(PRISM) [1]_, a gridded precipitation and temperature model
|
|
89
|
+
from Oregon State University.
|
|
90
|
+
|
|
91
|
+
Geographical coverage: US, Central America, and part of South America.
|
|
92
|
+
Approximately 0° to 50° in latitude and -130° to -65° in longitude.
|
|
93
|
+
|
|
94
|
+
Parameters
|
|
95
|
+
----------
|
|
96
|
+
latitude : float
|
|
97
|
+
in decimal degrees, between -90 and 90, north is positive
|
|
98
|
+
longitude : float
|
|
99
|
+
in decimal degrees, between -180 and 180, east is positive
|
|
100
|
+
start : datetime-like
|
|
101
|
+
First day of the requested period
|
|
102
|
+
end : datetime-like
|
|
103
|
+
Last day of the requested period
|
|
104
|
+
map_variables : bool, default True
|
|
105
|
+
When True, rename data columns and metadata keys to pvlib variable
|
|
106
|
+
names where applicable. See variable :const:`VARIABLE_MAP`.
|
|
107
|
+
url : str, default: 'https://data.rcc-acis.org/GridData'
|
|
108
|
+
API endpoint URL
|
|
109
|
+
kwargs:
|
|
110
|
+
Optional parameters passed to ``requests.post``.
|
|
111
|
+
|
|
112
|
+
Returns
|
|
113
|
+
-------
|
|
114
|
+
data : pandas.DataFrame
|
|
115
|
+
Daily precipitation [mm], temperature [Celsius], and degree day
|
|
116
|
+
[Celsius-days] data
|
|
117
|
+
metadata : dict
|
|
118
|
+
Metadata of the selected grid cell
|
|
119
|
+
|
|
120
|
+
Raises
|
|
121
|
+
------
|
|
122
|
+
requests.HTTPError
|
|
123
|
+
A message from the ACIS server if the request is rejected
|
|
124
|
+
|
|
125
|
+
Notes
|
|
126
|
+
-----
|
|
127
|
+
PRISM data is aggregated from 12:00 to 12:00 UTC, meaning data labeled
|
|
128
|
+
May 26 reflects to the 24 hours ending at 7:00am Eastern Standard Time
|
|
129
|
+
on May 26.
|
|
130
|
+
|
|
131
|
+
References
|
|
132
|
+
----------
|
|
133
|
+
.. [1] `PRISM <https://prism.oregonstate.edu/>`_
|
|
134
|
+
.. [2] `ACIS Gridded Data <http://www.rcc-acis.org/docs_gridded.html>`_
|
|
135
|
+
.. [3] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
|
|
136
|
+
|
|
137
|
+
Examples
|
|
138
|
+
--------
|
|
139
|
+
>>> from pvlib.iotools import get_acis_prism
|
|
140
|
+
>>> df, meta = get_acis_prism(40, 80, '2020-01-01', '2020-12-31')
|
|
141
|
+
"""
|
|
142
|
+
elems = [
|
|
143
|
+
{"name": "pcpn", "interval": "dly", "units": "mm"},
|
|
144
|
+
{"name": "maxt", "interval": "dly", "units": "degreeC"},
|
|
145
|
+
{"name": "mint", "interval": "dly", "units": "degreeC"},
|
|
146
|
+
{"name": "avgt", "interval": "dly", "units": "degreeC"},
|
|
147
|
+
{"name": "cdd", "interval": "dly", "units": "degreeC"},
|
|
148
|
+
{"name": "hdd", "interval": "dly", "units": "degreeC"},
|
|
149
|
+
{"name": "gdd", "interval": "dly", "units": "degreeC"},
|
|
150
|
+
]
|
|
151
|
+
params = {
|
|
152
|
+
'loc': f"{longitude},{latitude}",
|
|
153
|
+
'grid': "21",
|
|
154
|
+
'elems': elems,
|
|
155
|
+
'meta': ["ll", "elev"],
|
|
156
|
+
}
|
|
157
|
+
df, meta = _get_acis(start, end, params, map_variables, url, **kwargs)
|
|
158
|
+
df = df.replace(-999, np.nan)
|
|
159
|
+
return df, meta
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def get_acis_nrcc(latitude, longitude, start, end, grid, map_variables=True,
|
|
163
|
+
url="https://data.rcc-acis.org/GridData", **kwargs):
|
|
164
|
+
"""
|
|
165
|
+
Retrieve estimated daily precipitation and temperature data from the
|
|
166
|
+
Northeast Regional Climate Center via the Applied Climate
|
|
167
|
+
Information System (ACIS).
|
|
168
|
+
|
|
169
|
+
ACIS [2]_, [3]_ aggregates and provides access to climate data
|
|
170
|
+
from many underlying sources. This function retrieves daily data from
|
|
171
|
+
Cornell's Northeast Regional Climate Center (NRCC) [1]_.
|
|
172
|
+
|
|
173
|
+
Geographical coverage: US, Central America, and part of South America.
|
|
174
|
+
Approximately 0° to 50° in latitude and -130° to -65° in longitude.
|
|
175
|
+
|
|
176
|
+
Parameters
|
|
177
|
+
----------
|
|
178
|
+
latitude : float
|
|
179
|
+
in decimal degrees, between -90 and 90, north is positive
|
|
180
|
+
longitude : float
|
|
181
|
+
in decimal degrees, between -180 and 180, east is positive
|
|
182
|
+
start : datetime-like
|
|
183
|
+
First day of the requested period
|
|
184
|
+
end : datetime-like
|
|
185
|
+
Last day of the requested period
|
|
186
|
+
grid : int
|
|
187
|
+
Options are either 1 (for "NRCC Interpolated") or 3
|
|
188
|
+
(for "NRCC Hi-Resolution"). See [2]_ for details.
|
|
189
|
+
map_variables : bool, default True
|
|
190
|
+
When True, rename data columns and metadata keys to pvlib variable
|
|
191
|
+
names where applicable. See variable :const:`VARIABLE_MAP`.
|
|
192
|
+
url : str, default: 'https://data.rcc-acis.org/GridData'
|
|
193
|
+
API endpoint URL
|
|
194
|
+
kwargs:
|
|
195
|
+
Optional parameters passed to ``requests.post``.
|
|
196
|
+
|
|
197
|
+
Returns
|
|
198
|
+
-------
|
|
199
|
+
data : pandas.DataFrame
|
|
200
|
+
Daily precipitation [mm], temperature [Celsius], and degree day
|
|
201
|
+
[Celsius-days] data
|
|
202
|
+
metadata : dict
|
|
203
|
+
Metadata of the selected grid cell
|
|
204
|
+
|
|
205
|
+
Raises
|
|
206
|
+
------
|
|
207
|
+
requests.HTTPError
|
|
208
|
+
A message from the ACIS server if the request is rejected
|
|
209
|
+
|
|
210
|
+
Notes
|
|
211
|
+
-----
|
|
212
|
+
The returned values are 24-hour aggregates, but
|
|
213
|
+
the aggregation period may not be midnight to midnight in local time.
|
|
214
|
+
Check the ACIS and NRCC documentation for details.
|
|
215
|
+
|
|
216
|
+
References
|
|
217
|
+
----------
|
|
218
|
+
.. [1] `NRCC <http://www.nrcc.cornell.edu/>`_
|
|
219
|
+
.. [2] `ACIS Gridded Data <http://www.rcc-acis.org/docs_gridded.html>`_
|
|
220
|
+
.. [3] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
|
|
221
|
+
|
|
222
|
+
Examples
|
|
223
|
+
--------
|
|
224
|
+
>>> from pvlib.iotools import get_acis_nrcc
|
|
225
|
+
>>> df, meta = get_acis_nrcc(40, -80, '2020-01-01', '2020-12-31', grid=1)
|
|
226
|
+
"""
|
|
227
|
+
elems = [
|
|
228
|
+
{"name": "pcpn", "interval": "dly", "units": "mm"},
|
|
229
|
+
{"name": "maxt", "interval": "dly", "units": "degreeC"},
|
|
230
|
+
{"name": "mint", "interval": "dly", "units": "degreeC"},
|
|
231
|
+
{"name": "avgt", "interval": "dly", "units": "degreeC"},
|
|
232
|
+
{"name": "cdd", "interval": "dly", "units": "degreeC"},
|
|
233
|
+
{"name": "hdd", "interval": "dly", "units": "degreeC"},
|
|
234
|
+
{"name": "gdd", "interval": "dly", "units": "degreeC"},
|
|
235
|
+
]
|
|
236
|
+
params = {
|
|
237
|
+
'loc': f"{longitude},{latitude}",
|
|
238
|
+
'grid': grid,
|
|
239
|
+
'elems': elems,
|
|
240
|
+
'meta': ["ll", "elev"],
|
|
241
|
+
}
|
|
242
|
+
df, meta = _get_acis(start, end, params, map_variables, url, **kwargs)
|
|
243
|
+
df = df.replace(-999, np.nan)
|
|
244
|
+
return df, meta
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
def get_acis_mpe(latitude, longitude, start, end, map_variables=True,
|
|
249
|
+
url="https://data.rcc-acis.org/GridData", **kwargs):
|
|
250
|
+
"""
|
|
251
|
+
Retrieve estimated daily Multi-sensor Precipitation Estimates
|
|
252
|
+
via the Applied Climate Information System (ACIS).
|
|
253
|
+
|
|
254
|
+
ACIS [2]_, [3]_ aggregates and provides access to climate data
|
|
255
|
+
from many underlying sources. This function retrieves daily data from
|
|
256
|
+
the National Weather Service's Multi-sensor Precipitation Estimates
|
|
257
|
+
(MPE) [1]_, a gridded precipitation model.
|
|
258
|
+
|
|
259
|
+
This dataset covers the contiguous United States, Mexico, and parts of
|
|
260
|
+
Central America.
|
|
261
|
+
|
|
262
|
+
Parameters
|
|
263
|
+
----------
|
|
264
|
+
latitude : float
|
|
265
|
+
in decimal degrees, between -90 and 90, north is positive
|
|
266
|
+
longitude : float
|
|
267
|
+
in decimal degrees, between -180 and 180, east is positive
|
|
268
|
+
start : datetime-like
|
|
269
|
+
First day of the requested period
|
|
270
|
+
end : datetime-like
|
|
271
|
+
Last day of the requested period
|
|
272
|
+
map_variables : bool, default True
|
|
273
|
+
When True, rename data columns and metadata keys to pvlib variable
|
|
274
|
+
names where applicable. See variable :const:`VARIABLE_MAP`.
|
|
275
|
+
url : str, default: 'https://data.rcc-acis.org/GridData'
|
|
276
|
+
API endpoint URL
|
|
277
|
+
kwargs:
|
|
278
|
+
Optional parameters passed to ``requests.post``.
|
|
279
|
+
|
|
280
|
+
Returns
|
|
281
|
+
-------
|
|
282
|
+
data : pandas.DataFrame
|
|
283
|
+
Daily precipitation [mm] data
|
|
284
|
+
metadata : dict
|
|
285
|
+
Coordinates of the selected grid cell
|
|
286
|
+
|
|
287
|
+
Raises
|
|
288
|
+
------
|
|
289
|
+
requests.HTTPError
|
|
290
|
+
A message from the ACIS server if the request is rejected
|
|
291
|
+
|
|
292
|
+
Notes
|
|
293
|
+
-----
|
|
294
|
+
The returned values are 24-hour aggregates, but
|
|
295
|
+
the aggregation period may not be midnight to midnight in local time.
|
|
296
|
+
Check the ACIS and MPE documentation for details.
|
|
297
|
+
|
|
298
|
+
References
|
|
299
|
+
----------
|
|
300
|
+
.. [1] `Multisensor Precipitation Estimates
|
|
301
|
+
<https://www.weather.gov/marfc/Multisensor_Precipitation>`_
|
|
302
|
+
.. [2] `ACIS Gridded Data <http://www.rcc-acis.org/docs_gridded.html>`_
|
|
303
|
+
.. [3] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
|
|
304
|
+
|
|
305
|
+
Examples
|
|
306
|
+
--------
|
|
307
|
+
>>> from pvlib.iotools import get_acis_mpe
|
|
308
|
+
>>> df, meta = get_acis_mpe(40, -80, '2020-01-01', '2020-12-31')
|
|
309
|
+
"""
|
|
310
|
+
elems = [
|
|
311
|
+
# only precipitation is supported in this dataset
|
|
312
|
+
{"name": "pcpn", "interval": "dly", "units": "mm"},
|
|
313
|
+
]
|
|
314
|
+
params = {
|
|
315
|
+
'loc': f"{longitude},{latitude}",
|
|
316
|
+
'grid': "2",
|
|
317
|
+
'elems': elems,
|
|
318
|
+
'meta': ["ll"], # "elev" is not supported for this dataset
|
|
319
|
+
}
|
|
320
|
+
df, meta = _get_acis(start, end, params, map_variables, url, **kwargs)
|
|
321
|
+
df = df.replace(-999, np.nan)
|
|
322
|
+
return df, meta
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
def get_acis_station_data(station, start, end, trace_val=0.001,
|
|
326
|
+
map_variables=True,
|
|
327
|
+
url="https://data.rcc-acis.org/StnData", **kwargs):
|
|
328
|
+
"""
|
|
329
|
+
Retrieve weather station climate records via the Applied Climate
|
|
330
|
+
Information System (ACIS).
|
|
331
|
+
|
|
332
|
+
ACIS [1]_, [2]_ aggregates and provides access to climate data
|
|
333
|
+
from many underlying sources. This function retrieves measurements
|
|
334
|
+
from ground stations belonging to various global networks.
|
|
335
|
+
|
|
336
|
+
This function can query data from stations all over the world.
|
|
337
|
+
The stations available in a given area can be listed using
|
|
338
|
+
:py:func:`get_acis_available_stations`.
|
|
339
|
+
|
|
340
|
+
Parameters
|
|
341
|
+
----------
|
|
342
|
+
station : str
|
|
343
|
+
Identifier code for the station to query. Identifiers from many
|
|
344
|
+
station networks are accepted, including WBAN, COOP, FAA, WMO, GHCN,
|
|
345
|
+
and others. See [1]_ and [2]_ for details.
|
|
346
|
+
start : datetime-like
|
|
347
|
+
First day of the requested period
|
|
348
|
+
end : datetime-like
|
|
349
|
+
Last day of the requested period
|
|
350
|
+
map_variables : bool, default True
|
|
351
|
+
When True, rename data columns and metadata keys to pvlib variable
|
|
352
|
+
names where applicable. See variable :const:`VARIABLE_MAP`.
|
|
353
|
+
trace_val : float, default 0.001
|
|
354
|
+
Value to replace "trace" values in the precipitation data
|
|
355
|
+
url : str, default: 'https://data.rcc-acis.org/GridData'
|
|
356
|
+
API endpoint URL
|
|
357
|
+
kwargs:
|
|
358
|
+
Optional parameters passed to ``requests.post``.
|
|
359
|
+
|
|
360
|
+
Returns
|
|
361
|
+
-------
|
|
362
|
+
data : pandas.DataFrame
|
|
363
|
+
Daily precipitation [mm], temperature [Celsius], snow [mm], and
|
|
364
|
+
degree day [Celsius-days] data
|
|
365
|
+
metadata : dict
|
|
366
|
+
station metadata
|
|
367
|
+
|
|
368
|
+
Raises
|
|
369
|
+
------
|
|
370
|
+
requests.HTTPError
|
|
371
|
+
A message from the ACIS server if the request is rejected
|
|
372
|
+
|
|
373
|
+
See Also
|
|
374
|
+
--------
|
|
375
|
+
get_acis_available_stations
|
|
376
|
+
|
|
377
|
+
References
|
|
378
|
+
----------
|
|
379
|
+
.. [1] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
|
|
380
|
+
.. [2] `ACIS Metadata <http://www.rcc-acis.org/docs_metadata.html>`_
|
|
381
|
+
|
|
382
|
+
Examples
|
|
383
|
+
--------
|
|
384
|
+
>>> # Using an FAA code (Chicago O'Hare airport)
|
|
385
|
+
>>> from pvlib.iotools import get_acis_station_data
|
|
386
|
+
>>> df, meta = get_acis_station_data('ORD', '2020-01-01', '2020-12-31')
|
|
387
|
+
>>>
|
|
388
|
+
>>> # Look up available stations in a lat/lon rectangle, with data
|
|
389
|
+
>>> # available in the specified date range:
|
|
390
|
+
>>> from pvlib.iotools import get_acis_available_stations
|
|
391
|
+
>>> stations = get_acis_available_stations([39.5, 40.5], [-80.5, -79.5],
|
|
392
|
+
... '2020-01-01', '2020-01-03')
|
|
393
|
+
>>> stations['sids'][0]
|
|
394
|
+
['369367 2', 'USC00369367 6', 'WYNP1 7']
|
|
395
|
+
>>> df, meta = get_acis_station_data('369367', '2020-01-01', '2020-01-03')
|
|
396
|
+
"""
|
|
397
|
+
elems = [
|
|
398
|
+
{"name": "maxt", "interval": "dly", "units": "degreeC"},
|
|
399
|
+
{"name": "mint", "interval": "dly", "units": "degreeC"},
|
|
400
|
+
{"name": "avgt", "interval": "dly", "units": "degreeC"},
|
|
401
|
+
{"name": "obst", "interval": "dly", "units": "degreeC"},
|
|
402
|
+
{"name": "pcpn", "interval": "dly", "units": "mm"},
|
|
403
|
+
{"name": "snow", "interval": "dly", "units": "cm"},
|
|
404
|
+
{"name": "snwd", "interval": "dly", "units": "cm"},
|
|
405
|
+
{"name": "cdd", "interval": "dly", "units": "degreeC"},
|
|
406
|
+
{"name": "hdd", "interval": "dly", "units": "degreeC"},
|
|
407
|
+
{"name": "gdd", "interval": "dly", "units": "degreeC"},
|
|
408
|
+
]
|
|
409
|
+
params = {
|
|
410
|
+
'sid': str(station),
|
|
411
|
+
'elems': elems,
|
|
412
|
+
'meta': ('name,state,sids,sid_dates,ll,elev,uid,county,'
|
|
413
|
+
'climdiv,valid_daterange,tzo,network')
|
|
414
|
+
}
|
|
415
|
+
df, metadata = _get_acis(start, end, params, map_variables, url, **kwargs)
|
|
416
|
+
df = df.replace("M", np.nan)
|
|
417
|
+
df = df.replace("T", trace_val)
|
|
418
|
+
df = df.astype(float)
|
|
419
|
+
return df, metadata
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
def get_acis_available_stations(latitude_range, longitude_range,
|
|
423
|
+
start=None, end=None,
|
|
424
|
+
url="https://data.rcc-acis.org/StnMeta",
|
|
425
|
+
**kwargs):
|
|
426
|
+
"""
|
|
427
|
+
List weather stations in a given area available from the
|
|
428
|
+
Applied Climate Information System (ACIS).
|
|
429
|
+
|
|
430
|
+
The ``sids`` returned by this function can be used with
|
|
431
|
+
:py:func:`get_acis_station_data` to retrieve weather measurements
|
|
432
|
+
from the station.
|
|
433
|
+
|
|
434
|
+
Parameters
|
|
435
|
+
----------
|
|
436
|
+
latitude_range : list
|
|
437
|
+
A 2-element list of [southern bound, northern bound]
|
|
438
|
+
in decimal degrees, between -90 and 90, north is positive
|
|
439
|
+
longitude_range : list
|
|
440
|
+
A 2-element list of [western bound, eastern bound]
|
|
441
|
+
in decimal degrees, between -180 and 180, east is positive
|
|
442
|
+
start : datetime-like, optional
|
|
443
|
+
If specified, return only stations that have data between ``start`` and
|
|
444
|
+
``end``. If not specified, all stations in the region are returned.
|
|
445
|
+
end : datetime-like, optional
|
|
446
|
+
See ``start``
|
|
447
|
+
url : str, default: 'https://data.rcc-acis.org/StnMeta'
|
|
448
|
+
API endpoint URL
|
|
449
|
+
kwargs:
|
|
450
|
+
Optional parameters passed to ``requests.post``.
|
|
451
|
+
|
|
452
|
+
Returns
|
|
453
|
+
-------
|
|
454
|
+
stations : pandas.DataFrame
|
|
455
|
+
A dataframe of station metadata, one row per station.
|
|
456
|
+
The ``sids`` column contains IDs that can be used with
|
|
457
|
+
:py:func:`get_acis_station_data`.
|
|
458
|
+
|
|
459
|
+
Raises
|
|
460
|
+
------
|
|
461
|
+
requests.HTTPError
|
|
462
|
+
A message from the ACIS server if the request is rejected
|
|
463
|
+
|
|
464
|
+
See Also
|
|
465
|
+
--------
|
|
466
|
+
get_acis_station_data
|
|
467
|
+
|
|
468
|
+
References
|
|
469
|
+
----------
|
|
470
|
+
.. [1] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
|
|
471
|
+
.. [2] `ACIS Metadata <http://www.rcc-acis.org/docs_metadata.html>`_
|
|
472
|
+
|
|
473
|
+
Examples
|
|
474
|
+
--------
|
|
475
|
+
>>> # Look up available stations in a lat/lon rectangle, with data
|
|
476
|
+
>>> # available in the specified date range:
|
|
477
|
+
>>> from pvlib.iotools import get_acis_available_stations
|
|
478
|
+
>>> stations = get_acis_available_stations([39.5, 40.5], [-80.5, -79.5],
|
|
479
|
+
... '2020-01-01', '2020-01-03')
|
|
480
|
+
>>> stations['sids'][0]
|
|
481
|
+
['369367 2', 'USC00369367 6', 'WYNP1 7']
|
|
482
|
+
"""
|
|
483
|
+
bbox = "{},{},{},{}".format(
|
|
484
|
+
longitude_range[0],
|
|
485
|
+
latitude_range[0],
|
|
486
|
+
longitude_range[1],
|
|
487
|
+
latitude_range[1],
|
|
488
|
+
)
|
|
489
|
+
params = {
|
|
490
|
+
"bbox": bbox,
|
|
491
|
+
"meta": ("name,state,sids,sid_dates,ll,elev,"
|
|
492
|
+
"uid,county,climdiv,tzo,network"),
|
|
493
|
+
}
|
|
494
|
+
if start is not None and end is not None:
|
|
495
|
+
params['elems'] = ['maxt', 'mint', 'avgt', 'obst',
|
|
496
|
+
'pcpn', 'snow', 'snwd']
|
|
497
|
+
params['sdate'] = pd.to_datetime(start).strftime('%Y-%m-%d')
|
|
498
|
+
params['edate'] = pd.to_datetime(end).strftime('%Y-%m-%d')
|
|
499
|
+
|
|
500
|
+
response = requests.post(url,
|
|
501
|
+
json=params,
|
|
502
|
+
headers={"Content-Type": "application/json"},
|
|
503
|
+
**kwargs)
|
|
504
|
+
response.raise_for_status()
|
|
505
|
+
payload = response.json()
|
|
506
|
+
if "error" in payload:
|
|
507
|
+
raise requests.HTTPError(payload['error'], response=response)
|
|
508
|
+
|
|
509
|
+
metadata = payload['meta']
|
|
510
|
+
for station_record in metadata:
|
|
511
|
+
station_record['altitude'] = station_record.pop('elev')
|
|
512
|
+
station_record['longitude'], station_record['latitude'] = \
|
|
513
|
+
station_record.pop('ll')
|
|
514
|
+
|
|
515
|
+
df = pd.DataFrame(metadata)
|
|
516
|
+
return df
|
pvlib/iotools/midc.py
CHANGED
|
@@ -102,7 +102,7 @@ TZ_MAP = {
|
|
|
102
102
|
}
|
|
103
103
|
|
|
104
104
|
|
|
105
|
-
def
|
|
105
|
+
def _format_index(data):
|
|
106
106
|
"""Create DatetimeIndex for the Dataframe localized to the timezone provided
|
|
107
107
|
as the label of the second (time) column.
|
|
108
108
|
|
|
@@ -126,7 +126,7 @@ def format_index(data):
|
|
|
126
126
|
return data
|
|
127
127
|
|
|
128
128
|
|
|
129
|
-
def
|
|
129
|
+
def _format_index_raw(data):
|
|
130
130
|
"""Create DatetimeIndex for the Dataframe localized to the timezone provided
|
|
131
131
|
as the label of the third column.
|
|
132
132
|
|
|
@@ -200,9 +200,9 @@ def read_midc(filename, variable_map={}, raw_data=False, **kwargs):
|
|
|
200
200
|
"""
|
|
201
201
|
data = pd.read_csv(filename, **kwargs)
|
|
202
202
|
if raw_data:
|
|
203
|
-
data =
|
|
203
|
+
data = _format_index_raw(data)
|
|
204
204
|
else:
|
|
205
|
-
data =
|
|
205
|
+
data = _format_index(data)
|
|
206
206
|
data = data.rename(columns=variable_map)
|
|
207
207
|
return data
|
|
208
208
|
|