pulumi-oci 2.1.0__py3-none-any.whl → 2.1.0a1719905039__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. pulumi_oci/__init__.py +0 -43
  2. pulumi_oci/database/__init__.py +0 -11
  3. pulumi_oci/database/_inputs.py +0 -607
  4. pulumi_oci/database/db_node.py +0 -28
  5. pulumi_oci/database/get_backups.py +5 -22
  6. pulumi_oci/database/get_db_node.py +1 -14
  7. pulumi_oci/database/get_db_nodes.py +2 -2
  8. pulumi_oci/database/get_gi_versions.py +5 -22
  9. pulumi_oci/database/outputs.py +0 -2050
  10. pulumi_oci/database/pluggable_database.py +7 -7
  11. pulumi_oci/databasemigration/__init__.py +0 -6
  12. pulumi_oci/databasemigration/_inputs.py +0 -1577
  13. pulumi_oci/databasemigration/get_job_advisor_report.py +10 -2
  14. pulumi_oci/databasemigration/get_migration_object_types.py +13 -24
  15. pulumi_oci/databasemigration/job.py +20 -16
  16. pulumi_oci/databasemigration/outputs.py +72 -4300
  17. pulumi_oci/filestorage/_inputs.py +18 -10
  18. pulumi_oci/filestorage/export.py +7 -28
  19. pulumi_oci/filestorage/file_system.py +35 -159
  20. pulumi_oci/filestorage/outputs.py +34 -55
  21. pulumi_oci/generativeai/_inputs.py +2 -50
  22. pulumi_oci/generativeai/dedicated_ai_cluster.py +2 -30
  23. pulumi_oci/generativeai/endpoint.py +2 -2
  24. pulumi_oci/generativeai/get_dedicated_ai_cluster.py +47 -2
  25. pulumi_oci/generativeai/get_dedicated_ai_clusters.py +14 -2
  26. pulumi_oci/generativeai/get_endpoint.py +26 -2
  27. pulumi_oci/generativeai/get_endpoints.py +8 -2
  28. pulumi_oci/generativeai/get_model.py +38 -2
  29. pulumi_oci/generativeai/get_models.py +8 -2
  30. pulumi_oci/generativeai/model.py +2 -2
  31. pulumi_oci/generativeai/outputs.py +310 -86
  32. pulumi_oci/pulumi-plugin.json +1 -1
  33. {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/METADATA +1 -1
  34. {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/RECORD +36 -59
  35. pulumi_oci/database/exadb_vm_cluster.py +0 -1761
  36. pulumi_oci/database/exascale_db_storage_vault.py +0 -787
  37. pulumi_oci/database/get_exadb_vm_cluster.py +0 -614
  38. pulumi_oci/database/get_exadb_vm_cluster_update.py +0 -226
  39. pulumi_oci/database/get_exadb_vm_cluster_update_history_entries.py +0 -153
  40. pulumi_oci/database/get_exadb_vm_cluster_update_history_entry.py +0 -226
  41. pulumi_oci/database/get_exadb_vm_cluster_updates.py +0 -173
  42. pulumi_oci/database/get_exadb_vm_clusters.py +0 -196
  43. pulumi_oci/database/get_exascale_db_storage_vault.py +0 -301
  44. pulumi_oci/database/get_exascale_db_storage_vaults.py +0 -176
  45. pulumi_oci/database/get_gi_version_minor_versions.py +0 -221
  46. pulumi_oci/databasemigration/connection.py +0 -2019
  47. pulumi_oci/databasemigration/get_connection.py +0 -616
  48. pulumi_oci/databasemigration/get_connections.py +0 -225
  49. pulumi_oci/databasemigration/get_migration.py +0 -427
  50. pulumi_oci/databasemigration/get_migrations.py +0 -407
  51. pulumi_oci/databasemigration/migration.py +0 -1471
  52. pulumi_oci/resourcescheduler/__init__.py +0 -12
  53. pulumi_oci/resourcescheduler/_inputs.py +0 -224
  54. pulumi_oci/resourcescheduler/get_schedule.py +0 -340
  55. pulumi_oci/resourcescheduler/get_schedules.py +0 -193
  56. pulumi_oci/resourcescheduler/outputs.py +0 -687
  57. pulumi_oci/resourcescheduler/schedule.py +0 -977
  58. {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/WHEEL +0 -0
  59. {pulumi_oci-2.1.0.dist-info → pulumi_oci-2.1.0a1719905039.dist-info}/top_level.txt +0 -0
@@ -170,7 +170,7 @@ class ModelFineTuneDetails(dict):
170
170
  :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
171
171
  :param 'ModelFineTuneDetailsTrainingDatasetArgs' training_dataset: The dataset used to fine-tune the model.
172
172
 
173
- Only one dataset is allowed per custom model, which is split 80-20 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
173
+ Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
174
174
  :param 'ModelFineTuneDetailsTrainingConfigArgs' training_config: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
175
175
  """
176
176
  pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
@@ -192,7 +192,7 @@ class ModelFineTuneDetails(dict):
192
192
  """
193
193
  The dataset used to fine-tune the model.
194
194
 
195
- Only one dataset is allowed per custom model, which is split 80-20 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
195
+ Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
196
196
  """
197
197
  return pulumi.get(self, "training_dataset")
198
198
 
@@ -220,12 +220,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
220
220
  suggest = "learning_rate"
221
221
  elif key == "logModelMetricsIntervalInSteps":
222
222
  suggest = "log_model_metrics_interval_in_steps"
223
- elif key == "loraAlpha":
224
- suggest = "lora_alpha"
225
- elif key == "loraDropout":
226
- suggest = "lora_dropout"
227
- elif key == "loraR":
228
- suggest = "lora_r"
229
223
  elif key == "numOfLastLayers":
230
224
  suggest = "num_of_last_layers"
231
225
  elif key == "totalTrainingEpochs":
@@ -250,9 +244,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
250
244
  early_stopping_threshold: Optional[float] = None,
251
245
  learning_rate: Optional[float] = None,
252
246
  log_model_metrics_interval_in_steps: Optional[int] = None,
253
- lora_alpha: Optional[int] = None,
254
- lora_dropout: Optional[float] = None,
255
- lora_r: Optional[int] = None,
256
247
  num_of_last_layers: Optional[int] = None,
257
248
  total_training_epochs: Optional[int] = None,
258
249
  training_batch_size: Optional[int] = None):
@@ -264,9 +255,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
264
255
  :param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
265
256
 
266
257
  Every step is logged for the first 20 steps and then follows this parameter for log frequency. Set to 0 to disable logging the model metrics.
267
- :param int lora_alpha: This parameter represents the scaling factor for the weight matrices in LoRA.
268
- :param float lora_dropout: This parameter indicates the dropout probability for LoRA layers.
269
- :param int lora_r: This parameter represents the LoRA rank of the update matrices.
270
258
  :param int num_of_last_layers: The number of last layers to be fine-tuned.
271
259
  :param int total_training_epochs: The maximum number of training epochs to run for.
272
260
  :param int training_batch_size: The batch size used during training.
@@ -280,12 +268,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
280
268
  pulumi.set(__self__, "learning_rate", learning_rate)
281
269
  if log_model_metrics_interval_in_steps is not None:
282
270
  pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
283
- if lora_alpha is not None:
284
- pulumi.set(__self__, "lora_alpha", lora_alpha)
285
- if lora_dropout is not None:
286
- pulumi.set(__self__, "lora_dropout", lora_dropout)
287
- if lora_r is not None:
288
- pulumi.set(__self__, "lora_r", lora_r)
289
271
  if num_of_last_layers is not None:
290
272
  pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
291
273
  if total_training_epochs is not None:
@@ -335,30 +317,6 @@ class ModelFineTuneDetailsTrainingConfig(dict):
335
317
  """
336
318
  return pulumi.get(self, "log_model_metrics_interval_in_steps")
337
319
 
338
- @property
339
- @pulumi.getter(name="loraAlpha")
340
- def lora_alpha(self) -> Optional[int]:
341
- """
342
- This parameter represents the scaling factor for the weight matrices in LoRA.
343
- """
344
- return pulumi.get(self, "lora_alpha")
345
-
346
- @property
347
- @pulumi.getter(name="loraDropout")
348
- def lora_dropout(self) -> Optional[float]:
349
- """
350
- This parameter indicates the dropout probability for LoRA layers.
351
- """
352
- return pulumi.get(self, "lora_dropout")
353
-
354
- @property
355
- @pulumi.getter(name="loraR")
356
- def lora_r(self) -> Optional[int]:
357
- """
358
- This parameter represents the LoRA rank of the update matrices.
359
- """
360
- return pulumi.get(self, "lora_r")
361
-
362
320
  @property
363
321
  @pulumi.getter(name="numOfLastLayers")
364
322
  def num_of_last_layers(self) -> Optional[int]:
@@ -522,6 +480,11 @@ class GetDedicatedAiClusterCapacityResult(dict):
522
480
  capacity_type: str,
523
481
  total_endpoint_capacity: int,
524
482
  used_endpoint_capacity: int):
483
+ """
484
+ :param str capacity_type: The type of the dedicated AI cluster capacity.
485
+ :param int total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
486
+ :param int used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
487
+ """
525
488
  pulumi.set(__self__, "capacity_type", capacity_type)
526
489
  pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
527
490
  pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
@@ -529,16 +492,25 @@ class GetDedicatedAiClusterCapacityResult(dict):
529
492
  @property
530
493
  @pulumi.getter(name="capacityType")
531
494
  def capacity_type(self) -> str:
495
+ """
496
+ The type of the dedicated AI cluster capacity.
497
+ """
532
498
  return pulumi.get(self, "capacity_type")
533
499
 
534
500
  @property
535
501
  @pulumi.getter(name="totalEndpointCapacity")
536
502
  def total_endpoint_capacity(self) -> int:
503
+ """
504
+ The total number of endpoints that can be hosted on this dedicated AI cluster.
505
+ """
537
506
  return pulumi.get(self, "total_endpoint_capacity")
538
507
 
539
508
  @property
540
509
  @pulumi.getter(name="usedEndpointCapacity")
541
510
  def used_endpoint_capacity(self) -> int:
511
+ """
512
+ The number of endpoints hosted on this dedicated AI cluster.
513
+ """
542
514
  return pulumi.get(self, "used_endpoint_capacity")
543
515
 
544
516
 
@@ -573,10 +545,21 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
573
545
  unit_count: int,
574
546
  unit_shape: str):
575
547
  """
548
+ :param Sequence['GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityArgs'] capacities: The total capacity for a dedicated AI cluster.
576
549
  :param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
550
+ :param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
551
+ :param str description: An optional description of the dedicated AI cluster.
577
552
  :param str display_name: A filter to return only resources that match the given display name exactly.
553
+ :param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
578
554
  :param str id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the dedicated AI cluster.
555
+ :param str lifecycle_details: A message describing the current state with detail that can provide actionable information.
579
556
  :param str state: A filter to return only the dedicated AI clusters that their lifecycle state matches the given lifecycle state.
557
+ :param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
558
+ :param str time_created: The date and time the dedicated AI cluster was created, in the format defined by RFC 3339
559
+ :param str time_updated: The date and time the dedicated AI cluster was updated, in the format defined by RFC 3339
560
+ :param str type: The dedicated AI cluster type indicating whether this is a fine-tuning/training processor or hosting/inference processor.
561
+ :param int unit_count: The number of dedicated units in this AI cluster.
562
+ :param str unit_shape: The shape of dedicated unit in this AI cluster. The underlying hardware configuration is hidden from customers.
580
563
  """
581
564
  pulumi.set(__self__, "capacities", capacities)
582
565
  pulumi.set(__self__, "compartment_id", compartment_id)
@@ -597,6 +580,9 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
597
580
  @property
598
581
  @pulumi.getter
599
582
  def capacities(self) -> Sequence['outputs.GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult']:
583
+ """
584
+ The total capacity for a dedicated AI cluster.
585
+ """
600
586
  return pulumi.get(self, "capacities")
601
587
 
602
588
  @property
@@ -610,11 +596,17 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
610
596
  @property
611
597
  @pulumi.getter(name="definedTags")
612
598
  def defined_tags(self) -> Mapping[str, Any]:
599
+ """
600
+ Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
601
+ """
613
602
  return pulumi.get(self, "defined_tags")
614
603
 
615
604
  @property
616
605
  @pulumi.getter
617
606
  def description(self) -> str:
607
+ """
608
+ An optional description of the dedicated AI cluster.
609
+ """
618
610
  return pulumi.get(self, "description")
619
611
 
620
612
  @property
@@ -628,6 +620,9 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
628
620
  @property
629
621
  @pulumi.getter(name="freeformTags")
630
622
  def freeform_tags(self) -> Mapping[str, Any]:
623
+ """
624
+ Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
625
+ """
631
626
  return pulumi.get(self, "freeform_tags")
632
627
 
633
628
  @property
@@ -641,6 +636,9 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
641
636
  @property
642
637
  @pulumi.getter(name="lifecycleDetails")
643
638
  def lifecycle_details(self) -> str:
639
+ """
640
+ A message describing the current state with detail that can provide actionable information.
641
+ """
644
642
  return pulumi.get(self, "lifecycle_details")
645
643
 
646
644
  @property
@@ -654,31 +652,49 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemResult(dict):
654
652
  @property
655
653
  @pulumi.getter(name="systemTags")
656
654
  def system_tags(self) -> Mapping[str, Any]:
655
+ """
656
+ System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
657
+ """
657
658
  return pulumi.get(self, "system_tags")
658
659
 
659
660
  @property
660
661
  @pulumi.getter(name="timeCreated")
661
662
  def time_created(self) -> str:
663
+ """
664
+ The date and time the dedicated AI cluster was created, in the format defined by RFC 3339
665
+ """
662
666
  return pulumi.get(self, "time_created")
663
667
 
664
668
  @property
665
669
  @pulumi.getter(name="timeUpdated")
666
670
  def time_updated(self) -> str:
671
+ """
672
+ The date and time the dedicated AI cluster was updated, in the format defined by RFC 3339
673
+ """
667
674
  return pulumi.get(self, "time_updated")
668
675
 
669
676
  @property
670
677
  @pulumi.getter
671
678
  def type(self) -> str:
679
+ """
680
+ The dedicated AI cluster type indicating whether this is a fine-tuning/training processor or hosting/inference processor.
681
+ """
672
682
  return pulumi.get(self, "type")
673
683
 
674
684
  @property
675
685
  @pulumi.getter(name="unitCount")
676
686
  def unit_count(self) -> int:
687
+ """
688
+ The number of dedicated units in this AI cluster.
689
+ """
677
690
  return pulumi.get(self, "unit_count")
678
691
 
679
692
  @property
680
693
  @pulumi.getter(name="unitShape")
681
694
  def unit_shape(self) -> str:
695
+ """
696
+ The shape of dedicated unit in this AI cluster. The underlying hardware configuration is hidden from customers.
697
+ """
682
698
  return pulumi.get(self, "unit_shape")
683
699
 
684
700
 
@@ -688,6 +704,11 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult(dict)
688
704
  capacity_type: str,
689
705
  total_endpoint_capacity: int,
690
706
  used_endpoint_capacity: int):
707
+ """
708
+ :param str capacity_type: The type of the dedicated AI cluster capacity.
709
+ :param int total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
710
+ :param int used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
711
+ """
691
712
  pulumi.set(__self__, "capacity_type", capacity_type)
692
713
  pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
693
714
  pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
@@ -695,16 +716,25 @@ class GetDedicatedAiClustersDedicatedAiClusterCollectionItemCapacityResult(dict)
695
716
  @property
696
717
  @pulumi.getter(name="capacityType")
697
718
  def capacity_type(self) -> str:
719
+ """
720
+ The type of the dedicated AI cluster capacity.
721
+ """
698
722
  return pulumi.get(self, "capacity_type")
699
723
 
700
724
  @property
701
725
  @pulumi.getter(name="totalEndpointCapacity")
702
726
  def total_endpoint_capacity(self) -> int:
727
+ """
728
+ The total number of endpoints that can be hosted on this dedicated AI cluster.
729
+ """
703
730
  return pulumi.get(self, "total_endpoint_capacity")
704
731
 
705
732
  @property
706
733
  @pulumi.getter(name="usedEndpointCapacity")
707
734
  def used_endpoint_capacity(self) -> int:
735
+ """
736
+ The number of endpoints hosted on this dedicated AI cluster.
737
+ """
708
738
  return pulumi.get(self, "used_endpoint_capacity")
709
739
 
710
740
 
@@ -739,11 +769,17 @@ class GetDedicatedAiClustersFilterResult(dict):
739
769
  class GetEndpointContentModerationConfigResult(dict):
740
770
  def __init__(__self__, *,
741
771
  is_enabled: bool):
772
+ """
773
+ :param bool is_enabled: Whether to enable the content moderation feature.
774
+ """
742
775
  pulumi.set(__self__, "is_enabled", is_enabled)
743
776
 
744
777
  @property
745
778
  @pulumi.getter(name="isEnabled")
746
779
  def is_enabled(self) -> bool:
780
+ """
781
+ Whether to enable the content moderation feature.
782
+ """
747
783
  return pulumi.get(self, "is_enabled")
748
784
 
749
785
 
@@ -778,11 +814,17 @@ class GetEndpointsEndpointCollectionItemResult(dict):
778
814
  time_updated: str):
779
815
  """
780
816
  :param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
817
+ :param Sequence['GetEndpointsEndpointCollectionItemContentModerationConfigArgs'] content_moderation_configs: The configuration details, whether to add the content moderation feature to the model. Content moderation removes toxic and biased content from responses. It's recommended to use content moderation.
818
+ :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster on which the model will be deployed to.
781
819
  :param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
820
+ :param str description: An optional description of the endpoint.
782
821
  :param str display_name: A filter to return only resources that match the given display name exactly.
822
+ :param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
783
823
  :param str id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the endpoint.
824
+ :param str lifecycle_details: A message describing the current state of the endpoint in more detail that can provide actionable information.
784
825
  :param str model_id: The OCID of the model that's used to create this endpoint.
785
826
  :param str state: A filter to return only resources that their lifecycle state matches the given lifecycle state.
827
+ :param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
786
828
  :param str time_created: The date and time that the endpoint was created in the format of an RFC3339 datetime string.
787
829
  :param str time_updated: The date and time that the endpoint was updated in the format of an RFC3339 datetime string.
788
830
  """
@@ -812,11 +854,17 @@ class GetEndpointsEndpointCollectionItemResult(dict):
812
854
  @property
813
855
  @pulumi.getter(name="contentModerationConfigs")
814
856
  def content_moderation_configs(self) -> Sequence['outputs.GetEndpointsEndpointCollectionItemContentModerationConfigResult']:
857
+ """
858
+ The configuration details, whether to add the content moderation feature to the model. Content moderation removes toxic and biased content from responses. It's recommended to use content moderation.
859
+ """
815
860
  return pulumi.get(self, "content_moderation_configs")
816
861
 
817
862
  @property
818
863
  @pulumi.getter(name="dedicatedAiClusterId")
819
864
  def dedicated_ai_cluster_id(self) -> str:
865
+ """
866
+ The OCID of the dedicated AI cluster on which the model will be deployed to.
867
+ """
820
868
  return pulumi.get(self, "dedicated_ai_cluster_id")
821
869
 
822
870
  @property
@@ -830,6 +878,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
830
878
  @property
831
879
  @pulumi.getter
832
880
  def description(self) -> str:
881
+ """
882
+ An optional description of the endpoint.
883
+ """
833
884
  return pulumi.get(self, "description")
834
885
 
835
886
  @property
@@ -843,6 +894,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
843
894
  @property
844
895
  @pulumi.getter(name="freeformTags")
845
896
  def freeform_tags(self) -> Mapping[str, Any]:
897
+ """
898
+ Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
899
+ """
846
900
  return pulumi.get(self, "freeform_tags")
847
901
 
848
902
  @property
@@ -856,6 +910,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
856
910
  @property
857
911
  @pulumi.getter(name="lifecycleDetails")
858
912
  def lifecycle_details(self) -> str:
913
+ """
914
+ A message describing the current state of the endpoint in more detail that can provide actionable information.
915
+ """
859
916
  return pulumi.get(self, "lifecycle_details")
860
917
 
861
918
  @property
@@ -877,6 +934,9 @@ class GetEndpointsEndpointCollectionItemResult(dict):
877
934
  @property
878
935
  @pulumi.getter(name="systemTags")
879
936
  def system_tags(self) -> Mapping[str, Any]:
937
+ """
938
+ System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
939
+ """
880
940
  return pulumi.get(self, "system_tags")
881
941
 
882
942
  @property
@@ -900,11 +960,17 @@ class GetEndpointsEndpointCollectionItemResult(dict):
900
960
  class GetEndpointsEndpointCollectionItemContentModerationConfigResult(dict):
901
961
  def __init__(__self__, *,
902
962
  is_enabled: bool):
963
+ """
964
+ :param bool is_enabled: Whether to enable the content moderation feature.
965
+ """
903
966
  pulumi.set(__self__, "is_enabled", is_enabled)
904
967
 
905
968
  @property
906
969
  @pulumi.getter(name="isEnabled")
907
970
  def is_enabled(self) -> bool:
971
+ """
972
+ Whether to enable the content moderation feature.
973
+ """
908
974
  return pulumi.get(self, "is_enabled")
909
975
 
910
976
 
@@ -941,6 +1007,11 @@ class GetModelFineTuneDetailResult(dict):
941
1007
  dedicated_ai_cluster_id: str,
942
1008
  training_configs: Sequence['outputs.GetModelFineTuneDetailTrainingConfigResult'],
943
1009
  training_datasets: Sequence['outputs.GetModelFineTuneDetailTrainingDatasetResult']):
1010
+ """
1011
+ :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
1012
+ :param Sequence['GetModelFineTuneDetailTrainingConfigArgs'] training_configs: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1013
+ :param Sequence['GetModelFineTuneDetailTrainingDatasetArgs'] training_datasets: The dataset used to fine-tune the model.
1014
+ """
944
1015
  pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
945
1016
  pulumi.set(__self__, "training_configs", training_configs)
946
1017
  pulumi.set(__self__, "training_datasets", training_datasets)
@@ -948,16 +1019,25 @@ class GetModelFineTuneDetailResult(dict):
948
1019
  @property
949
1020
  @pulumi.getter(name="dedicatedAiClusterId")
950
1021
  def dedicated_ai_cluster_id(self) -> str:
1022
+ """
1023
+ The OCID of the dedicated AI cluster this fine-tuning runs on.
1024
+ """
951
1025
  return pulumi.get(self, "dedicated_ai_cluster_id")
952
1026
 
953
1027
  @property
954
1028
  @pulumi.getter(name="trainingConfigs")
955
1029
  def training_configs(self) -> Sequence['outputs.GetModelFineTuneDetailTrainingConfigResult']:
1030
+ """
1031
+ The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1032
+ """
956
1033
  return pulumi.get(self, "training_configs")
957
1034
 
958
1035
  @property
959
1036
  @pulumi.getter(name="trainingDatasets")
960
1037
  def training_datasets(self) -> Sequence['outputs.GetModelFineTuneDetailTrainingDatasetResult']:
1038
+ """
1039
+ The dataset used to fine-tune the model.
1040
+ """
961
1041
  return pulumi.get(self, "training_datasets")
962
1042
 
963
1043
 
@@ -968,20 +1048,24 @@ class GetModelFineTuneDetailTrainingConfigResult(dict):
968
1048
  early_stopping_threshold: float,
969
1049
  learning_rate: float,
970
1050
  log_model_metrics_interval_in_steps: int,
971
- lora_alpha: int,
972
- lora_dropout: float,
973
- lora_r: int,
974
1051
  num_of_last_layers: int,
975
1052
  total_training_epochs: int,
976
1053
  training_batch_size: int,
977
1054
  training_config_type: str):
1055
+ """
1056
+ :param int early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1057
+ :param float early_stopping_threshold: How much the loss must improve to prevent early stopping.
1058
+ :param float learning_rate: The initial learning rate to be used during training
1059
+ :param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
1060
+ :param int num_of_last_layers: The number of last layers to be fine-tuned.
1061
+ :param int total_training_epochs: The maximum number of training epochs to run for.
1062
+ :param int training_batch_size: The batch size used during training.
1063
+ :param str training_config_type: The fine-tuning method for training a custom model.
1064
+ """
978
1065
  pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
979
1066
  pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
980
1067
  pulumi.set(__self__, "learning_rate", learning_rate)
981
1068
  pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
982
- pulumi.set(__self__, "lora_alpha", lora_alpha)
983
- pulumi.set(__self__, "lora_dropout", lora_dropout)
984
- pulumi.set(__self__, "lora_r", lora_r)
985
1069
  pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
986
1070
  pulumi.set(__self__, "total_training_epochs", total_training_epochs)
987
1071
  pulumi.set(__self__, "training_batch_size", training_batch_size)
@@ -990,56 +1074,65 @@ class GetModelFineTuneDetailTrainingConfigResult(dict):
990
1074
  @property
991
1075
  @pulumi.getter(name="earlyStoppingPatience")
992
1076
  def early_stopping_patience(self) -> int:
1077
+ """
1078
+ Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1079
+ """
993
1080
  return pulumi.get(self, "early_stopping_patience")
994
1081
 
995
1082
  @property
996
1083
  @pulumi.getter(name="earlyStoppingThreshold")
997
1084
  def early_stopping_threshold(self) -> float:
1085
+ """
1086
+ How much the loss must improve to prevent early stopping.
1087
+ """
998
1088
  return pulumi.get(self, "early_stopping_threshold")
999
1089
 
1000
1090
  @property
1001
1091
  @pulumi.getter(name="learningRate")
1002
1092
  def learning_rate(self) -> float:
1093
+ """
1094
+ The initial learning rate to be used during training
1095
+ """
1003
1096
  return pulumi.get(self, "learning_rate")
1004
1097
 
1005
1098
  @property
1006
1099
  @pulumi.getter(name="logModelMetricsIntervalInSteps")
1007
1100
  def log_model_metrics_interval_in_steps(self) -> int:
1101
+ """
1102
+ Determines how frequently to log model metrics.
1103
+ """
1008
1104
  return pulumi.get(self, "log_model_metrics_interval_in_steps")
1009
1105
 
1010
- @property
1011
- @pulumi.getter(name="loraAlpha")
1012
- def lora_alpha(self) -> int:
1013
- return pulumi.get(self, "lora_alpha")
1014
-
1015
- @property
1016
- @pulumi.getter(name="loraDropout")
1017
- def lora_dropout(self) -> float:
1018
- return pulumi.get(self, "lora_dropout")
1019
-
1020
- @property
1021
- @pulumi.getter(name="loraR")
1022
- def lora_r(self) -> int:
1023
- return pulumi.get(self, "lora_r")
1024
-
1025
1106
  @property
1026
1107
  @pulumi.getter(name="numOfLastLayers")
1027
1108
  def num_of_last_layers(self) -> int:
1109
+ """
1110
+ The number of last layers to be fine-tuned.
1111
+ """
1028
1112
  return pulumi.get(self, "num_of_last_layers")
1029
1113
 
1030
1114
  @property
1031
1115
  @pulumi.getter(name="totalTrainingEpochs")
1032
1116
  def total_training_epochs(self) -> int:
1117
+ """
1118
+ The maximum number of training epochs to run for.
1119
+ """
1033
1120
  return pulumi.get(self, "total_training_epochs")
1034
1121
 
1035
1122
  @property
1036
1123
  @pulumi.getter(name="trainingBatchSize")
1037
1124
  def training_batch_size(self) -> int:
1125
+ """
1126
+ The batch size used during training.
1127
+ """
1038
1128
  return pulumi.get(self, "training_batch_size")
1039
1129
 
1040
1130
  @property
1041
1131
  @pulumi.getter(name="trainingConfigType")
1042
1132
  def training_config_type(self) -> str:
1133
+ """
1134
+ The fine-tuning method for training a custom model.
1135
+ """
1043
1136
  return pulumi.get(self, "training_config_type")
1044
1137
 
1045
1138
 
@@ -1050,6 +1143,12 @@ class GetModelFineTuneDetailTrainingDatasetResult(dict):
1050
1143
  dataset_type: str,
1051
1144
  namespace: str,
1052
1145
  object: str):
1146
+ """
1147
+ :param str bucket: The Object Storage bucket name.
1148
+ :param str dataset_type: The type of the data asset.
1149
+ :param str namespace: The Object Storage namespace.
1150
+ :param str object: The Object Storage object name.
1151
+ """
1053
1152
  pulumi.set(__self__, "bucket", bucket)
1054
1153
  pulumi.set(__self__, "dataset_type", dataset_type)
1055
1154
  pulumi.set(__self__, "namespace", namespace)
@@ -1058,21 +1157,33 @@ class GetModelFineTuneDetailTrainingDatasetResult(dict):
1058
1157
  @property
1059
1158
  @pulumi.getter
1060
1159
  def bucket(self) -> str:
1160
+ """
1161
+ The Object Storage bucket name.
1162
+ """
1061
1163
  return pulumi.get(self, "bucket")
1062
1164
 
1063
1165
  @property
1064
1166
  @pulumi.getter(name="datasetType")
1065
1167
  def dataset_type(self) -> str:
1168
+ """
1169
+ The type of the data asset.
1170
+ """
1066
1171
  return pulumi.get(self, "dataset_type")
1067
1172
 
1068
1173
  @property
1069
1174
  @pulumi.getter
1070
1175
  def namespace(self) -> str:
1176
+ """
1177
+ The Object Storage namespace.
1178
+ """
1071
1179
  return pulumi.get(self, "namespace")
1072
1180
 
1073
1181
  @property
1074
1182
  @pulumi.getter
1075
1183
  def object(self) -> str:
1184
+ """
1185
+ The Object Storage object name.
1186
+ """
1076
1187
  return pulumi.get(self, "object")
1077
1188
 
1078
1189
 
@@ -1082,6 +1193,11 @@ class GetModelModelMetricResult(dict):
1082
1193
  final_accuracy: float,
1083
1194
  final_loss: float,
1084
1195
  model_metrics_type: str):
1196
+ """
1197
+ :param float final_accuracy: Fine-tuned model accuracy.
1198
+ :param float final_loss: Fine-tuned model loss.
1199
+ :param str model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
1200
+ """
1085
1201
  pulumi.set(__self__, "final_accuracy", final_accuracy)
1086
1202
  pulumi.set(__self__, "final_loss", final_loss)
1087
1203
  pulumi.set(__self__, "model_metrics_type", model_metrics_type)
@@ -1089,16 +1205,25 @@ class GetModelModelMetricResult(dict):
1089
1205
  @property
1090
1206
  @pulumi.getter(name="finalAccuracy")
1091
1207
  def final_accuracy(self) -> float:
1208
+ """
1209
+ Fine-tuned model accuracy.
1210
+ """
1092
1211
  return pulumi.get(self, "final_accuracy")
1093
1212
 
1094
1213
  @property
1095
1214
  @pulumi.getter(name="finalLoss")
1096
1215
  def final_loss(self) -> float:
1216
+ """
1217
+ Fine-tuned model loss.
1218
+ """
1097
1219
  return pulumi.get(self, "final_loss")
1098
1220
 
1099
1221
  @property
1100
1222
  @pulumi.getter(name="modelMetricsType")
1101
1223
  def model_metrics_type(self) -> str:
1224
+ """
1225
+ The type of the model metrics. Each type of model can expect a different set of model metrics.
1226
+ """
1102
1227
  return pulumi.get(self, "model_metrics_type")
1103
1228
 
1104
1229
 
@@ -1165,13 +1290,23 @@ class GetModelsModelCollectionItemResult(dict):
1165
1290
  vendor: str,
1166
1291
  version: str):
1167
1292
  """
1293
+ :param str base_model_id: The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
1168
1294
  :param Sequence[str] capabilities: Describes what this model can be used for.
1169
1295
  :param str compartment_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment in which to list resources.
1170
1296
  :param Mapping[str, Any] defined_tags: Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}`
1297
+ :param str description: An optional description of the model.
1171
1298
  :param str display_name: A filter to return only resources that match the given display name exactly.
1299
+ :param Sequence['GetModelsModelCollectionItemFineTuneDetailArgs'] fine_tune_details: Details about fine-tuning a custom model.
1300
+ :param Mapping[str, Any] freeform_tags: Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
1172
1301
  :param str id: The ID of the model.
1302
+ :param bool is_long_term_supported: Whether a model is supported long-term. Only applicable to base models.
1303
+ :param str lifecycle_details: A message describing the current state of the model in more detail that can provide actionable information.
1304
+ :param Sequence['GetModelsModelCollectionItemModelMetricArgs'] model_metrics: Model metrics during the creation of a new model.
1173
1305
  :param str state: A filter to return only resources their lifecycleState matches the given lifecycleState.
1306
+ :param Mapping[str, Any] system_tags: System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
1307
+ :param str time_created: The date and time that the model was created in the format of an RFC3339 datetime string.
1174
1308
  :param str time_deprecated: Corresponds to the time when the custom model and its associated foundation model will be deprecated.
1309
+ :param str time_updated: The date and time that the model was updated in the format of an RFC3339 datetime string.
1175
1310
  :param str type: The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
1176
1311
  :param str vendor: A filter to return only resources that match the entire vendor given.
1177
1312
  :param str version: The version of the model.
@@ -1200,6 +1335,9 @@ class GetModelsModelCollectionItemResult(dict):
1200
1335
  @property
1201
1336
  @pulumi.getter(name="baseModelId")
1202
1337
  def base_model_id(self) -> str:
1338
+ """
1339
+ The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
1340
+ """
1203
1341
  return pulumi.get(self, "base_model_id")
1204
1342
 
1205
1343
  @property
@@ -1229,6 +1367,9 @@ class GetModelsModelCollectionItemResult(dict):
1229
1367
  @property
1230
1368
  @pulumi.getter
1231
1369
  def description(self) -> str:
1370
+ """
1371
+ An optional description of the model.
1372
+ """
1232
1373
  return pulumi.get(self, "description")
1233
1374
 
1234
1375
  @property
@@ -1242,11 +1383,17 @@ class GetModelsModelCollectionItemResult(dict):
1242
1383
  @property
1243
1384
  @pulumi.getter(name="fineTuneDetails")
1244
1385
  def fine_tune_details(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailResult']:
1386
+ """
1387
+ Details about fine-tuning a custom model.
1388
+ """
1245
1389
  return pulumi.get(self, "fine_tune_details")
1246
1390
 
1247
1391
  @property
1248
1392
  @pulumi.getter(name="freeformTags")
1249
1393
  def freeform_tags(self) -> Mapping[str, Any]:
1394
+ """
1395
+ Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}`
1396
+ """
1250
1397
  return pulumi.get(self, "freeform_tags")
1251
1398
 
1252
1399
  @property
@@ -1260,16 +1407,25 @@ class GetModelsModelCollectionItemResult(dict):
1260
1407
  @property
1261
1408
  @pulumi.getter(name="isLongTermSupported")
1262
1409
  def is_long_term_supported(self) -> bool:
1410
+ """
1411
+ Whether a model is supported long-term. Only applicable to base models.
1412
+ """
1263
1413
  return pulumi.get(self, "is_long_term_supported")
1264
1414
 
1265
1415
  @property
1266
1416
  @pulumi.getter(name="lifecycleDetails")
1267
1417
  def lifecycle_details(self) -> str:
1418
+ """
1419
+ A message describing the current state of the model in more detail that can provide actionable information.
1420
+ """
1268
1421
  return pulumi.get(self, "lifecycle_details")
1269
1422
 
1270
1423
  @property
1271
1424
  @pulumi.getter(name="modelMetrics")
1272
1425
  def model_metrics(self) -> Sequence['outputs.GetModelsModelCollectionItemModelMetricResult']:
1426
+ """
1427
+ Model metrics during the creation of a new model.
1428
+ """
1273
1429
  return pulumi.get(self, "model_metrics")
1274
1430
 
1275
1431
  @property
@@ -1283,11 +1439,17 @@ class GetModelsModelCollectionItemResult(dict):
1283
1439
  @property
1284
1440
  @pulumi.getter(name="systemTags")
1285
1441
  def system_tags(self) -> Mapping[str, Any]:
1442
+ """
1443
+ System tags for this resource. Each key is predefined and scoped to a namespace. Example: `{"orcl-cloud.free-tier-retained": "true"}`
1444
+ """
1286
1445
  return pulumi.get(self, "system_tags")
1287
1446
 
1288
1447
  @property
1289
1448
  @pulumi.getter(name="timeCreated")
1290
1449
  def time_created(self) -> str:
1450
+ """
1451
+ The date and time that the model was created in the format of an RFC3339 datetime string.
1452
+ """
1291
1453
  return pulumi.get(self, "time_created")
1292
1454
 
1293
1455
  @property
@@ -1301,6 +1463,9 @@ class GetModelsModelCollectionItemResult(dict):
1301
1463
  @property
1302
1464
  @pulumi.getter(name="timeUpdated")
1303
1465
  def time_updated(self) -> str:
1466
+ """
1467
+ The date and time that the model was updated in the format of an RFC3339 datetime string.
1468
+ """
1304
1469
  return pulumi.get(self, "time_updated")
1305
1470
 
1306
1471
  @property
@@ -1334,6 +1499,11 @@ class GetModelsModelCollectionItemFineTuneDetailResult(dict):
1334
1499
  dedicated_ai_cluster_id: str,
1335
1500
  training_configs: Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult'],
1336
1501
  training_datasets: Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult']):
1502
+ """
1503
+ :param str dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
1504
+ :param Sequence['GetModelsModelCollectionItemFineTuneDetailTrainingConfigArgs'] training_configs: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1505
+ :param Sequence['GetModelsModelCollectionItemFineTuneDetailTrainingDatasetArgs'] training_datasets: The dataset used to fine-tune the model.
1506
+ """
1337
1507
  pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
1338
1508
  pulumi.set(__self__, "training_configs", training_configs)
1339
1509
  pulumi.set(__self__, "training_datasets", training_datasets)
@@ -1341,16 +1511,25 @@ class GetModelsModelCollectionItemFineTuneDetailResult(dict):
1341
1511
  @property
1342
1512
  @pulumi.getter(name="dedicatedAiClusterId")
1343
1513
  def dedicated_ai_cluster_id(self) -> str:
1514
+ """
1515
+ The OCID of the dedicated AI cluster this fine-tuning runs on.
1516
+ """
1344
1517
  return pulumi.get(self, "dedicated_ai_cluster_id")
1345
1518
 
1346
1519
  @property
1347
1520
  @pulumi.getter(name="trainingConfigs")
1348
1521
  def training_configs(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult']:
1522
+ """
1523
+ The fine-tuning method and hyperparameters used for fine-tuning a custom model.
1524
+ """
1349
1525
  return pulumi.get(self, "training_configs")
1350
1526
 
1351
1527
  @property
1352
1528
  @pulumi.getter(name="trainingDatasets")
1353
1529
  def training_datasets(self) -> Sequence['outputs.GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult']:
1530
+ """
1531
+ The dataset used to fine-tune the model.
1532
+ """
1354
1533
  return pulumi.get(self, "training_datasets")
1355
1534
 
1356
1535
 
@@ -1361,20 +1540,24 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult(dict):
1361
1540
  early_stopping_threshold: float,
1362
1541
  learning_rate: float,
1363
1542
  log_model_metrics_interval_in_steps: int,
1364
- lora_alpha: int,
1365
- lora_dropout: float,
1366
- lora_r: int,
1367
1543
  num_of_last_layers: int,
1368
1544
  total_training_epochs: int,
1369
1545
  training_batch_size: int,
1370
1546
  training_config_type: str):
1547
+ """
1548
+ :param int early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1549
+ :param float early_stopping_threshold: How much the loss must improve to prevent early stopping.
1550
+ :param float learning_rate: The initial learning rate to be used during training
1551
+ :param int log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
1552
+ :param int num_of_last_layers: The number of last layers to be fine-tuned.
1553
+ :param int total_training_epochs: The maximum number of training epochs to run for.
1554
+ :param int training_batch_size: The batch size used during training.
1555
+ :param str training_config_type: The fine-tuning method for training a custom model.
1556
+ """
1371
1557
  pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
1372
1558
  pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
1373
1559
  pulumi.set(__self__, "learning_rate", learning_rate)
1374
1560
  pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
1375
- pulumi.set(__self__, "lora_alpha", lora_alpha)
1376
- pulumi.set(__self__, "lora_dropout", lora_dropout)
1377
- pulumi.set(__self__, "lora_r", lora_r)
1378
1561
  pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
1379
1562
  pulumi.set(__self__, "total_training_epochs", total_training_epochs)
1380
1563
  pulumi.set(__self__, "training_batch_size", training_batch_size)
@@ -1383,56 +1566,65 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingConfigResult(dict):
1383
1566
  @property
1384
1567
  @pulumi.getter(name="earlyStoppingPatience")
1385
1568
  def early_stopping_patience(self) -> int:
1569
+ """
1570
+ Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
1571
+ """
1386
1572
  return pulumi.get(self, "early_stopping_patience")
1387
1573
 
1388
1574
  @property
1389
1575
  @pulumi.getter(name="earlyStoppingThreshold")
1390
1576
  def early_stopping_threshold(self) -> float:
1577
+ """
1578
+ How much the loss must improve to prevent early stopping.
1579
+ """
1391
1580
  return pulumi.get(self, "early_stopping_threshold")
1392
1581
 
1393
1582
  @property
1394
1583
  @pulumi.getter(name="learningRate")
1395
1584
  def learning_rate(self) -> float:
1585
+ """
1586
+ The initial learning rate to be used during training
1587
+ """
1396
1588
  return pulumi.get(self, "learning_rate")
1397
1589
 
1398
1590
  @property
1399
1591
  @pulumi.getter(name="logModelMetricsIntervalInSteps")
1400
1592
  def log_model_metrics_interval_in_steps(self) -> int:
1593
+ """
1594
+ Determines how frequently to log model metrics.
1595
+ """
1401
1596
  return pulumi.get(self, "log_model_metrics_interval_in_steps")
1402
1597
 
1403
- @property
1404
- @pulumi.getter(name="loraAlpha")
1405
- def lora_alpha(self) -> int:
1406
- return pulumi.get(self, "lora_alpha")
1407
-
1408
- @property
1409
- @pulumi.getter(name="loraDropout")
1410
- def lora_dropout(self) -> float:
1411
- return pulumi.get(self, "lora_dropout")
1412
-
1413
- @property
1414
- @pulumi.getter(name="loraR")
1415
- def lora_r(self) -> int:
1416
- return pulumi.get(self, "lora_r")
1417
-
1418
1598
  @property
1419
1599
  @pulumi.getter(name="numOfLastLayers")
1420
1600
  def num_of_last_layers(self) -> int:
1601
+ """
1602
+ The number of last layers to be fine-tuned.
1603
+ """
1421
1604
  return pulumi.get(self, "num_of_last_layers")
1422
1605
 
1423
1606
  @property
1424
1607
  @pulumi.getter(name="totalTrainingEpochs")
1425
1608
  def total_training_epochs(self) -> int:
1609
+ """
1610
+ The maximum number of training epochs to run for.
1611
+ """
1426
1612
  return pulumi.get(self, "total_training_epochs")
1427
1613
 
1428
1614
  @property
1429
1615
  @pulumi.getter(name="trainingBatchSize")
1430
1616
  def training_batch_size(self) -> int:
1617
+ """
1618
+ The batch size used during training.
1619
+ """
1431
1620
  return pulumi.get(self, "training_batch_size")
1432
1621
 
1433
1622
  @property
1434
1623
  @pulumi.getter(name="trainingConfigType")
1435
1624
  def training_config_type(self) -> str:
1625
+ """
1626
+ The fine-tuning method for training a custom model.
1627
+ """
1436
1628
  return pulumi.get(self, "training_config_type")
1437
1629
 
1438
1630
 
@@ -1443,6 +1635,12 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult(dict):
1443
1635
  dataset_type: str,
1444
1636
  namespace: str,
1445
1637
  object: str):
1638
+ """
1639
+ :param str bucket: The Object Storage bucket name.
1640
+ :param str dataset_type: The type of the data asset.
1641
+ :param str namespace: The Object Storage namespace.
1642
+ :param str object: The Object Storage object name.
1643
+ """
1446
1644
  pulumi.set(__self__, "bucket", bucket)
1447
1645
  pulumi.set(__self__, "dataset_type", dataset_type)
1448
1646
  pulumi.set(__self__, "namespace", namespace)
@@ -1451,21 +1649,33 @@ class GetModelsModelCollectionItemFineTuneDetailTrainingDatasetResult(dict):
1451
1649
  @property
1452
1650
  @pulumi.getter
1453
1651
  def bucket(self) -> str:
1652
+ """
1653
+ The Object Storage bucket name.
1654
+ """
1454
1655
  return pulumi.get(self, "bucket")
1455
1656
 
1456
1657
  @property
1457
1658
  @pulumi.getter(name="datasetType")
1458
1659
  def dataset_type(self) -> str:
1660
+ """
1661
+ The type of the data asset.
1662
+ """
1459
1663
  return pulumi.get(self, "dataset_type")
1460
1664
 
1461
1665
  @property
1462
1666
  @pulumi.getter
1463
1667
  def namespace(self) -> str:
1668
+ """
1669
+ The Object Storage namespace.
1670
+ """
1464
1671
  return pulumi.get(self, "namespace")
1465
1672
 
1466
1673
  @property
1467
1674
  @pulumi.getter
1468
1675
  def object(self) -> str:
1676
+ """
1677
+ The Object Storage object name.
1678
+ """
1469
1679
  return pulumi.get(self, "object")
1470
1680
 
1471
1681
 
@@ -1475,6 +1685,11 @@ class GetModelsModelCollectionItemModelMetricResult(dict):
1475
1685
  final_accuracy: float,
1476
1686
  final_loss: float,
1477
1687
  model_metrics_type: str):
1688
+ """
1689
+ :param float final_accuracy: Fine-tuned model accuracy.
1690
+ :param float final_loss: Fine-tuned model loss.
1691
+ :param str model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
1692
+ """
1478
1693
  pulumi.set(__self__, "final_accuracy", final_accuracy)
1479
1694
  pulumi.set(__self__, "final_loss", final_loss)
1480
1695
  pulumi.set(__self__, "model_metrics_type", model_metrics_type)
@@ -1482,16 +1697,25 @@ class GetModelsModelCollectionItemModelMetricResult(dict):
1482
1697
  @property
1483
1698
  @pulumi.getter(name="finalAccuracy")
1484
1699
  def final_accuracy(self) -> float:
1700
+ """
1701
+ Fine-tuned model accuracy.
1702
+ """
1485
1703
  return pulumi.get(self, "final_accuracy")
1486
1704
 
1487
1705
  @property
1488
1706
  @pulumi.getter(name="finalLoss")
1489
1707
  def final_loss(self) -> float:
1708
+ """
1709
+ Fine-tuned model loss.
1710
+ """
1490
1711
  return pulumi.get(self, "final_loss")
1491
1712
 
1492
1713
  @property
1493
1714
  @pulumi.getter(name="modelMetricsType")
1494
1715
  def model_metrics_type(self) -> str:
1716
+ """
1717
+ The type of the model metrics. Each type of model can expect a different set of model metrics.
1718
+ """
1495
1719
  return pulumi.get(self, "model_metrics_type")
1496
1720
 
1497
1721