pulumi-oci 2.1.0__py3-none-any.whl → 2.1.0a1719905039__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pulumi_oci/__init__.py +0 -43
- pulumi_oci/database/__init__.py +0 -11
- pulumi_oci/database/_inputs.py +0 -607
- pulumi_oci/database/db_node.py +0 -28
- pulumi_oci/database/get_backups.py +5 -22
- pulumi_oci/database/get_db_node.py +1 -14
- pulumi_oci/database/get_db_nodes.py +2 -2
- pulumi_oci/database/get_gi_versions.py +5 -22
- pulumi_oci/database/outputs.py +0 -2050
- pulumi_oci/database/pluggable_database.py +7 -7
- pulumi_oci/databasemigration/__init__.py +0 -6
- pulumi_oci/databasemigration/_inputs.py +0 -1577
- pulumi_oci/databasemigration/get_job_advisor_report.py +10 -2
- pulumi_oci/databasemigration/get_migration_object_types.py +13 -24
- pulumi_oci/databasemigration/job.py +20 -16
- pulumi_oci/databasemigration/outputs.py +72 -4300
- pulumi_oci/filestorage/_inputs.py +18 -10
- pulumi_oci/filestorage/export.py +7 -28
- pulumi_oci/filestorage/file_system.py +35 -159
- pulumi_oci/filestorage/outputs.py +34 -55
- pulumi_oci/generativeai/_inputs.py +2 -50
- pulumi_oci/generativeai/dedicated_ai_cluster.py +2 -30
- pulumi_oci/generativeai/endpoint.py +2 -2
- pulumi_oci/generativeai/get_dedicated_ai_cluster.py +47 -2
- pulumi_oci/generativeai/get_dedicated_ai_clusters.py +14 -2
- pulumi_oci/generativeai/get_endpoint.py +26 -2
- pulumi_oci/generativeai/get_endpoints.py +8 -2
- pulumi_oci/generativeai/get_model.py +38 -2
- pulumi_oci/generativeai/get_models.py +8 -2
- pulumi_oci/generativeai/model.py +2 -2
- pulumi_oci/generativeai/outputs.py +310 -86
- pulumi_oci/pulumi-plugin.json +1 -1
- {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/METADATA +1 -1
- {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/RECORD +36 -59
- pulumi_oci/database/exadb_vm_cluster.py +0 -1761
- pulumi_oci/database/exascale_db_storage_vault.py +0 -787
- pulumi_oci/database/get_exadb_vm_cluster.py +0 -614
- pulumi_oci/database/get_exadb_vm_cluster_update.py +0 -226
- pulumi_oci/database/get_exadb_vm_cluster_update_history_entries.py +0 -153
- pulumi_oci/database/get_exadb_vm_cluster_update_history_entry.py +0 -226
- pulumi_oci/database/get_exadb_vm_cluster_updates.py +0 -173
- pulumi_oci/database/get_exadb_vm_clusters.py +0 -196
- pulumi_oci/database/get_exascale_db_storage_vault.py +0 -301
- pulumi_oci/database/get_exascale_db_storage_vaults.py +0 -176
- pulumi_oci/database/get_gi_version_minor_versions.py +0 -221
- pulumi_oci/databasemigration/connection.py +0 -2019
- pulumi_oci/databasemigration/get_connection.py +0 -616
- pulumi_oci/databasemigration/get_connections.py +0 -225
- pulumi_oci/databasemigration/get_migration.py +0 -427
- pulumi_oci/databasemigration/get_migrations.py +0 -407
- pulumi_oci/databasemigration/migration.py +0 -1471
- pulumi_oci/resourcescheduler/__init__.py +0 -12
- pulumi_oci/resourcescheduler/_inputs.py +0 -224
- pulumi_oci/resourcescheduler/get_schedule.py +0 -340
- pulumi_oci/resourcescheduler/get_schedules.py +0 -193
- pulumi_oci/resourcescheduler/outputs.py +0 -687
- pulumi_oci/resourcescheduler/schedule.py +0 -977
- {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/WHEEL +0 -0
- {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/top_level.txt +0 -0
@@ -170,7 +170,7 @@ class ModelFineTuneDetails(dict):
|
|
170
170
|
:param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
|
171
171
|
:param 'ModelFineTuneDetailsTrainingDatasetArgs' training_dataset: The dataset used to fine-tune the model.
|
172
172
|
|
173
|
-
Only one dataset is allowed per custom model, which is split
|
173
|
+
Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
|
174
174
|
:param 'ModelFineTuneDetailsTrainingConfigArgs' training_config: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
|
175
175
|
"""
|
176
176
|
pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
|
@@ -192,7 +192,7 @@ class ModelFineTuneDetails(dict):
|
|
192
192
|
"""
|
193
193
|
The dataset used to fine-tune the model.
|
194
194
|
|
195
|
-
Only one dataset is allowed per custom model, which is split
|
195
|
+
Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
|
196
196
|
"""
|
197
197
|
return pulumi.get(self, "training_dataset")
|
198
198
|
|
@@ -220,12 +220,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
|
|
220
220
|
suggest = "learning_rate"
|
221
221
|
elif key == "logModelMetricsIntervalInSteps":
|
222
222
|
suggest = "log_model_metrics_interval_in_steps"
|
223
|
-
elif key == "loraAlpha":
|
224
|
-
suggest = "lora_alpha"
|
225
|
-
elif key == "loraDropout":
|
226
|
-
suggest = "lora_dropout"
|
227
|
-
elif key == "loraR":
|
228
|
-
suggest = "lora_r"
|
229
223
|
elif key == "numOfLastLayers":
|
230
224
|
suggest = "num_of_last_layers"
|
231
225
|
elif key == "totalTrainingEpochs":
|
@@ -250,9 +244,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
|
|
250
244
|
early_stopping_threshold: Optional[float] = None,
|
251
245
|
learning_rate: Optional[float] = None,
|
252
246
|
log_model_metrics_interval_in_steps: Optional[int] = None,
|
253
|
-
lora_alpha: Optional[int] = None,
|
254
|
-
lora_dropout: Optional[float] = None,
|
255
|
-
lora_r: Optional[int] = None,
|
256
247
|
num_of_last_layers: Optional[int] = None,
|
257
248
|
total_training_epochs: Optional[int] = None,
|
258
249
|
training_batch_size: Optional[int] = None):
|
@@ -264,9 +255,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
|
|
264
255
|
:param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
|
265
256
|
|
266
257
|
Every step is logged for the first 20 steps and then follows this parameter for log frequency. Set to 0 to disable logging the model metrics.
|
267
|
-
:param int lora_alpha: This parameter represents the scaling factor for the weight matrices in LoRA.
|
268
|
-
:param float lora_dropout: This parameter indicates the dropout probability for LoRA layers.
|
269
|
-
:param int lora_r: This parameter represents the LoRA rank of the update matrices.
|
270
258
|
:param int num_of_last_layers: The number of last layers to be fine-tuned.
|
271
259
|
:param int total_training_epochs: The maximum number of training epochs to run for.
|
272
260
|
:param int training_batch_size: The batch size used during training.
|
@@ -280,12 +268,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
|
|
280
268
|
pulumi.set(__self__, "learning_rate", learning_rate)
|
281
269
|
if log_model_metrics_interval_in_steps is not None:
|
282
270
|
pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
|
283
|
-
if lora_alpha is not None:
|
284
|
-
pulumi.set(__self__, "lora_alpha", lora_alpha)
|
285
|
-
if lora_dropout is not None:
|
286
|
-
pulumi.set(__self__, "lora_dropout", lora_dropout)
|
287
|
-
if lora_r is not None:
|
288
|
-
pulumi.set(__self__, "lora_r", lora_r)
|
289
271
|
if num_of_last_layers is not None:
|
290
272
|
pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
|
291
273
|
if total_training_epochs is not None:
|
@@ -335,30 +317,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
|
|
335
317
|
"""
|
336
318
|
return pulumi.get(self, "log_model_metrics_interval_in_steps")
|
337
319
|
|
338
|
-
@property
|
339
|
-
@pulumi.getter(name="loraAlpha")
|
340
|
-
def lora_alpha(self) -> Optional[int]:
|
341
|
-
"""
|
342
|
-
This parameter represents the scaling factor for the weight matrices in LoRA.
|
343
|
-
"""
|
344
|
-
return pulumi.get(self, "lora_alpha")
|
345
|
-
|
346
|
-
@property
|
347
|
-
@pulumi.getter(name="loraDropout")
|
348
|
-
def lora_dropout(self) -> Optional[float]:
|
349
|
-
"""
|
350
|
-
This parameter indicates the dropout probability for LoRA layers.
|
351
|
-
"""
|
352
|
-
return pulumi.get(self, "lora_dropout")
|
353
|
-
|
354
|
-
@property
|
355
|
-
@pulumi.getter(name="loraR")
|
356
|
-
def lora_r(self) -> Optional[int]:
|
357
|
-
"""
|
358
|
-
This parameter represents the LoRA rank of the update matrices.
|
359
|
-
"""
|
360
|
-
return pulumi.get(self, "lora_r")
|
361
|
-
|
362
320
|
@property
|
363
321
|
@pulumi.getter(name="numOfLastLayers")
|
364
322
|
def num_of_last_layers(self) -> Optional[int]:
|
@@ -522,6 +480,11 @@ class GetDedicatedAiClusterCapacityResult(dict):
|
|
522
480
|
capacity_type: str,
|
523
481
|
total_endpoint_capacity: int,
|
524
482
|
used_endpoint_capacity: int):
|
483
|
+
"""
|
484
|
+
:param str capacity_type: The type of the dedicated AI cluster capacity.
|
485
|
+
:param int total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
|
486
|
+
:param int used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
|
487
|
+
"""
|
525
488
|
pulumi.set(__self__, "capacity_type", capacity_type)
|
526
489
|
pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
|
527
490
|
pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
|
@@ -529,16 +492,25 @@ class GetDedicatedAiClusterCapacityResult(dict):
|
|
529
492
|
@property
|
530
493
|
@pulumi.getter(name="capacityType")
|
531
494
|
def capacity_type(self) -> str:
|
495
|
+
"""
|
496
|
+
The type of the dedicated AI cluster capacity.
|
497
|
+
"""
|
532
498
|
return pulumi.get(self, "capacity_type")
|
533
499
|
|
534
500
|
@property
|
535
501
|
@pulumi.getter(name="totalEndpointCapacity")
|
536
502
|
def total_endpoint_capacity(self) -> int:
|
503
|
+
"""
|
504
|
+
The total number of endpoints that can be hosted on this dedicated AI cluster.
|
505
|
+
"""
|
537
506
|
return pulumi.get(self, "total_endpoint_capacity")
|
538
507
|
|
539
508
|
@property
|
540
509
|
@pulumi.getter(name="usedEndpointCapacity")
|
541
510
|
def used_endpoint_capacity(self) -> int:
|
511
|
+
"""
|
512
|
+
The number of endpoints hosted on this dedicated AI cluster.
|
513
|
+
"""
|
542
514
|
return pulumi.get(self, "used_endpoint_capacity")
|
543
515
|
|
544
516
|
|
@@ -573,10 +545,21 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
|
|
573
545
|
unit_count: int,
|
574
546
|
unit_shape: str):
|
575
547
|
"""
|
548
|
+
:param Sequence['GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityArgs'] capacities: The total capacity for a dedicated AI cluster.
|
576
549
|
:param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
|
550
|
+
:param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
|
551
|
+
:param str description: An optional description of the dedicated AI cluster.
|
577
552
|
:param str display_name: A filter to return only resources that match the given display name exactly.
|
553
|
+
:param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
|
578
554
|
:param str id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the dedicated AI cluster.
|
555
|
+
:param str lifecycle_details: A message describing the current state with detail that can provide actionable information.
|
579
556
|
:param str state: A filter to return only the dedicated AI clusters that their lifecycle state matches the given lifecycle state.
|
557
|
+
:param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
|
558
|
+
:param str time_created: The date and time the dedicated AI cluster was created, in the format defined by RFC 3339
|
559
|
+
:param str time_updated: The date and time the dedicated AI cluster was updated, in the format defined by RFC 3339
|
560
|
+
:param str type: The dedicated AI cluster type indicating whether this is a fine-tuning/training processor or hosting/inference processor.
|
561
|
+
:param int unit_count: The number of dedicated units in this AI cluster.
|
562
|
+
:param str unit_shape: The shape of dedicated unit in this AI cluster. The underlying hardware configuration is hidden from customers.
|
580
563
|
"""
|
581
564
|
pulumi.set(__self__, "capacities", capacities)
|
582
565
|
pulumi.set(__self__, "compartment_id", compartment_id)
|
@@ -597,6 +580,9 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
|
|
597
580
|
@property
|
598
581
|
@pulumi.getter
|
599
582
|
def capacities(self) -> Sequence['outputs.GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult']:
|
583
|
+
"""
|
584
|
+
The total capacity for a dedicated AI cluster.
|
585
|
+
"""
|
600
586
|
return pulumi.get(self, "capacities")
|
601
587
|
|
602
588
|
@property
|
@@ -610,11 +596,17 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
|
|
610
596
|
@property
|
611
597
|
@pulumi.getter(name="definedTags")
|
612
598
|
def defined_tags(self) -> Mapping[str, Any]:
|
599
|
+
"""
|
600
|
+
Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
|
601
|
+
"""
|
613
602
|
return pulumi.get(self, "defined_tags")
|
614
603
|
|
615
604
|
@property
|
616
605
|
@pulumi.getter
|
617
606
|
def description(self) -> str:
|
607
|
+
"""
|
608
|
+
An optional description of the dedicated AI cluster.
|
609
|
+
"""
|
618
610
|
return pulumi.get(self, "description")
|
619
611
|
|
620
612
|
@property
|
@@ -628,6 +620,9 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
|
|
628
620
|
@property
|
629
621
|
@pulumi.getter(name="freeformTags")
|
630
622
|
def freeform_tags(self) -> Mapping[str, Any]:
|
623
|
+
"""
|
624
|
+
Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
|
625
|
+
"""
|
631
626
|
return pulumi.get(self, "freeform_tags")
|
632
627
|
|
633
628
|
@property
|
@@ -641,6 +636,9 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
|
|
641
636
|
@property
|
642
637
|
@pulumi.getter(name="lifecycleDetails")
|
643
638
|
def lifecycle_details(self) -> str:
|
639
|
+
"""
|
640
|
+
A message describing the current state with detail that can provide actionable information.
|
641
|
+
"""
|
644
642
|
return pulumi.get(self, "lifecycle_details")
|
645
643
|
|
646
644
|
@property
|
@@ -654,31 +652,49 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
|
|
654
652
|
@property
|
655
653
|
@pulumi.getter(name="systemTags")
|
656
654
|
def system_tags(self) -> Mapping[str, Any]:
|
655
|
+
"""
|
656
|
+
System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
|
657
|
+
"""
|
657
658
|
return pulumi.get(self, "system_tags")
|
658
659
|
|
659
660
|
@property
|
660
661
|
@pulumi.getter(name="timeCreated")
|
661
662
|
def time_created(self) -> str:
|
663
|
+
"""
|
664
|
+
The date and time the dedicated AI cluster was created, in the format defined by RFC 3339
|
665
|
+
"""
|
662
666
|
return pulumi.get(self, "time_created")
|
663
667
|
|
664
668
|
@property
|
665
669
|
@pulumi.getter(name="timeUpdated")
|
666
670
|
def time_updated(self) -> str:
|
671
|
+
"""
|
672
|
+
The date and time the dedicated AI cluster was updated, in the format defined by RFC 3339
|
673
|
+
"""
|
667
674
|
return pulumi.get(self, "time_updated")
|
668
675
|
|
669
676
|
@property
|
670
677
|
@pulumi.getter
|
671
678
|
def type(self) -> str:
|
679
|
+
"""
|
680
|
+
The dedicated AI cluster type indicating whether this is a fine-tuning/training processor or hosting/inference processor.
|
681
|
+
"""
|
672
682
|
return pulumi.get(self, "type")
|
673
683
|
|
674
684
|
@property
|
675
685
|
@pulumi.getter(name="unitCount")
|
676
686
|
def unit_count(self) -> int:
|
687
|
+
"""
|
688
|
+
The number of dedicated units in this AI cluster.
|
689
|
+
"""
|
677
690
|
return pulumi.get(self, "unit_count")
|
678
691
|
|
679
692
|
@property
|
680
693
|
@pulumi.getter(name="unitShape")
|
681
694
|
def unit_shape(self) -> str:
|
695
|
+
"""
|
696
|
+
The shape of dedicated unit in this AI cluster. The underlying hardware configuration is hidden from customers.
|
697
|
+
"""
|
682
698
|
return pulumi.get(self, "unit_shape")
|
683
699
|
|
684
700
|
|
@@ -688,6 +704,11 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult(dict)
|
|
688
704
|
capacity_type: str,
|
689
705
|
total_endpoint_capacity: int,
|
690
706
|
used_endpoint_capacity: int):
|
707
|
+
"""
|
708
|
+
:param str capacity_type: The type of the dedicated AI cluster capacity.
|
709
|
+
:param int total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
|
710
|
+
:param int used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
|
711
|
+
"""
|
691
712
|
pulumi.set(__self__, "capacity_type", capacity_type)
|
692
713
|
pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
|
693
714
|
pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
|
@@ -695,16 +716,25 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult(dict)
|
|
695
716
|
@property
|
696
717
|
@pulumi.getter(name="capacityType")
|
697
718
|
def capacity_type(self) -> str:
|
719
|
+
"""
|
720
|
+
The type of the dedicated AI cluster capacity.
|
721
|
+
"""
|
698
722
|
return pulumi.get(self, "capacity_type")
|
699
723
|
|
700
724
|
@property
|
701
725
|
@pulumi.getter(name="totalEndpointCapacity")
|
702
726
|
def total_endpoint_capacity(self) -> int:
|
727
|
+
"""
|
728
|
+
The total number of endpoints that can be hosted on this dedicated AI cluster.
|
729
|
+
"""
|
703
730
|
return pulumi.get(self, "total_endpoint_capacity")
|
704
731
|
|
705
732
|
@property
|
706
733
|
@pulumi.getter(name="usedEndpointCapacity")
|
707
734
|
def used_endpoint_capacity(self) -> int:
|
735
|
+
"""
|
736
|
+
The number of endpoints hosted on this dedicated AI cluster.
|
737
|
+
"""
|
708
738
|
return pulumi.get(self, "used_endpoint_capacity")
|
709
739
|
|
710
740
|
|
@@ -739,11 +769,17 @@ class GetDedicatedAiClustersFilterResult(dict):
|
|
739
769
|
class GetEndpointContentModerationConfigResult(dict):
|
740
770
|
def __init__(__self__, *,
|
741
771
|
is_enabled: bool):
|
772
|
+
"""
|
773
|
+
:param bool is_enabled: Whether to enable the content moderation feature.
|
774
|
+
"""
|
742
775
|
pulumi.set(__self__, "is_enabled", is_enabled)
|
743
776
|
|
744
777
|
@property
|
745
778
|
@pulumi.getter(name="isEnabled")
|
746
779
|
def is_enabled(self) -> bool:
|
780
|
+
"""
|
781
|
+
Whether to enable the content moderation feature.
|
782
|
+
"""
|
747
783
|
return pulumi.get(self, "is_enabled")
|
748
784
|
|
749
785
|
|
@@ -778,11 +814,17 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
778
814
|
time_updated: str):
|
779
815
|
"""
|
780
816
|
:param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
|
817
|
+
:param Sequence['GetEndpointsEndpointCollectionItemContentModerationConfigArgs'] content_moderation_configs: The configuration details, whether to add the content moderation feature to the model. Content moderation removes toxic and biased content from responses. It's recommended to use content moderation.
|
818
|
+
:param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster on which the model will be deployed to.
|
781
819
|
:param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
|
820
|
+
:param str description: An optional description of the endpoint.
|
782
821
|
:param str display_name: A filter to return only resources that match the given display name exactly.
|
822
|
+
:param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
|
783
823
|
:param str id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the endpoint.
|
824
|
+
:param str lifecycle_details: A message describing the current state of the endpoint in more detail that can provide actionable information.
|
784
825
|
:param str model_id: The OCID of the model that's used to create this endpoint.
|
785
826
|
:param str state: A filter to return only resources that their lifecycle state matches the given lifecycle state.
|
827
|
+
:param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
|
786
828
|
:param str time_created: The date and time that the endpoint was created in the format of an RFC3339 datetime string.
|
787
829
|
:param str time_updated: The date and time that the endpoint was updated in the format of an RFC3339 datetime string.
|
788
830
|
"""
|
@@ -812,11 +854,17 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
812
854
|
@property
|
813
855
|
@pulumi.getter(name="contentModerationConfigs")
|
814
856
|
def content_moderation_configs(self) -> Sequence['outputs.GetEndpointsEndpointCollectionItemContentModerationConfigResult']:
|
857
|
+
"""
|
858
|
+
The configuration details, whether to add the content moderation feature to the model. Content moderation removes toxic and biased content from responses. It's recommended to use content moderation.
|
859
|
+
"""
|
815
860
|
return pulumi.get(self, "content_moderation_configs")
|
816
861
|
|
817
862
|
@property
|
818
863
|
@pulumi.getter(name="dedicatedAiClusterId")
|
819
864
|
def dedicated_ai_cluster_id(self) -> str:
|
865
|
+
"""
|
866
|
+
The OCID of the dedicated AI cluster on which the model will be deployed to.
|
867
|
+
"""
|
820
868
|
return pulumi.get(self, "dedicated_ai_cluster_id")
|
821
869
|
|
822
870
|
@property
|
@@ -830,6 +878,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
830
878
|
@property
|
831
879
|
@pulumi.getter
|
832
880
|
def description(self) -> str:
|
881
|
+
"""
|
882
|
+
An optional description of the endpoint.
|
883
|
+
"""
|
833
884
|
return pulumi.get(self, "description")
|
834
885
|
|
835
886
|
@property
|
@@ -843,6 +894,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
843
894
|
@property
|
844
895
|
@pulumi.getter(name="freeformTags")
|
845
896
|
def freeform_tags(self) -> Mapping[str, Any]:
|
897
|
+
"""
|
898
|
+
Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
|
899
|
+
"""
|
846
900
|
return pulumi.get(self, "freeform_tags")
|
847
901
|
|
848
902
|
@property
|
@@ -856,6 +910,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
856
910
|
@property
|
857
911
|
@pulumi.getter(name="lifecycleDetails")
|
858
912
|
def lifecycle_details(self) -> str:
|
913
|
+
"""
|
914
|
+
A message describing the current state of the endpoint in more detail that can provide actionable information.
|
915
|
+
"""
|
859
916
|
return pulumi.get(self, "lifecycle_details")
|
860
917
|
|
861
918
|
@property
|
@@ -877,6 +934,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
877
934
|
@property
|
878
935
|
@pulumi.getter(name="systemTags")
|
879
936
|
def system_tags(self) -> Mapping[str, Any]:
|
937
|
+
"""
|
938
|
+
System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
|
939
|
+
"""
|
880
940
|
return pulumi.get(self, "system_tags")
|
881
941
|
|
882
942
|
@property
|
@@ -900,11 +960,17 @@ class GetEndpointsEndpointCollectionItemResult(dict):
|
|
900
960
|
class GetEndpointsEndpointCollectionItemContentModerationConfigResult(dict):
|
901
961
|
def __init__(__self__, *,
|
902
962
|
is_enabled: bool):
|
963
|
+
"""
|
964
|
+
:param bool is_enabled: Whether to enable the content moderation feature.
|
965
|
+
"""
|
903
966
|
pulumi.set(__self__, "is_enabled", is_enabled)
|
904
967
|
|
905
968
|
@property
|
906
969
|
@pulumi.getter(name="isEnabled")
|
907
970
|
def is_enabled(self) -> bool:
|
971
|
+
"""
|
972
|
+
Whether to enable the content moderation feature.
|
973
|
+
"""
|
908
974
|
return pulumi.get(self, "is_enabled")
|
909
975
|
|
910
976
|
|
@@ -941,6 +1007,11 @@ class GetModelFineTuneDetailResult(dict):
|
|
941
1007
|
dedicated_ai_cluster_id: str,
|
942
1008
|
training_configs: Sequence['outputs.GetModelFineTuneDetailTrainingConfigResult'],
|
943
1009
|
training_datasets: Sequence['outputs.GetModelFineTuneDetailTrainingDatasetResult']):
|
1010
|
+
"""
|
1011
|
+
:param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
|
1012
|
+
:param Sequence['GetModelFineTuneDetailTrainingConfigArgs'] training_configs: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
|
1013
|
+
:param Sequence['GetModelFineTuneDetailTrainingDatasetArgs'] training_datasets: The dataset used to fine-tune the model.
|
1014
|
+
"""
|
944
1015
|
pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
|
945
1016
|
pulumi.set(__self__, "training_configs", training_configs)
|
946
1017
|
pulumi.set(__self__, "training_datasets", training_datasets)
|
@@ -948,16 +1019,25 @@ class GetModelFineTuneDetailResult(dict):
|
|
948
1019
|
@property
|
949
1020
|
@pulumi.getter(name="dedicatedAiClusterId")
|
950
1021
|
def dedicated_ai_cluster_id(self) -> str:
|
1022
|
+
"""
|
1023
|
+
The OCID of the dedicated AI cluster this fine-tuning runs on.
|
1024
|
+
"""
|
951
1025
|
return pulumi.get(self, "dedicated_ai_cluster_id")
|
952
1026
|
|
953
1027
|
@property
|
954
1028
|
@pulumi.getter(name="trainingConfigs")
|
955
1029
|
def training_configs(self) -> Sequence['outputs.GetModelFineTuneDetailTrainingConfigResult']:
|
1030
|
+
"""
|
1031
|
+
The fine-tuning method and hyperparameters used for fine-tuning a custom model.
|
1032
|
+
"""
|
956
1033
|
return pulumi.get(self, "training_configs")
|
957
1034
|
|
958
1035
|
@property
|
959
1036
|
@pulumi.getter(name="trainingDatasets")
|
960
1037
|
def training_datasets(self) -> Sequence['outputs.GetModelFineTuneDetailTrainingDatasetResult']:
|
1038
|
+
"""
|
1039
|
+
The dataset used to fine-tune the model.
|
1040
|
+
"""
|
961
1041
|
return pulumi.get(self, "training_datasets")
|
962
1042
|
|
963
1043
|
|
@@ -968,20 +1048,24 @@ class GetModelFineTuneDetailTrainingConfigResult(dict):
|
|
968
1048
|
early_stopping_threshold: float,
|
969
1049
|
learning_rate: float,
|
970
1050
|
log_model_metrics_interval_in_steps: int,
|
971
|
-
lora_alpha: int,
|
972
|
-
lora_dropout: float,
|
973
|
-
lora_r: int,
|
974
1051
|
num_of_last_layers: int,
|
975
1052
|
total_training_epochs: int,
|
976
1053
|
training_batch_size: int,
|
977
1054
|
training_config_type: str):
|
1055
|
+
"""
|
1056
|
+
:param int early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
|
1057
|
+
:param float early_stopping_threshold: How much the loss must improve to prevent early stopping.
|
1058
|
+
:param float learning_rate: The initial learning rate to be used during training
|
1059
|
+
:param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
|
1060
|
+
:param int num_of_last_layers: The number of last layers to be fine-tuned.
|
1061
|
+
:param int total_training_epochs: The maximum number of training epochs to run for.
|
1062
|
+
:param int training_batch_size: The batch size used during training.
|
1063
|
+
:param str training_config_type: The fine-tuning method for training a custom model.
|
1064
|
+
"""
|
978
1065
|
pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
|
979
1066
|
pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
|
980
1067
|
pulumi.set(__self__, "learning_rate", learning_rate)
|
981
1068
|
pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
|
982
|
-
pulumi.set(__self__, "lora_alpha", lora_alpha)
|
983
|
-
pulumi.set(__self__, "lora_dropout", lora_dropout)
|
984
|
-
pulumi.set(__self__, "lora_r", lora_r)
|
985
1069
|
pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
|
986
1070
|
pulumi.set(__self__, "total_training_epochs", total_training_epochs)
|
987
1071
|
pulumi.set(__self__, "training_batch_size", training_batch_size)
|
@@ -990,56 +1074,65 @@ class GetModelFineTuneDetailTrainingConfigResult(dict):
|
|
990
1074
|
@property
|
991
1075
|
@pulumi.getter(name="earlyStoppingPatience")
|
992
1076
|
def early_stopping_patience(self) -> int:
|
1077
|
+
"""
|
1078
|
+
Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
|
1079
|
+
"""
|
993
1080
|
return pulumi.get(self, "early_stopping_patience")
|
994
1081
|
|
995
1082
|
@property
|
996
1083
|
@pulumi.getter(name="earlyStoppingThreshold")
|
997
1084
|
def early_stopping_threshold(self) -> float:
|
1085
|
+
"""
|
1086
|
+
How much the loss must improve to prevent early stopping.
|
1087
|
+
"""
|
998
1088
|
return pulumi.get(self, "early_stopping_threshold")
|
999
1089
|
|
1000
1090
|
@property
|
1001
1091
|
@pulumi.getter(name="learningRate")
|
1002
1092
|
def learning_rate(self) -> float:
|
1093
|
+
"""
|
1094
|
+
The initial learning rate to be used during training
|
1095
|
+
"""
|
1003
1096
|
return pulumi.get(self, "learning_rate")
|
1004
1097
|
|
1005
1098
|
@property
|
1006
1099
|
@pulumi.getter(name="logModelMetricsIntervalInSteps")
|
1007
1100
|
def log_model_metrics_interval_in_steps(self) -> int:
|
1101
|
+
"""
|
1102
|
+
Determines how frequently to log model metrics.
|
1103
|
+
"""
|
1008
1104
|
return pulumi.get(self, "log_model_metrics_interval_in_steps")
|
1009
1105
|
|
1010
|
-
@property
|
1011
|
-
@pulumi.getter(name="loraAlpha")
|
1012
|
-
def lora_alpha(self) -> int:
|
1013
|
-
return pulumi.get(self, "lora_alpha")
|
1014
|
-
|
1015
|
-
@property
|
1016
|
-
@pulumi.getter(name="loraDropout")
|
1017
|
-
def lora_dropout(self) -> float:
|
1018
|
-
return pulumi.get(self, "lora_dropout")
|
1019
|
-
|
1020
|
-
@property
|
1021
|
-
@pulumi.getter(name="loraR")
|
1022
|
-
def lora_r(self) -> int:
|
1023
|
-
return pulumi.get(self, "lora_r")
|
1024
|
-
|
1025
1106
|
@property
|
1026
1107
|
@pulumi.getter(name="numOfLastLayers")
|
1027
1108
|
def num_of_last_layers(self) -> int:
|
1109
|
+
"""
|
1110
|
+
The number of last layers to be fine-tuned.
|
1111
|
+
"""
|
1028
1112
|
return pulumi.get(self, "num_of_last_layers")
|
1029
1113
|
|
1030
1114
|
@property
|
1031
1115
|
@pulumi.getter(name="totalTrainingEpochs")
|
1032
1116
|
def total_training_epochs(self) -> int:
|
1117
|
+
"""
|
1118
|
+
The maximum number of training epochs to run for.
|
1119
|
+
"""
|
1033
1120
|
return pulumi.get(self, "total_training_epochs")
|
1034
1121
|
|
1035
1122
|
@property
|
1036
1123
|
@pulumi.getter(name="trainingBatchSize")
|
1037
1124
|
def training_batch_size(self) -> int:
|
1125
|
+
"""
|
1126
|
+
The batch size used during training.
|
1127
|
+
"""
|
1038
1128
|
return pulumi.get(self, "training_batch_size")
|
1039
1129
|
|
1040
1130
|
@property
|
1041
1131
|
@pulumi.getter(name="trainingConfigType")
|
1042
1132
|
def training_config_type(self) -> str:
|
1133
|
+
"""
|
1134
|
+
The fine-tuning method for training a custom model.
|
1135
|
+
"""
|
1043
1136
|
return pulumi.get(self, "training_config_type")
|
1044
1137
|
|
1045
1138
|
|
@@ -1050,6 +1143,12 @@ class GetModelFineTuneDetailTrainingDatasetResult(dict):
|
|
1050
1143
|
dataset_type: str,
|
1051
1144
|
namespace: str,
|
1052
1145
|
object: str):
|
1146
|
+
"""
|
1147
|
+
:param str bucket: The Object Storage bucket name.
|
1148
|
+
:param str dataset_type: The type of the data asset.
|
1149
|
+
:param str namespace: The Object Storage namespace.
|
1150
|
+
:param str object: The Object Storage object name.
|
1151
|
+
"""
|
1053
1152
|
pulumi.set(__self__, "bucket", bucket)
|
1054
1153
|
pulumi.set(__self__, "dataset_type", dataset_type)
|
1055
1154
|
pulumi.set(__self__, "namespace", namespace)
|
@@ -1058,21 +1157,33 @@ class GetModelFineTuneDetailTrainingDatasetResult(dict):
|
|
1058
1157
|
@property
|
1059
1158
|
@pulumi.getter
|
1060
1159
|
def bucket(self) -> str:
|
1160
|
+
"""
|
1161
|
+
The Object Storage bucket name.
|
1162
|
+
"""
|
1061
1163
|
return pulumi.get(self, "bucket")
|
1062
1164
|
|
1063
1165
|
@property
|
1064
1166
|
@pulumi.getter(name="datasetType")
|
1065
1167
|
def dataset_type(self) -> str:
|
1168
|
+
"""
|
1169
|
+
The type of the data asset.
|
1170
|
+
"""
|
1066
1171
|
return pulumi.get(self, "dataset_type")
|
1067
1172
|
|
1068
1173
|
@property
|
1069
1174
|
@pulumi.getter
|
1070
1175
|
def namespace(self) -> str:
|
1176
|
+
"""
|
1177
|
+
The Object Storage namespace.
|
1178
|
+
"""
|
1071
1179
|
return pulumi.get(self, "namespace")
|
1072
1180
|
|
1073
1181
|
@property
|
1074
1182
|
@pulumi.getter
|
1075
1183
|
def object(self) -> str:
|
1184
|
+
"""
|
1185
|
+
The Object Storage object name.
|
1186
|
+
"""
|
1076
1187
|
return pulumi.get(self, "object")
|
1077
1188
|
|
1078
1189
|
|
@@ -1082,6 +1193,11 @@ class GetModelModelMetricResult(dict):
|
|
1082
1193
|
final_accuracy: float,
|
1083
1194
|
final_loss: float,
|
1084
1195
|
model_metrics_type: str):
|
1196
|
+
"""
|
1197
|
+
:param float final_accuracy: Fine-tuned model accuracy.
|
1198
|
+
:param float final_loss: Fine-tuned model loss.
|
1199
|
+
:param str model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
|
1200
|
+
"""
|
1085
1201
|
pulumi.set(__self__, "final_accuracy", final_accuracy)
|
1086
1202
|
pulumi.set(__self__, "final_loss", final_loss)
|
1087
1203
|
pulumi.set(__self__, "model_metrics_type", model_metrics_type)
|
@@ -1089,16 +1205,25 @@ class GetModelModelMetricResult(dict):
|
|
1089
1205
|
@property
|
1090
1206
|
@pulumi.getter(name="finalAccuracy")
|
1091
1207
|
def final_accuracy(self) -> float:
|
1208
|
+
"""
|
1209
|
+
Fine-tuned model accuracy.
|
1210
|
+
"""
|
1092
1211
|
return pulumi.get(self, "final_accuracy")
|
1093
1212
|
|
1094
1213
|
@property
|
1095
1214
|
@pulumi.getter(name="finalLoss")
|
1096
1215
|
def final_loss(self) -> float:
|
1216
|
+
"""
|
1217
|
+
Fine-tuned model loss.
|
1218
|
+
"""
|
1097
1219
|
return pulumi.get(self, "final_loss")
|
1098
1220
|
|
1099
1221
|
@property
|
1100
1222
|
@pulumi.getter(name="modelMetricsType")
|
1101
1223
|
def model_metrics_type(self) -> str:
|
1224
|
+
"""
|
1225
|
+
The type of the model metrics. Each type of model can expect a different set of model metrics.
|
1226
|
+
"""
|
1102
1227
|
return pulumi.get(self, "model_metrics_type")
|
1103
1228
|
|
1104
1229
|
|
@@ -1165,13 +1290,23 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1165
1290
|
vendor: str,
|
1166
1291
|
version: str):
|
1167
1292
|
"""
|
1293
|
+
:param str base_model_id: The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
|
1168
1294
|
:param Sequence[str] capabilities: Describes what this model can be used for.
|
1169
1295
|
:param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
|
1170
1296
|
:param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
|
1297
|
+
:param str description: An optional description of the model.
|
1171
1298
|
:param str display_name: A filter to return only resources that match the given display name exactly.
|
1299
|
+
:param Sequence['GetModelsModelCollectionItemFineTuneDetailArgs'] fine_tune_details: Details about fine-tuning a custom model.
|
1300
|
+
:param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
|
1172
1301
|
:param str id: The ID of the model.
|
1302
|
+
:param bool is_long_term_supported: Whether a model is supported long-term. Only applicable to base models.
|
1303
|
+
:param str lifecycle_details: A message describing the current state of the model in more detail that can provide actionable information.
|
1304
|
+
:param Sequence['GetModelsModelCollectionItemModelMetricArgs'] model_metrics: Model metrics during the creation of a new model.
|
1173
1305
|
:param str state: A filter to return only resources their lifecycleState matches the given lifecycleState.
|
1306
|
+
:param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
|
1307
|
+
:param str time_created: The date and time that the model was created in the format of an RFC3339 datetime string.
|
1174
1308
|
:param str time_deprecated: Corresponds to the time when the custom model and its associated foundation model will be deprecated.
|
1309
|
+
:param str time_updated: The date and time that the model was updated in the format of an RFC3339 datetime string.
|
1175
1310
|
:param str type: The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
|
1176
1311
|
:param str vendor: A filter to return only resources that match the entire vendor given.
|
1177
1312
|
:param str version: The version of the model.
|
@@ -1200,6 +1335,9 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1200
1335
|
@property
|
1201
1336
|
@pulumi.getter(name="baseModelId")
|
1202
1337
|
def base_model_id(self) -> str:
|
1338
|
+
"""
|
1339
|
+
The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
|
1340
|
+
"""
|
1203
1341
|
return pulumi.get(self, "base_model_id")
|
1204
1342
|
|
1205
1343
|
@property
|
@@ -1229,6 +1367,9 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1229
1367
|
@property
|
1230
1368
|
@pulumi.getter
|
1231
1369
|
def description(self) -> str:
|
1370
|
+
"""
|
1371
|
+
An optional description of the model.
|
1372
|
+
"""
|
1232
1373
|
return pulumi.get(self, "description")
|
1233
1374
|
|
1234
1375
|
@property
|
@@ -1242,11 +1383,17 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1242
1383
|
@property
|
1243
1384
|
@pulumi.getter(name="fineTuneDetails")
|
1244
1385
|
def fine_tune_details(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailResult']:
|
1386
|
+
"""
|
1387
|
+
Details about fine-tuning a custom model.
|
1388
|
+
"""
|
1245
1389
|
return pulumi.get(self, "fine_tune_details")
|
1246
1390
|
|
1247
1391
|
@property
|
1248
1392
|
@pulumi.getter(name="freeformTags")
|
1249
1393
|
def freeform_tags(self) -> Mapping[str, Any]:
|
1394
|
+
"""
|
1395
|
+
Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
|
1396
|
+
"""
|
1250
1397
|
return pulumi.get(self, "freeform_tags")
|
1251
1398
|
|
1252
1399
|
@property
|
@@ -1260,16 +1407,25 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1260
1407
|
@property
|
1261
1408
|
@pulumi.getter(name="isLongTermSupported")
|
1262
1409
|
def is_long_term_supported(self) -> bool:
|
1410
|
+
"""
|
1411
|
+
Whether a model is supported long-term. Only applicable to base models.
|
1412
|
+
"""
|
1263
1413
|
return pulumi.get(self, "is_long_term_supported")
|
1264
1414
|
|
1265
1415
|
@property
|
1266
1416
|
@pulumi.getter(name="lifecycleDetails")
|
1267
1417
|
def lifecycle_details(self) -> str:
|
1418
|
+
"""
|
1419
|
+
A message describing the current state of the model in more detail that can provide actionable information.
|
1420
|
+
"""
|
1268
1421
|
return pulumi.get(self, "lifecycle_details")
|
1269
1422
|
|
1270
1423
|
@property
|
1271
1424
|
@pulumi.getter(name="modelMetrics")
|
1272
1425
|
def model_metrics(self) -> Sequence['outputs.GetModelsModelCollectionItemModelMetricResult']:
|
1426
|
+
"""
|
1427
|
+
Model metrics during the creation of a new model.
|
1428
|
+
"""
|
1273
1429
|
return pulumi.get(self, "model_metrics")
|
1274
1430
|
|
1275
1431
|
@property
|
@@ -1283,11 +1439,17 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1283
1439
|
@property
|
1284
1440
|
@pulumi.getter(name="systemTags")
|
1285
1441
|
def system_tags(self) -> Mapping[str, Any]:
|
1442
|
+
"""
|
1443
|
+
System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
|
1444
|
+
"""
|
1286
1445
|
return pulumi.get(self, "system_tags")
|
1287
1446
|
|
1288
1447
|
@property
|
1289
1448
|
@pulumi.getter(name="timeCreated")
|
1290
1449
|
def time_created(self) -> str:
|
1450
|
+
"""
|
1451
|
+
The date and time that the model was created in the format of an RFC3339 datetime string.
|
1452
|
+
"""
|
1291
1453
|
return pulumi.get(self, "time_created")
|
1292
1454
|
|
1293
1455
|
@property
|
@@ -1301,6 +1463,9 @@ class GetModelsModelCollectionItemResult(dict):
|
|
1301
1463
|
@property
|
1302
1464
|
@pulumi.getter(name="timeUpdated")
|
1303
1465
|
def time_updated(self) -> str:
|
1466
|
+
"""
|
1467
|
+
The date and time that the model was updated in the format of an RFC3339 datetime string.
|
1468
|
+
"""
|
1304
1469
|
return pulumi.get(self, "time_updated")
|
1305
1470
|
|
1306
1471
|
@property
|
@@ -1334,6 +1499,11 @@ class GetModelsModelCollectionItemFineTuneDetailResult(dict):
|
|
1334
1499
|
dedicated_ai_cluster_id: str,
|
1335
1500
|
training_configs: Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult'],
|
1336
1501
|
training_datasets: Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult']):
|
1502
|
+
"""
|
1503
|
+
:param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
|
1504
|
+
:param Sequence['GetModelsModelCollectionItemFineTuneDetailTrainingConfigArgs'] training_configs: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
|
1505
|
+
:param Sequence['GetModelsModelCollectionItemFineTuneDetailTrainingDatasetArgs'] training_datasets: The dataset used to fine-tune the model.
|
1506
|
+
"""
|
1337
1507
|
pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
|
1338
1508
|
pulumi.set(__self__, "training_configs", training_configs)
|
1339
1509
|
pulumi.set(__self__, "training_datasets", training_datasets)
|
@@ -1341,16 +1511,25 @@ class GetModelsModelCollectionItemFineTuneDetailResult(dict):
|
|
1341
1511
|
@property
|
1342
1512
|
@pulumi.getter(name="dedicatedAiClusterId")
|
1343
1513
|
def dedicated_ai_cluster_id(self) -> str:
|
1514
|
+
"""
|
1515
|
+
The OCID of the dedicated AI cluster this fine-tuning runs on.
|
1516
|
+
"""
|
1344
1517
|
return pulumi.get(self, "dedicated_ai_cluster_id")
|
1345
1518
|
|
1346
1519
|
@property
|
1347
1520
|
@pulumi.getter(name="trainingConfigs")
|
1348
1521
|
def training_configs(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult']:
|
1522
|
+
"""
|
1523
|
+
The fine-tuning method and hyperparameters used for fine-tuning a custom model.
|
1524
|
+
"""
|
1349
1525
|
return pulumi.get(self, "training_configs")
|
1350
1526
|
|
1351
1527
|
@property
|
1352
1528
|
@pulumi.getter(name="trainingDatasets")
|
1353
1529
|
def training_datasets(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult']:
|
1530
|
+
"""
|
1531
|
+
The dataset used to fine-tune the model.
|
1532
|
+
"""
|
1354
1533
|
return pulumi.get(self, "training_datasets")
|
1355
1534
|
|
1356
1535
|
|
@@ -1361,20 +1540,24 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult(dict):
|
|
1361
1540
|
early_stopping_threshold: float,
|
1362
1541
|
learning_rate: float,
|
1363
1542
|
log_model_metrics_interval_in_steps: int,
|
1364
|
-
lora_alpha: int,
|
1365
|
-
lora_dropout: float,
|
1366
|
-
lora_r: int,
|
1367
1543
|
num_of_last_layers: int,
|
1368
1544
|
total_training_epochs: int,
|
1369
1545
|
training_batch_size: int,
|
1370
1546
|
training_config_type: str):
|
1547
|
+
"""
|
1548
|
+
:param int early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
|
1549
|
+
:param float early_stopping_threshold: How much the loss must improve to prevent early stopping.
|
1550
|
+
:param float learning_rate: The initial learning rate to be used during training
|
1551
|
+
:param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
|
1552
|
+
:param int num_of_last_layers: The number of last layers to be fine-tuned.
|
1553
|
+
:param int total_training_epochs: The maximum number of training epochs to run for.
|
1554
|
+
:param int training_batch_size: The batch size used during training.
|
1555
|
+
:param str training_config_type: The fine-tuning method for training a custom model.
|
1556
|
+
"""
|
1371
1557
|
pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
|
1372
1558
|
pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
|
1373
1559
|
pulumi.set(__self__, "learning_rate", learning_rate)
|
1374
1560
|
pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
|
1375
|
-
pulumi.set(__self__, "lora_alpha", lora_alpha)
|
1376
|
-
pulumi.set(__self__, "lora_dropout", lora_dropout)
|
1377
|
-
pulumi.set(__self__, "lora_r", lora_r)
|
1378
1561
|
pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
|
1379
1562
|
pulumi.set(__self__, "total_training_epochs", total_training_epochs)
|
1380
1563
|
pulumi.set(__self__, "training_batch_size", training_batch_size)
|
@@ -1383,56 +1566,65 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult(dict):
|
|
1383
1566
|
@property
|
1384
1567
|
@pulumi.getter(name="earlyStoppingPatience")
|
1385
1568
|
def early_stopping_patience(self) -> int:
|
1569
|
+
"""
|
1570
|
+
Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
|
1571
|
+
"""
|
1386
1572
|
return pulumi.get(self, "early_stopping_patience")
|
1387
1573
|
|
1388
1574
|
@property
|
1389
1575
|
@pulumi.getter(name="earlyStoppingThreshold")
|
1390
1576
|
def early_stopping_threshold(self) -> float:
|
1577
|
+
"""
|
1578
|
+
How much the loss must improve to prevent early stopping.
|
1579
|
+
"""
|
1391
1580
|
return pulumi.get(self, "early_stopping_threshold")
|
1392
1581
|
|
1393
1582
|
@property
|
1394
1583
|
@pulumi.getter(name="learningRate")
|
1395
1584
|
def learning_rate(self) -> float:
|
1585
|
+
"""
|
1586
|
+
The initial learning rate to be used during training
|
1587
|
+
"""
|
1396
1588
|
return pulumi.get(self, "learning_rate")
|
1397
1589
|
|
1398
1590
|
@property
|
1399
1591
|
@pulumi.getter(name="logModelMetricsIntervalInSteps")
|
1400
1592
|
def log_model_metrics_interval_in_steps(self) -> int:
|
1593
|
+
"""
|
1594
|
+
Determines how frequently to log model metrics.
|
1595
|
+
"""
|
1401
1596
|
return pulumi.get(self, "log_model_metrics_interval_in_steps")
|
1402
1597
|
|
1403
|
-
@property
|
1404
|
-
@pulumi.getter(name="loraAlpha")
|
1405
|
-
def lora_alpha(self) -> int:
|
1406
|
-
return pulumi.get(self, "lora_alpha")
|
1407
|
-
|
1408
|
-
@property
|
1409
|
-
@pulumi.getter(name="loraDropout")
|
1410
|
-
def lora_dropout(self) -> float:
|
1411
|
-
return pulumi.get(self, "lora_dropout")
|
1412
|
-
|
1413
|
-
@property
|
1414
|
-
@pulumi.getter(name="loraR")
|
1415
|
-
def lora_r(self) -> int:
|
1416
|
-
return pulumi.get(self, "lora_r")
|
1417
|
-
|
1418
1598
|
@property
|
1419
1599
|
@pulumi.getter(name="numOfLastLayers")
|
1420
1600
|
def num_of_last_layers(self) -> int:
|
1601
|
+
"""
|
1602
|
+
The number of last layers to be fine-tuned.
|
1603
|
+
"""
|
1421
1604
|
return pulumi.get(self, "num_of_last_layers")
|
1422
1605
|
|
1423
1606
|
@property
|
1424
1607
|
@pulumi.getter(name="totalTrainingEpochs")
|
1425
1608
|
def total_training_epochs(self) -> int:
|
1609
|
+
"""
|
1610
|
+
The maximum number of training epochs to run for.
|
1611
|
+
"""
|
1426
1612
|
return pulumi.get(self, "total_training_epochs")
|
1427
1613
|
|
1428
1614
|
@property
|
1429
1615
|
@pulumi.getter(name="trainingBatchSize")
|
1430
1616
|
def training_batch_size(self) -> int:
|
1617
|
+
"""
|
1618
|
+
The batch size used during training.
|
1619
|
+
"""
|
1431
1620
|
return pulumi.get(self, "training_batch_size")
|
1432
1621
|
|
1433
1622
|
@property
|
1434
1623
|
@pulumi.getter(name="trainingConfigType")
|
1435
1624
|
def training_config_type(self) -> str:
|
1625
|
+
"""
|
1626
|
+
The fine-tuning method for training a custom model.
|
1627
|
+
"""
|
1436
1628
|
return pulumi.get(self, "training_config_type")
|
1437
1629
|
|
1438
1630
|
|
@@ -1443,6 +1635,12 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult(dict):
|
|
1443
1635
|
dataset_type: str,
|
1444
1636
|
namespace: str,
|
1445
1637
|
object: str):
|
1638
|
+
"""
|
1639
|
+
:param str bucket: The Object Storage bucket name.
|
1640
|
+
:param str dataset_type: The type of the data asset.
|
1641
|
+
:param str namespace: The Object Storage namespace.
|
1642
|
+
:param str object: The Object Storage object name.
|
1643
|
+
"""
|
1446
1644
|
pulumi.set(__self__, "bucket", bucket)
|
1447
1645
|
pulumi.set(__self__, "dataset_type", dataset_type)
|
1448
1646
|
pulumi.set(__self__, "namespace", namespace)
|
@@ -1451,21 +1649,33 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult(dict):
|
|
1451
1649
|
@property
|
1452
1650
|
@pulumi.getter
|
1453
1651
|
def bucket(self) -> str:
|
1652
|
+
"""
|
1653
|
+
The Object Storage bucket name.
|
1654
|
+
"""
|
1454
1655
|
return pulumi.get(self, "bucket")
|
1455
1656
|
|
1456
1657
|
@property
|
1457
1658
|
@pulumi.getter(name="datasetType")
|
1458
1659
|
def dataset_type(self) -> str:
|
1660
|
+
"""
|
1661
|
+
The type of the data asset.
|
1662
|
+
"""
|
1459
1663
|
return pulumi.get(self, "dataset_type")
|
1460
1664
|
|
1461
1665
|
@property
|
1462
1666
|
@pulumi.getter
|
1463
1667
|
def namespace(self) -> str:
|
1668
|
+
"""
|
1669
|
+
The Object Storage namespace.
|
1670
|
+
"""
|
1464
1671
|
return pulumi.get(self, "namespace")
|
1465
1672
|
|
1466
1673
|
@property
|
1467
1674
|
@pulumi.getter
|
1468
1675
|
def object(self) -> str:
|
1676
|
+
"""
|
1677
|
+
The Object Storage object name.
|
1678
|
+
"""
|
1469
1679
|
return pulumi.get(self, "object")
|
1470
1680
|
|
1471
1681
|
|
@@ -1475,6 +1685,11 @@ class GetModelsModelCollectionItemModelMetricResult(dict):
|
|
1475
1685
|
final_accuracy: float,
|
1476
1686
|
final_loss: float,
|
1477
1687
|
model_metrics_type: str):
|
1688
|
+
"""
|
1689
|
+
:param float final_accuracy: Fine-tuned model accuracy.
|
1690
|
+
:param float final_loss: Fine-tuned model loss.
|
1691
|
+
:param str model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
|
1692
|
+
"""
|
1478
1693
|
pulumi.set(__self__, "final_accuracy", final_accuracy)
|
1479
1694
|
pulumi.set(__self__, "final_loss", final_loss)
|
1480
1695
|
pulumi.set(__self__, "model_metrics_type", model_metrics_type)
|
@@ -1482,16 +1697,25 @@ class GetModelsModelCollectionItemModelMetricResult(dict):
|
|
1482
1697
|
@property
|
1483
1698
|
@pulumi.getter(name="finalAccuracy")
|
1484
1699
|
def final_accuracy(self) -> float:
|
1700
|
+
"""
|
1701
|
+
Fine-tuned model accuracy.
|
1702
|
+
"""
|
1485
1703
|
return pulumi.get(self, "final_accuracy")
|
1486
1704
|
|
1487
1705
|
@property
|
1488
1706
|
@pulumi.getter(name="finalLoss")
|
1489
1707
|
def final_loss(self) -> float:
|
1708
|
+
"""
|
1709
|
+
Fine-tuned model loss.
|
1710
|
+
"""
|
1490
1711
|
return pulumi.get(self, "final_loss")
|
1491
1712
|
|
1492
1713
|
@property
|
1493
1714
|
@pulumi.getter(name="modelMetricsType")
|
1494
1715
|
def model_metrics_type(self) -> str:
|
1716
|
+
"""
|
1717
|
+
The type of the model metrics. Each type of model can expect a different set of model metrics.
|
1718
|
+
"""
|
1495
1719
|
return pulumi.get(self, "model_metrics_type")
|
1496
1720
|
|
1497
1721
|
|