pulumi-oci 2.1.0a1719958917__py3-none-any.whl → 2.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. pulumi_oci/__init__.py +43 -0
  2. pulumi_oci/database/__init__.py +11 -0
  3. pulumi_oci/database/_inputs.py +607 -0
  4. pulumi_oci/database/db_node.py +28 -0
  5. pulumi_oci/database/exadb_vm_cluster.py +1761 -0
  6. pulumi_oci/database/exascale_db_storage_vault.py +787 -0
  7. pulumi_oci/database/get_backups.py +22 -5
  8. pulumi_oci/database/get_db_node.py +14 -1
  9. pulumi_oci/database/get_db_nodes.py +2 -2
  10. pulumi_oci/database/get_exadb_vm_cluster.py +614 -0
  11. pulumi_oci/database/get_exadb_vm_cluster_update.py +226 -0
  12. pulumi_oci/database/get_exadb_vm_cluster_update_history_entries.py +153 -0
  13. pulumi_oci/database/get_exadb_vm_cluster_update_history_entry.py +226 -0
  14. pulumi_oci/database/get_exadb_vm_cluster_updates.py +173 -0
  15. pulumi_oci/database/get_exadb_vm_clusters.py +196 -0
  16. pulumi_oci/database/get_exascale_db_storage_vault.py +301 -0
  17. pulumi_oci/database/get_exascale_db_storage_vaults.py +176 -0
  18. pulumi_oci/database/get_gi_version_minor_versions.py +221 -0
  19. pulumi_oci/database/get_gi_versions.py +22 -5
  20. pulumi_oci/database/outputs.py +2050 -0
  21. pulumi_oci/database/pluggable_database.py +7 -7
  22. pulumi_oci/databasemigration/__init__.py +6 -0
  23. pulumi_oci/databasemigration/_inputs.py +1633 -0
  24. pulumi_oci/databasemigration/connection.py +2019 -0
  25. pulumi_oci/databasemigration/get_connection.py +616 -0
  26. pulumi_oci/databasemigration/get_connections.py +225 -0
  27. pulumi_oci/databasemigration/get_job_advisor_report.py +2 -10
  28. pulumi_oci/databasemigration/get_migration.py +440 -0
  29. pulumi_oci/databasemigration/get_migration_object_types.py +24 -13
  30. pulumi_oci/databasemigration/get_migrations.py +420 -0
  31. pulumi_oci/databasemigration/job.py +16 -20
  32. pulumi_oci/databasemigration/migration.py +1528 -0
  33. pulumi_oci/databasemigration/outputs.py +4447 -76
  34. pulumi_oci/filestorage/_inputs.py +10 -18
  35. pulumi_oci/filestorage/export.py +28 -7
  36. pulumi_oci/filestorage/file_system.py +159 -35
  37. pulumi_oci/filestorage/outputs.py +55 -34
  38. pulumi_oci/generativeai/_inputs.py +50 -2
  39. pulumi_oci/generativeai/dedicated_ai_cluster.py +30 -2
  40. pulumi_oci/generativeai/endpoint.py +2 -2
  41. pulumi_oci/generativeai/get_dedicated_ai_cluster.py +2 -47
  42. pulumi_oci/generativeai/get_dedicated_ai_clusters.py +2 -14
  43. pulumi_oci/generativeai/get_endpoint.py +2 -26
  44. pulumi_oci/generativeai/get_endpoints.py +2 -8
  45. pulumi_oci/generativeai/get_model.py +2 -38
  46. pulumi_oci/generativeai/get_models.py +2 -8
  47. pulumi_oci/generativeai/model.py +2 -2
  48. pulumi_oci/generativeai/outputs.py +86 -310
  49. pulumi_oci/meteringcomputation/_inputs.py +32 -0
  50. pulumi_oci/meteringcomputation/outputs.py +29 -1
  51. pulumi_oci/pulumi-plugin.json +1 -1
  52. pulumi_oci/resourcescheduler/__init__.py +12 -0
  53. pulumi_oci/resourcescheduler/_inputs.py +224 -0
  54. pulumi_oci/resourcescheduler/get_schedule.py +340 -0
  55. pulumi_oci/resourcescheduler/get_schedules.py +193 -0
  56. pulumi_oci/resourcescheduler/outputs.py +687 -0
  57. pulumi_oci/resourcescheduler/schedule.py +977 -0
  58. {pulumi_oci-2.1.0a1719958917.dist-info → pulumi_oci-2.2.0.dist-info}/METADATA +1 -1
  59. {pulumi_oci-2.1.0a1719958917.dist-info → pulumi_oci-2.2.0.dist-info}/RECORD +61 -38
  60. {pulumi_oci-2.1.0a1719958917.dist-info → pulumi_oci-2.2.0.dist-info}/WHEEL +1 -1
  61. {pulumi_oci-2.1.0a1719958917.dist-info → pulumi_oci-2.2.0.dist-info}/top_level.txt +0 -0
@@ -170,7 +170,7 @@ class ModelFineTuneDetails(dict):
170
170
  :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
171
171
  :param 'ModelFineTuneDetailsTrainingDatasetArgs' training_dataset: The dataset used to fine-tune the model.
172
172
 
173
- Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
173
+ Only one dataset is allowed per custom model, which is split 80-20 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
174
174
  :param 'ModelFineTuneDetailsTrainingConfigArgs' training_config: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
175
175
  """
176
176
  pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
@@ -192,7 +192,7 @@ class ModelFineTuneDetails(dict):
192
192
  """
193
193
  The dataset used to fine-tune the model.
194
194
 
195
- Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
195
+ Only one dataset is allowed per custom model, which is split 80-20 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
196
196
  """
197
197
  return pulumi.get(self, "training_dataset")
198
198
 
@@ -220,6 +220,12 @@ class ModelFineTuneDetailsTrainingConfig(dict):
220
220
  suggest = "learning_rate"
221
221
  elif key == "logModelMetricsIntervalInSteps":
222
222
  suggest = "log_model_metrics_interval_in_steps"
223
+ elif key == "loraAlpha":
224
+ suggest = "lora_alpha"
225
+ elif key == "loraDropout":
226
+ suggest = "lora_dropout"
227
+ elif key == "loraR":
228
+ suggest = "lora_r"
223
229
  elif key == "numOfLastLayers":
224
230
  suggest = "num_of_last_layers"
225
231
  elif key == "totalTrainingEpochs":
@@ -244,6 +250,9 @@ class ModelFineTuneDetailsTrainingConfig(dict):
244
250
  early_stopping_threshold: Optional[float] = None,
245
251
  learning_rate: Optional[float] = None,
246
252
  log_model_metrics_interval_in_steps: Optional[int] = None,
253
+ lora_alpha: Optional[int] = None,
254
+ lora_dropout: Optional[float] = None,
255
+ lora_r: Optional[int] = None,
247
256
  num_of_last_layers: Optional[int] = None,
248
257
  total_training_epochs: Optional[int] = None,
249
258
  training_batch_size: Optional[int] = None):
@@ -255,6 +264,9 @@ class ModelFineTuneDetailsTrainingConfig(dict):
255
264
  :param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
256
265
 
257
266
  Every step is logged for the first 20 steps and then follows this parameter for log frequency. Set to 0 to disable logging the model metrics.
267
+ :param int lora_alpha: This parameter represents the scaling factor for the weight matrices in LoRA.
268
+ :param float lora_dropout: This parameter indicates the dropout probability for LoRA layers.
269
+ :param int lora_r: This parameter represents the LoRA rank of the update matrices.
258
270
  :param int num_of_last_layers: The number of last layers to be fine-tuned.
259
271
  :param int total_training_epochs: The maximum number of training epochs to run for.
260
272
  :param int training_batch_size: The batch size used during training.
@@ -268,6 +280,12 @@ class ModelFineTuneDetailsTrainingConfig(dict):
268
280
  pulumi.set(__self__, "learning_rate", learning_rate)
269
281
  if log_model_metrics_interval_in_steps is not None:
270
282
  pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
283
+ if lora_alpha is not None:
284
+ pulumi.set(__self__, "lora_alpha", lora_alpha)
285
+ if lora_dropout is not None:
286
+ pulumi.set(__self__, "lora_dropout", lora_dropout)
287
+ if lora_r is not None:
288
+ pulumi.set(__self__, "lora_r", lora_r)
271
289
  if num_of_last_layers is not None:
272
290
  pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
273
291
  if total_training_epochs is not None:
@@ -317,6 +335,30 @@ class ModelFineTuneDetailsTrainingConfig(dict):
317
335
  """
318
336
  return pulumi.get(self, "log_model_metrics_interval_in_steps")
319
337
 
338
+ @property
339
+ @pulumi.getter(name="loraAlpha")
340
+ def lora_alpha(self) -> Optional[int]:
341
+ """
342
+ This parameter represents the scaling factor for the weight matrices in LoRA.
343
+ """
344
+ return pulumi.get(self, "lora_alpha")
345
+
346
+ @property
347
+ @pulumi.getter(name="loraDropout")
348
+ def lora_dropout(self) -> Optional[float]:
349
+ """
350
+ This parameter indicates the dropout probability for LoRA layers.
351
+ """
352
+ return pulumi.get(self, "lora_dropout")
353
+
354
+ @property
355
+ @pulumi.getter(name="loraR")
356
+ def lora_r(self) -> Optional[int]:
357
+ """
358
+ This parameter represents the LoRA rank of the update matrices.
359
+ """
360
+ return pulumi.get(self, "lora_r")
361
+
320
362
  @property
321
363
  @pulumi.getter(name="numOfLastLayers")
322
364
  def num_of_last_layers(self) -> Optional[int]:
@@ -480,11 +522,6 @@ class GetDedicatedAiClusterCapacityResult(dict):
480
522
  capacity_type: str,
481
523
  total_endpoint_capacity: int,
482
524
  used_endpoint_capacity: int):
483
- """
484
- :param str capacity_type: The type of the dedicated AI cluster capacity.
485
- :param int total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
486
- :param int used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
487
- """
488
525
  pulumi.set(__self__, "capacity_type", capacity_type)
489
526
  pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
490
527
  pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
@@ -492,25 +529,16 @@ class GetDedicatedAiClusterCapacityResult(dict):
492
529
  @property
493
530
  @pulumi.getter(name="capacityType")
494
531
  def capacity_type(self) -> str:
495
- """
496
- The type of the dedicated AI cluster capacity.
497
- """
498
532
  return pulumi.get(self, "capacity_type")
499
533
 
500
534
  @property
501
535
  @pulumi.getter(name="totalEndpointCapacity")
502
536
  def total_endpoint_capacity(self) -> int:
503
- """
504
- The total number of endpoints that can be hosted on this dedicated AI cluster.
505
- """
506
537
  return pulumi.get(self, "total_endpoint_capacity")
507
538
 
508
539
  @property
509
540
  @pulumi.getter(name="usedEndpointCapacity")
510
541
  def used_endpoint_capacity(self) -> int:
511
- """
512
- The number of endpoints hosted on this dedicated AI cluster.
513
- """
514
542
  return pulumi.get(self, "used_endpoint_capacity")
515
543
 
516
544
 
@@ -545,21 +573,10 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
545
573
  unit_count: int,
546
574
  unit_shape: str):
547
575
  """
548
- :param Sequence['GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityArgs'] capacities: The total capacity for a dedicated AI cluster.
549
576
  :param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
550
- :param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
551
- :param str description: An optional description of the dedicated AI cluster.
552
577
  :param str display_name: A filter to return only resources that match the given display name exactly.
553
- :param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
554
578
  :param str id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the dedicated AI cluster.
555
- :param str lifecycle_details: A message describing the current state with detail that can provide actionable information.
556
579
  :param str state: A filter to return only the dedicated AI clusters that their lifecycle state matches the given lifecycle state.
557
- :param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
558
- :param str time_created: The date and time the dedicated AI cluster was created, in the format defined by RFC 3339
559
- :param str time_updated: The date and time the dedicated AI cluster was updated, in the format defined by RFC 3339
560
- :param str type: The dedicated AI cluster type indicating whether this is a fine-tuning/training processor or hosting/inference processor.
561
- :param int unit_count: The number of dedicated units in this AI cluster.
562
- :param str unit_shape: The shape of dedicated unit in this AI cluster. The underlying hardware configuration is hidden from customers.
563
580
  """
564
581
  pulumi.set(__self__, "capacities", capacities)
565
582
  pulumi.set(__self__, "compartment_id", compartment_id)
@@ -580,9 +597,6 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
580
597
  @property
581
598
  @pulumi.getter
582
599
  def capacities(self) -> Sequence['outputs.GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult']:
583
- """
584
- The total capacity for a dedicated AI cluster.
585
- """
586
600
  return pulumi.get(self, "capacities")
587
601
 
588
602
  @property
@@ -596,17 +610,11 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
596
610
  @property
597
611
  @pulumi.getter(name="definedTags")
598
612
  def defined_tags(self) -> Mapping[str, Any]:
599
- """
600
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
601
- """
602
613
  return pulumi.get(self, "defined_tags")
603
614
 
604
615
  @property
605
616
  @pulumi.getter
606
617
  def description(self) -> str:
607
- """
608
- An optional description of the dedicated AI cluster.
609
- """
610
618
  return pulumi.get(self, "description")
611
619
 
612
620
  @property
@@ -620,9 +628,6 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
620
628
  @property
621
629
  @pulumi.getter(name="freeformTags")
622
630
  def freeform_tags(self) -> Mapping[str, Any]:
623
- """
624
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
625
- """
626
631
  return pulumi.get(self, "freeform_tags")
627
632
 
628
633
  @property
@@ -636,9 +641,6 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
636
641
  @property
637
642
  @pulumi.getter(name="lifecycleDetails")
638
643
  def lifecycle_details(self) -> str:
639
- """
640
- A message describing the current state with detail that can provide actionable information.
641
- """
642
644
  return pulumi.get(self, "lifecycle_details")
643
645
 
644
646
  @property
@@ -652,49 +654,31 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
652
654
  @property
653
655
  @pulumi.getter(name="systemTags")
654
656
  def system_tags(self) -> Mapping[str, Any]:
655
- """
656
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
657
- """
658
657
  return pulumi.get(self, "system_tags")
659
658
 
660
659
  @property
661
660
  @pulumi.getter(name="timeCreated")
662
661
  def time_created(self) -> str:
663
- """
664
- The date and time the dedicated AI cluster was created, in the format defined by RFC 3339
665
- """
666
662
  return pulumi.get(self, "time_created")
667
663
 
668
664
  @property
669
665
  @pulumi.getter(name="timeUpdated")
670
666
  def time_updated(self) -> str:
671
- """
672
- The date and time the dedicated AI cluster was updated, in the format defined by RFC 3339
673
- """
674
667
  return pulumi.get(self, "time_updated")
675
668
 
676
669
  @property
677
670
  @pulumi.getter
678
671
  def type(self) -> str:
679
- """
680
- The dedicated AI cluster type indicating whether this is a fine-tuning/training processor or hosting/inference processor.
681
- """
682
672
  return pulumi.get(self, "type")
683
673
 
684
674
  @property
685
675
  @pulumi.getter(name="unitCount")
686
676
  def unit_count(self) -> int:
687
- """
688
- The number of dedicated units in this AI cluster.
689
- """
690
677
  return pulumi.get(self, "unit_count")
691
678
 
692
679
  @property
693
680
  @pulumi.getter(name="unitShape")
694
681
  def unit_shape(self) -> str:
695
- """
696
- The shape of dedicated unit in this AI cluster. The underlying hardware configuration is hidden from customers.
697
- """
698
682
  return pulumi.get(self, "unit_shape")
699
683
 
700
684
 
@@ -704,11 +688,6 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult(dict)
704
688
  capacity_type: str,
705
689
  total_endpoint_capacity: int,
706
690
  used_endpoint_capacity: int):
707
- """
708
- :param str capacity_type: The type of the dedicated AI cluster capacity.
709
- :param int total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
710
- :param int used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
711
- """
712
691
  pulumi.set(__self__, "capacity_type", capacity_type)
713
692
  pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
714
693
  pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
@@ -716,25 +695,16 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult(dict)
716
695
  @property
717
696
  @pulumi.getter(name="capacityType")
718
697
  def capacity_type(self) -> str:
719
- """
720
- The type of the dedicated AI cluster capacity.
721
- """
722
698
  return pulumi.get(self, "capacity_type")
723
699
 
724
700
  @property
725
701
  @pulumi.getter(name="totalEndpointCapacity")
726
702
  def total_endpoint_capacity(self) -> int:
727
- """
728
- The total number of endpoints that can be hosted on this dedicated AI cluster.
729
- """
730
703
  return pulumi.get(self, "total_endpoint_capacity")
731
704
 
732
705
  @property
733
706
  @pulumi.getter(name="usedEndpointCapacity")
734
707
  def used_endpoint_capacity(self) -> int:
735
- """
736
- The number of endpoints hosted on this dedicated AI cluster.
737
- """
738
708
  return pulumi.get(self, "used_endpoint_capacity")
739
709
 
740
710
 
@@ -769,17 +739,11 @@ class GetDedicatedAiClustersFilterResult(dict):
769
739
  class GetEndpointContentModerationConfigResult(dict):
770
740
  def __init__(__self__, *,
771
741
  is_enabled: bool):
772
- """
773
- :param bool is_enabled: Whether to enable the content moderation feature.
774
- """
775
742
  pulumi.set(__self__, "is_enabled", is_enabled)
776
743
 
777
744
  @property
778
745
  @pulumi.getter(name="isEnabled")
779
746
  def is_enabled(self) -> bool:
780
- """
781
- Whether to enable the content moderation feature.
782
- """
783
747
  return pulumi.get(self, "is_enabled")
784
748
 
785
749
 
@@ -814,17 +778,11 @@ class GetEndpointsEndpointCollectionItemResult(dict):
814
778
  time_updated: str):
815
779
  """
816
780
  :param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
817
- :param Sequence['GetEndpointsEndpointCollectionItemContentModerationConfigArgs'] content_moderation_configs: The configuration details, whether to add the content moderation feature to the model. Content moderation removes toxic and biased content from responses. It's recommended to use content moderation.
818
- :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster on which the model will be deployed to.
819
781
  :param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
820
- :param str description: An optional description of the endpoint.
821
782
  :param str display_name: A filter to return only resources that match the given display name exactly.
822
- :param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
823
783
  :param str id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the endpoint.
824
- :param str lifecycle_details: A message describing the current state of the endpoint in more detail that can provide actionable information.
825
784
  :param str model_id: The OCID of the model that's used to create this endpoint.
826
785
  :param str state: A filter to return only resources that their lifecycle state matches the given lifecycle state.
827
- :param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
828
786
  :param str time_created: The date and time that the endpoint was created in the format of an RFC3339 datetime string.
829
787
  :param str time_updated: The date and time that the endpoint was updated in the format of an RFC3339 datetime string.
830
788
  """
@@ -854,17 +812,11 @@ class GetEndpointsEndpointCollectionItemResult(dict):
854
812
  @property
855
813
  @pulumi.getter(name="contentModerationConfigs")
856
814
  def content_moderation_configs(self) -> Sequence['outputs.GetEndpointsEndpointCollectionItemContentModerationConfigResult']:
857
- """
858
- The configuration details, whether to add the content moderation feature to the model. Content moderation removes toxic and biased content from responses. It's recommended to use content moderation.
859
- """
860
815
  return pulumi.get(self, "content_moderation_configs")
861
816
 
862
817
  @property
863
818
  @pulumi.getter(name="dedicatedAiClusterId")
864
819
  def dedicated_ai_cluster_id(self) -> str:
865
- """
866
- The OCID of the dedicated AI cluster on which the model will be deployed to.
867
- """
868
820
  return pulumi.get(self, "dedicated_ai_cluster_id")
869
821
 
870
822
  @property
@@ -878,9 +830,6 @@ class GetEndpointsEndpointCollectionItemResult(dict):
878
830
  @property
879
831
  @pulumi.getter
880
832
  def description(self) -> str:
881
- """
882
- An optional description of the endpoint.
883
- """
884
833
  return pulumi.get(self, "description")
885
834
 
886
835
  @property
@@ -894,9 +843,6 @@ class GetEndpointsEndpointCollectionItemResult(dict):
894
843
  @property
895
844
  @pulumi.getter(name="freeformTags")
896
845
  def freeform_tags(self) -> Mapping[str, Any]:
897
- """
898
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
899
- """
900
846
  return pulumi.get(self, "freeform_tags")
901
847
 
902
848
  @property
@@ -910,9 +856,6 @@ class GetEndpointsEndpointCollectionItemResult(dict):
910
856
  @property
911
857
  @pulumi.getter(name="lifecycleDetails")
912
858
  def lifecycle_details(self) -> str:
913
- """
914
- A message describing the current state of the endpoint in more detail that can provide actionable information.
915
- """
916
859
  return pulumi.get(self, "lifecycle_details")
917
860
 
918
861
  @property
@@ -934,9 +877,6 @@ class GetEndpointsEndpointCollectionItemResult(dict):
934
877
  @property
935
878
  @pulumi.getter(name="systemTags")
936
879
  def system_tags(self) -> Mapping[str, Any]:
937
- """
938
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
939
- """
940
880
  return pulumi.get(self, "system_tags")
941
881
 
942
882
  @property
@@ -960,17 +900,11 @@ class GetEndpointsEndpointCollectionItemResult(dict):
960
900
  class GetEndpointsEndpointCollectionItemContentModerationConfigResult(dict):
961
901
  def __init__(__self__, *,
962
902
  is_enabled: bool):
963
- """
964
- :param bool is_enabled: Whether to enable the content moderation feature.
965
- """
966
903
  pulumi.set(__self__, "is_enabled", is_enabled)
967
904
 
968
905
  @property
969
906
  @pulumi.getter(name="isEnabled")
970
907
  def is_enabled(self) -> bool:
971
- """
972
- Whether to enable the content moderation feature.
973
- """
974
908
  return pulumi.get(self, "is_enabled")
975
909
 
976
910
 
@@ -1007,11 +941,6 @@ class GetModelFineTuneDetailResult(dict):
1007
941
  dedicated_ai_cluster_id: str,
1008
942
  training_configs: Sequence['outputs.GetModelFineTuneDetailTrainingConfigResult'],
1009
943
  training_datasets: Sequence['outputs.GetModelFineTuneDetailTrainingDatasetResult']):
1010
- """
1011
- :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
1012
- :param Sequence['GetModelFineTuneDetailTrainingConfigArgs'] training_configs: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1013
- :param Sequence['GetModelFineTuneDetailTrainingDatasetArgs'] training_datasets: The dataset used to fine-tune the model.
1014
- """
1015
944
  pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
1016
945
  pulumi.set(__self__, "training_configs", training_configs)
1017
946
  pulumi.set(__self__, "training_datasets", training_datasets)
@@ -1019,25 +948,16 @@ class GetModelFineTuneDetailResult(dict):
1019
948
  @property
1020
949
  @pulumi.getter(name="dedicatedAiClusterId")
1021
950
  def dedicated_ai_cluster_id(self) -> str:
1022
- """
1023
- The OCID of the dedicated AI cluster this fine-tuning runs on.
1024
- """
1025
951
  return pulumi.get(self, "dedicated_ai_cluster_id")
1026
952
 
1027
953
  @property
1028
954
  @pulumi.getter(name="trainingConfigs")
1029
955
  def training_configs(self) -> Sequence['outputs.GetModelFineTuneDetailTrainingConfigResult']:
1030
- """
1031
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1032
- """
1033
956
  return pulumi.get(self, "training_configs")
1034
957
 
1035
958
  @property
1036
959
  @pulumi.getter(name="trainingDatasets")
1037
960
  def training_datasets(self) -> Sequence['outputs.GetModelFineTuneDetailTrainingDatasetResult']:
1038
- """
1039
- The dataset used to fine-tune the model.
1040
- """
1041
961
  return pulumi.get(self, "training_datasets")
1042
962
 
1043
963
 
@@ -1048,24 +968,20 @@ class GetModelFineTuneDetailTrainingConfigResult(dict):
1048
968
  early_stopping_threshold: float,
1049
969
  learning_rate: float,
1050
970
  log_model_metrics_interval_in_steps: int,
971
+ lora_alpha: int,
972
+ lora_dropout: float,
973
+ lora_r: int,
1051
974
  num_of_last_layers: int,
1052
975
  total_training_epochs: int,
1053
976
  training_batch_size: int,
1054
977
  training_config_type: str):
1055
- """
1056
- :param int early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1057
- :param float early_stopping_threshold: How much the loss must improve to prevent early stopping.
1058
- :param float learning_rate: The initial learning rate to be used during training
1059
- :param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
1060
- :param int num_of_last_layers: The number of last layers to be fine-tuned.
1061
- :param int total_training_epochs: The maximum number of training epochs to run for.
1062
- :param int training_batch_size: The batch size used during training.
1063
- :param str training_config_type: The fine-tuning method for training a custom model.
1064
- """
1065
978
  pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
1066
979
  pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
1067
980
  pulumi.set(__self__, "learning_rate", learning_rate)
1068
981
  pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
982
+ pulumi.set(__self__, "lora_alpha", lora_alpha)
983
+ pulumi.set(__self__, "lora_dropout", lora_dropout)
984
+ pulumi.set(__self__, "lora_r", lora_r)
1069
985
  pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
1070
986
  pulumi.set(__self__, "total_training_epochs", total_training_epochs)
1071
987
  pulumi.set(__self__, "training_batch_size", training_batch_size)
@@ -1074,65 +990,56 @@ class GetModelFineTuneDetailTrainingConfigResult(dict):
1074
990
  @property
1075
991
  @pulumi.getter(name="earlyStoppingPatience")
1076
992
  def early_stopping_patience(self) -> int:
1077
- """
1078
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1079
- """
1080
993
  return pulumi.get(self, "early_stopping_patience")
1081
994
 
1082
995
  @property
1083
996
  @pulumi.getter(name="earlyStoppingThreshold")
1084
997
  def early_stopping_threshold(self) -> float:
1085
- """
1086
- How much the loss must improve to prevent early stopping.
1087
- """
1088
998
  return pulumi.get(self, "early_stopping_threshold")
1089
999
 
1090
1000
  @property
1091
1001
  @pulumi.getter(name="learningRate")
1092
1002
  def learning_rate(self) -> float:
1093
- """
1094
- The initial learning rate to be used during training
1095
- """
1096
1003
  return pulumi.get(self, "learning_rate")
1097
1004
 
1098
1005
  @property
1099
1006
  @pulumi.getter(name="logModelMetricsIntervalInSteps")
1100
1007
  def log_model_metrics_interval_in_steps(self) -> int:
1101
- """
1102
- Determines how frequently to log model metrics.
1103
- """
1104
1008
  return pulumi.get(self, "log_model_metrics_interval_in_steps")
1105
1009
 
1010
+ @property
1011
+ @pulumi.getter(name="loraAlpha")
1012
+ def lora_alpha(self) -> int:
1013
+ return pulumi.get(self, "lora_alpha")
1014
+
1015
+ @property
1016
+ @pulumi.getter(name="loraDropout")
1017
+ def lora_dropout(self) -> float:
1018
+ return pulumi.get(self, "lora_dropout")
1019
+
1020
+ @property
1021
+ @pulumi.getter(name="loraR")
1022
+ def lora_r(self) -> int:
1023
+ return pulumi.get(self, "lora_r")
1024
+
1106
1025
  @property
1107
1026
  @pulumi.getter(name="numOfLastLayers")
1108
1027
  def num_of_last_layers(self) -> int:
1109
- """
1110
- The number of last layers to be fine-tuned.
1111
- """
1112
1028
  return pulumi.get(self, "num_of_last_layers")
1113
1029
 
1114
1030
  @property
1115
1031
  @pulumi.getter(name="totalTrainingEpochs")
1116
1032
  def total_training_epochs(self) -> int:
1117
- """
1118
- The maximum number of training epochs to run for.
1119
- """
1120
1033
  return pulumi.get(self, "total_training_epochs")
1121
1034
 
1122
1035
  @property
1123
1036
  @pulumi.getter(name="trainingBatchSize")
1124
1037
  def training_batch_size(self) -> int:
1125
- """
1126
- The batch size used during training.
1127
- """
1128
1038
  return pulumi.get(self, "training_batch_size")
1129
1039
 
1130
1040
  @property
1131
1041
  @pulumi.getter(name="trainingConfigType")
1132
1042
  def training_config_type(self) -> str:
1133
- """
1134
- The fine-tuning method for training a custom model.
1135
- """
1136
1043
  return pulumi.get(self, "training_config_type")
1137
1044
 
1138
1045
 
@@ -1143,12 +1050,6 @@ class GetModelFineTuneDetailTrainingDatasetResult(dict):
1143
1050
  dataset_type: str,
1144
1051
  namespace: str,
1145
1052
  object: str):
1146
- """
1147
- :param str bucket: The Object Storage bucket name.
1148
- :param str dataset_type: The type of the data asset.
1149
- :param str namespace: The Object Storage namespace.
1150
- :param str object: The Object Storage object name.
1151
- """
1152
1053
  pulumi.set(__self__, "bucket", bucket)
1153
1054
  pulumi.set(__self__, "dataset_type", dataset_type)
1154
1055
  pulumi.set(__self__, "namespace", namespace)
@@ -1157,33 +1058,21 @@ class GetModelFineTuneDetailTrainingDatasetResult(dict):
1157
1058
  @property
1158
1059
  @pulumi.getter
1159
1060
  def bucket(self) -> str:
1160
- """
1161
- The Object Storage bucket name.
1162
- """
1163
1061
  return pulumi.get(self, "bucket")
1164
1062
 
1165
1063
  @property
1166
1064
  @pulumi.getter(name="datasetType")
1167
1065
  def dataset_type(self) -> str:
1168
- """
1169
- The type of the data asset.
1170
- """
1171
1066
  return pulumi.get(self, "dataset_type")
1172
1067
 
1173
1068
  @property
1174
1069
  @pulumi.getter
1175
1070
  def namespace(self) -> str:
1176
- """
1177
- The Object Storage namespace.
1178
- """
1179
1071
  return pulumi.get(self, "namespace")
1180
1072
 
1181
1073
  @property
1182
1074
  @pulumi.getter
1183
1075
  def object(self) -> str:
1184
- """
1185
- The Object Storage object name.
1186
- """
1187
1076
  return pulumi.get(self, "object")
1188
1077
 
1189
1078
 
@@ -1193,11 +1082,6 @@ class GetModelModelMetricResult(dict):
1193
1082
  final_accuracy: float,
1194
1083
  final_loss: float,
1195
1084
  model_metrics_type: str):
1196
- """
1197
- :param float final_accuracy: Fine-tuned model accuracy.
1198
- :param float final_loss: Fine-tuned model loss.
1199
- :param str model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
1200
- """
1201
1085
  pulumi.set(__self__, "final_accuracy", final_accuracy)
1202
1086
  pulumi.set(__self__, "final_loss", final_loss)
1203
1087
  pulumi.set(__self__, "model_metrics_type", model_metrics_type)
@@ -1205,25 +1089,16 @@ class GetModelModelMetricResult(dict):
1205
1089
  @property
1206
1090
  @pulumi.getter(name="finalAccuracy")
1207
1091
  def final_accuracy(self) -> float:
1208
- """
1209
- Fine-tuned model accuracy.
1210
- """
1211
1092
  return pulumi.get(self, "final_accuracy")
1212
1093
 
1213
1094
  @property
1214
1095
  @pulumi.getter(name="finalLoss")
1215
1096
  def final_loss(self) -> float:
1216
- """
1217
- Fine-tuned model loss.
1218
- """
1219
1097
  return pulumi.get(self, "final_loss")
1220
1098
 
1221
1099
  @property
1222
1100
  @pulumi.getter(name="modelMetricsType")
1223
1101
  def model_metrics_type(self) -> str:
1224
- """
1225
- The type of the model metrics. Each type of model can expect a different set of model metrics.
1226
- """
1227
1102
  return pulumi.get(self, "model_metrics_type")
1228
1103
 
1229
1104
 
@@ -1290,23 +1165,13 @@ class GetModelsModelCollectionItemResult(dict):
1290
1165
  vendor: str,
1291
1166
  version: str):
1292
1167
  """
1293
- :param str base_model_id: The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
1294
1168
  :param Sequence[str] capabilities: Describes what this model can be used for.
1295
1169
  :param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
1296
1170
  :param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
1297
- :param str description: An optional description of the model.
1298
1171
  :param str display_name: A filter to return only resources that match the given display name exactly.
1299
- :param Sequence['GetModelsModelCollectionItemFineTuneDetailArgs'] fine_tune_details: Details about fine-tuning a custom model.
1300
- :param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
1301
1172
  :param str id: The ID of the model.
1302
- :param bool is_long_term_supported: Whether a model is supported long-term. Only applicable to base models.
1303
- :param str lifecycle_details: A message describing the current state of the model in more detail that can provide actionable information.
1304
- :param Sequence['GetModelsModelCollectionItemModelMetricArgs'] model_metrics: Model metrics during the creation of a new model.
1305
1173
  :param str state: A filter to return only resources their lifecycleState matches the given lifecycleState.
1306
- :param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
1307
- :param str time_created: The date and time that the model was created in the format of an RFC3339 datetime string.
1308
1174
  :param str time_deprecated: Corresponds to the time when the custom model and its associated foundation model will be deprecated.
1309
- :param str time_updated: The date and time that the model was updated in the format of an RFC3339 datetime string.
1310
1175
  :param str type: The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
1311
1176
  :param str vendor: A filter to return only resources that match the entire vendor given.
1312
1177
  :param str version: The version of the model.
@@ -1335,9 +1200,6 @@ class GetModelsModelCollectionItemResult(dict):
1335
1200
  @property
1336
1201
  @pulumi.getter(name="baseModelId")
1337
1202
  def base_model_id(self) -> str:
1338
- """
1339
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
1340
- """
1341
1203
  return pulumi.get(self, "base_model_id")
1342
1204
 
1343
1205
  @property
@@ -1367,9 +1229,6 @@ class GetModelsModelCollectionItemResult(dict):
1367
1229
  @property
1368
1230
  @pulumi.getter
1369
1231
  def description(self) -> str:
1370
- """
1371
- An optional description of the model.
1372
- """
1373
1232
  return pulumi.get(self, "description")
1374
1233
 
1375
1234
  @property
@@ -1383,17 +1242,11 @@ class GetModelsModelCollectionItemResult(dict):
1383
1242
  @property
1384
1243
  @pulumi.getter(name="fineTuneDetails")
1385
1244
  def fine_tune_details(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailResult']:
1386
- """
1387
- Details about fine-tuning a custom model.
1388
- """
1389
1245
  return pulumi.get(self, "fine_tune_details")
1390
1246
 
1391
1247
  @property
1392
1248
  @pulumi.getter(name="freeformTags")
1393
1249
  def freeform_tags(self) -> Mapping[str, Any]:
1394
- """
1395
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
1396
- """
1397
1250
  return pulumi.get(self, "freeform_tags")
1398
1251
 
1399
1252
  @property
@@ -1407,25 +1260,16 @@ class GetModelsModelCollectionItemResult(dict):
1407
1260
  @property
1408
1261
  @pulumi.getter(name="isLongTermSupported")
1409
1262
  def is_long_term_supported(self) -> bool:
1410
- """
1411
- Whether a model is supported long-term. Only applicable to base models.
1412
- """
1413
1263
  return pulumi.get(self, "is_long_term_supported")
1414
1264
 
1415
1265
  @property
1416
1266
  @pulumi.getter(name="lifecycleDetails")
1417
1267
  def lifecycle_details(self) -> str:
1418
- """
1419
- A message describing the current state of the model in more detail that can provide actionable information.
1420
- """
1421
1268
  return pulumi.get(self, "lifecycle_details")
1422
1269
 
1423
1270
  @property
1424
1271
  @pulumi.getter(name="modelMetrics")
1425
1272
  def model_metrics(self) -> Sequence['outputs.GetModelsModelCollectionItemModelMetricResult']:
1426
- """
1427
- Model metrics during the creation of a new model.
1428
- """
1429
1273
  return pulumi.get(self, "model_metrics")
1430
1274
 
1431
1275
  @property
@@ -1439,17 +1283,11 @@ class GetModelsModelCollectionItemResult(dict):
1439
1283
  @property
1440
1284
  @pulumi.getter(name="systemTags")
1441
1285
  def system_tags(self) -> Mapping[str, Any]:
1442
- """
1443
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
1444
- """
1445
1286
  return pulumi.get(self, "system_tags")
1446
1287
 
1447
1288
  @property
1448
1289
  @pulumi.getter(name="timeCreated")
1449
1290
  def time_created(self) -> str:
1450
- """
1451
- The date and time that the model was created in the format of an RFC3339 datetime string.
1452
- """
1453
1291
  return pulumi.get(self, "time_created")
1454
1292
 
1455
1293
  @property
@@ -1463,9 +1301,6 @@ class GetModelsModelCollectionItemResult(dict):
1463
1301
  @property
1464
1302
  @pulumi.getter(name="timeUpdated")
1465
1303
  def time_updated(self) -> str:
1466
- """
1467
- The date and time that the model was updated in the format of an RFC3339 datetime string.
1468
- """
1469
1304
  return pulumi.get(self, "time_updated")
1470
1305
 
1471
1306
  @property
@@ -1499,11 +1334,6 @@ class GetModelsModelCollectionItemFineTuneDetailResult(dict):
1499
1334
  dedicated_ai_cluster_id: str,
1500
1335
  training_configs: Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult'],
1501
1336
  training_datasets: Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult']):
1502
- """
1503
- :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
1504
- :param Sequence['GetModelsModelCollectionItemFineTuneDetailTrainingConfigArgs'] training_configs: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1505
- :param Sequence['GetModelsModelCollectionItemFineTuneDetailTrainingDatasetArgs'] training_datasets: The dataset used to fine-tune the model.
1506
- """
1507
1337
  pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
1508
1338
  pulumi.set(__self__, "training_configs", training_configs)
1509
1339
  pulumi.set(__self__, "training_datasets", training_datasets)
@@ -1511,25 +1341,16 @@ class GetModelsModelCollectionItemFineTuneDetailResult(dict):
1511
1341
  @property
1512
1342
  @pulumi.getter(name="dedicatedAiClusterId")
1513
1343
  def dedicated_ai_cluster_id(self) -> str:
1514
- """
1515
- The OCID of the dedicated AI cluster this fine-tuning runs on.
1516
- """
1517
1344
  return pulumi.get(self, "dedicated_ai_cluster_id")
1518
1345
 
1519
1346
  @property
1520
1347
  @pulumi.getter(name="trainingConfigs")
1521
1348
  def training_configs(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult']:
1522
- """
1523
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1524
- """
1525
1349
  return pulumi.get(self, "training_configs")
1526
1350
 
1527
1351
  @property
1528
1352
  @pulumi.getter(name="trainingDatasets")
1529
1353
  def training_datasets(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult']:
1530
- """
1531
- The dataset used to fine-tune the model.
1532
- """
1533
1354
  return pulumi.get(self, "training_datasets")
1534
1355
 
1535
1356
 
@@ -1540,24 +1361,20 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult(dict):
1540
1361
  early_stopping_threshold: float,
1541
1362
  learning_rate: float,
1542
1363
  log_model_metrics_interval_in_steps: int,
1364
+ lora_alpha: int,
1365
+ lora_dropout: float,
1366
+ lora_r: int,
1543
1367
  num_of_last_layers: int,
1544
1368
  total_training_epochs: int,
1545
1369
  training_batch_size: int,
1546
1370
  training_config_type: str):
1547
- """
1548
- :param int early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1549
- :param float early_stopping_threshold: How much the loss must improve to prevent early stopping.
1550
- :param float learning_rate: The initial learning rate to be used during training
1551
- :param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
1552
- :param int num_of_last_layers: The number of last layers to be fine-tuned.
1553
- :param int total_training_epochs: The maximum number of training epochs to run for.
1554
- :param int training_batch_size: The batch size used during training.
1555
- :param str training_config_type: The fine-tuning method for training a custom model.
1556
- """
1557
1371
  pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
1558
1372
  pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
1559
1373
  pulumi.set(__self__, "learning_rate", learning_rate)
1560
1374
  pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
1375
+ pulumi.set(__self__, "lora_alpha", lora_alpha)
1376
+ pulumi.set(__self__, "lora_dropout", lora_dropout)
1377
+ pulumi.set(__self__, "lora_r", lora_r)
1561
1378
  pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
1562
1379
  pulumi.set(__self__, "total_training_epochs", total_training_epochs)
1563
1380
  pulumi.set(__self__, "training_batch_size", training_batch_size)
@@ -1566,65 +1383,56 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult(dict):
1566
1383
  @property
1567
1384
  @pulumi.getter(name="earlyStoppingPatience")
1568
1385
  def early_stopping_patience(self) -> int:
1569
- """
1570
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1571
- """
1572
1386
  return pulumi.get(self, "early_stopping_patience")
1573
1387
 
1574
1388
  @property
1575
1389
  @pulumi.getter(name="earlyStoppingThreshold")
1576
1390
  def early_stopping_threshold(self) -> float:
1577
- """
1578
- How much the loss must improve to prevent early stopping.
1579
- """
1580
1391
  return pulumi.get(self, "early_stopping_threshold")
1581
1392
 
1582
1393
  @property
1583
1394
  @pulumi.getter(name="learningRate")
1584
1395
  def learning_rate(self) -> float:
1585
- """
1586
- The initial learning rate to be used during training
1587
- """
1588
1396
  return pulumi.get(self, "learning_rate")
1589
1397
 
1590
1398
  @property
1591
1399
  @pulumi.getter(name="logModelMetricsIntervalInSteps")
1592
1400
  def log_model_metrics_interval_in_steps(self) -> int:
1593
- """
1594
- Determines how frequently to log model metrics.
1595
- """
1596
1401
  return pulumi.get(self, "log_model_metrics_interval_in_steps")
1597
1402
 
1403
+ @property
1404
+ @pulumi.getter(name="loraAlpha")
1405
+ def lora_alpha(self) -> int:
1406
+ return pulumi.get(self, "lora_alpha")
1407
+
1408
+ @property
1409
+ @pulumi.getter(name="loraDropout")
1410
+ def lora_dropout(self) -> float:
1411
+ return pulumi.get(self, "lora_dropout")
1412
+
1413
+ @property
1414
+ @pulumi.getter(name="loraR")
1415
+ def lora_r(self) -> int:
1416
+ return pulumi.get(self, "lora_r")
1417
+
1598
1418
  @property
1599
1419
  @pulumi.getter(name="numOfLastLayers")
1600
1420
  def num_of_last_layers(self) -> int:
1601
- """
1602
- The number of last layers to be fine-tuned.
1603
- """
1604
1421
  return pulumi.get(self, "num_of_last_layers")
1605
1422
 
1606
1423
  @property
1607
1424
  @pulumi.getter(name="totalTrainingEpochs")
1608
1425
  def total_training_epochs(self) -> int:
1609
- """
1610
- The maximum number of training epochs to run for.
1611
- """
1612
1426
  return pulumi.get(self, "total_training_epochs")
1613
1427
 
1614
1428
  @property
1615
1429
  @pulumi.getter(name="trainingBatchSize")
1616
1430
  def training_batch_size(self) -> int:
1617
- """
1618
- The batch size used during training.
1619
- """
1620
1431
  return pulumi.get(self, "training_batch_size")
1621
1432
 
1622
1433
  @property
1623
1434
  @pulumi.getter(name="trainingConfigType")
1624
1435
  def training_config_type(self) -> str:
1625
- """
1626
- The fine-tuning method for training a custom model.
1627
- """
1628
1436
  return pulumi.get(self, "training_config_type")
1629
1437
 
1630
1438
 
@@ -1635,12 +1443,6 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult(dict):
1635
1443
  dataset_type: str,
1636
1444
  namespace: str,
1637
1445
  object: str):
1638
- """
1639
- :param str bucket: The Object Storage bucket name.
1640
- :param str dataset_type: The type of the data asset.
1641
- :param str namespace: The Object Storage namespace.
1642
- :param str object: The Object Storage object name.
1643
- """
1644
1446
  pulumi.set(__self__, "bucket", bucket)
1645
1447
  pulumi.set(__self__, "dataset_type", dataset_type)
1646
1448
  pulumi.set(__self__, "namespace", namespace)
@@ -1649,33 +1451,21 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult(dict):
1649
1451
  @property
1650
1452
  @pulumi.getter
1651
1453
  def bucket(self) -> str:
1652
- """
1653
- The Object Storage bucket name.
1654
- """
1655
1454
  return pulumi.get(self, "bucket")
1656
1455
 
1657
1456
  @property
1658
1457
  @pulumi.getter(name="datasetType")
1659
1458
  def dataset_type(self) -> str:
1660
- """
1661
- The type of the data asset.
1662
- """
1663
1459
  return pulumi.get(self, "dataset_type")
1664
1460
 
1665
1461
  @property
1666
1462
  @pulumi.getter
1667
1463
  def namespace(self) -> str:
1668
- """
1669
- The Object Storage namespace.
1670
- """
1671
1464
  return pulumi.get(self, "namespace")
1672
1465
 
1673
1466
  @property
1674
1467
  @pulumi.getter
1675
1468
  def object(self) -> str:
1676
- """
1677
- The Object Storage object name.
1678
- """
1679
1469
  return pulumi.get(self, "object")
1680
1470
 
1681
1471
 
@@ -1685,11 +1475,6 @@ class GetModelsModelCollectionItemModelMetricResult(dict):
1685
1475
  final_accuracy: float,
1686
1476
  final_loss: float,
1687
1477
  model_metrics_type: str):
1688
- """
1689
- :param float final_accuracy: Fine-tuned model accuracy.
1690
- :param float final_loss: Fine-tuned model loss.
1691
- :param str model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
1692
- """
1693
1478
  pulumi.set(__self__, "final_accuracy", final_accuracy)
1694
1479
  pulumi.set(__self__, "final_loss", final_loss)
1695
1480
  pulumi.set(__self__, "model_metrics_type", model_metrics_type)
@@ -1697,25 +1482,16 @@ class GetModelsModelCollectionItemModelMetricResult(dict):
1697
1482
  @property
1698
1483
  @pulumi.getter(name="finalAccuracy")
1699
1484
  def final_accuracy(self) -> float:
1700
- """
1701
- Fine-tuned model accuracy.
1702
- """
1703
1485
  return pulumi.get(self, "final_accuracy")
1704
1486
 
1705
1487
  @property
1706
1488
  @pulumi.getter(name="finalLoss")
1707
1489
  def final_loss(self) -> float:
1708
- """
1709
- Fine-tuned model loss.
1710
- """
1711
1490
  return pulumi.get(self, "final_loss")
1712
1491
 
1713
1492
  @property
1714
1493
  @pulumi.getter(name="modelMetricsType")
1715
1494
  def model_metrics_type(self) -> str:
1716
- """
1717
- The type of the model metrics. Each type of model can expect a different set of model metrics.
1718
- """
1719
1495
  return pulumi.get(self, "model_metrics_type")
1720
1496
 
1721
1497