pulumi-oci 1.20.0a1705991859__py3-none-any.whl → 1.21.0a1706309702__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. pulumi_oci/__init__.py +35 -0
  2. pulumi_oci/core/get_boot_volume_attachments.py +36 -2
  3. pulumi_oci/database/autonomous_database_wallet.py +18 -0
  4. pulumi_oci/database/vm_cluster_network.py +20 -7
  5. pulumi_oci/generativeai/__init__.py +18 -0
  6. pulumi_oci/generativeai/_inputs.py +534 -0
  7. pulumi_oci/generativeai/dedicated_ai_cluster.py +808 -0
  8. pulumi_oci/generativeai/endpoint.py +717 -0
  9. pulumi_oci/generativeai/get_dedicated_ai_cluster.py +288 -0
  10. pulumi_oci/generativeai/get_dedicated_ai_clusters.py +183 -0
  11. pulumi_oci/generativeai/get_endpoint.py +275 -0
  12. pulumi_oci/generativeai/get_endpoints.py +183 -0
  13. pulumi_oci/generativeai/get_model.py +353 -0
  14. pulumi_oci/generativeai/get_models.py +220 -0
  15. pulumi_oci/generativeai/model.py +858 -0
  16. pulumi_oci/generativeai/outputs.py +1721 -0
  17. pulumi_oci/loadbalancer/_inputs.py +12 -0
  18. pulumi_oci/loadbalancer/outputs.py +12 -0
  19. pulumi_oci/marketplace/get_publication.py +14 -1
  20. pulumi_oci/marketplace/outputs.py +11 -0
  21. pulumi_oci/marketplace/publication.py +28 -0
  22. pulumi_oci/stackmonitoring/__init__.py +3 -0
  23. pulumi_oci/stackmonitoring/_inputs.py +143 -0
  24. pulumi_oci/stackmonitoring/get_process_set.py +236 -0
  25. pulumi_oci/stackmonitoring/get_process_sets.py +156 -0
  26. pulumi_oci/stackmonitoring/outputs.py +422 -0
  27. pulumi_oci/stackmonitoring/process_set.py +548 -0
  28. {pulumi_oci-1.20.0a1705991859.dist-info → pulumi_oci-1.21.0a1706309702.dist-info}/METADATA +1 -1
  29. {pulumi_oci-1.20.0a1705991859.dist-info → pulumi_oci-1.21.0a1706309702.dist-info}/RECORD +31 -16
  30. {pulumi_oci-1.20.0a1705991859.dist-info → pulumi_oci-1.21.0a1706309702.dist-info}/WHEEL +0 -0
  31. {pulumi_oci-1.20.0a1705991859.dist-info → pulumi_oci-1.21.0a1706309702.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,534 @@
1
+ # coding=utf-8
2
+ # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. ***
3
+ # *** Do not edit by hand unless you're certain you know what you are doing! ***
4
+
5
+ import copy
6
+ import warnings
7
+ import pulumi
8
+ import pulumi.runtime
9
+ from typing import Any, Mapping, Optional, Sequence, Union, overload
10
+ from .. import _utilities
11
+
12
+ __all__ = [
13
+ 'DedicatedAiClusterCapacityArgs',
14
+ 'EndpointContentModerationConfigArgs',
15
+ 'ModelFineTuneDetailsArgs',
16
+ 'ModelFineTuneDetailsTrainingConfigArgs',
17
+ 'ModelFineTuneDetailsTrainingDatasetArgs',
18
+ 'ModelModelMetricArgs',
19
+ 'GetDedicatedAiClustersFilterArgs',
20
+ 'GetEndpointsFilterArgs',
21
+ 'GetModelsFilterArgs',
22
+ ]
23
+
24
+ @pulumi.input_type
25
+ class DedicatedAiClusterCapacityArgs:
26
+ def __init__(__self__, *,
27
+ capacity_type: Optional[pulumi.Input[str]] = None,
28
+ total_endpoint_capacity: Optional[pulumi.Input[int]] = None,
29
+ used_endpoint_capacity: Optional[pulumi.Input[int]] = None):
30
+ """
31
+ :param pulumi.Input[str] capacity_type: The type of the dedicated AI cluster capacity.
32
+ :param pulumi.Input[int] total_endpoint_capacity: The total number of endpoints that can be hosted on this dedicated AI cluster.
33
+ :param pulumi.Input[int] used_endpoint_capacity: The number of endpoints hosted on this dedicated AI cluster.
34
+ """
35
+ if capacity_type is not None:
36
+ pulumi.set(__self__, "capacity_type", capacity_type)
37
+ if total_endpoint_capacity is not None:
38
+ pulumi.set(__self__, "total_endpoint_capacity", total_endpoint_capacity)
39
+ if used_endpoint_capacity is not None:
40
+ pulumi.set(__self__, "used_endpoint_capacity", used_endpoint_capacity)
41
+
42
+ @property
43
+ @pulumi.getter(name="capacityType")
44
+ def capacity_type(self) -> Optional[pulumi.Input[str]]:
45
+ """
46
+ The type of the dedicated AI cluster capacity.
47
+ """
48
+ return pulumi.get(self, "capacity_type")
49
+
50
+ @capacity_type.setter
51
+ def capacity_type(self, value: Optional[pulumi.Input[str]]):
52
+ pulumi.set(self, "capacity_type", value)
53
+
54
+ @property
55
+ @pulumi.getter(name="totalEndpointCapacity")
56
+ def total_endpoint_capacity(self) -> Optional[pulumi.Input[int]]:
57
+ """
58
+ The total number of endpoints that can be hosted on this dedicated AI cluster.
59
+ """
60
+ return pulumi.get(self, "total_endpoint_capacity")
61
+
62
+ @total_endpoint_capacity.setter
63
+ def total_endpoint_capacity(self, value: Optional[pulumi.Input[int]]):
64
+ pulumi.set(self, "total_endpoint_capacity", value)
65
+
66
+ @property
67
+ @pulumi.getter(name="usedEndpointCapacity")
68
+ def used_endpoint_capacity(self) -> Optional[pulumi.Input[int]]:
69
+ """
70
+ The number of endpoints hosted on this dedicated AI cluster.
71
+ """
72
+ return pulumi.get(self, "used_endpoint_capacity")
73
+
74
+ @used_endpoint_capacity.setter
75
+ def used_endpoint_capacity(self, value: Optional[pulumi.Input[int]]):
76
+ pulumi.set(self, "used_endpoint_capacity", value)
77
+
78
+
79
+ @pulumi.input_type
80
+ class EndpointContentModerationConfigArgs:
81
+ def __init__(__self__, *,
82
+ is_enabled: pulumi.Input[bool]):
83
+ """
84
+ :param pulumi.Input[bool] is_enabled: (Updatable) Whether to enable the content moderation feature.
85
+ """
86
+ pulumi.set(__self__, "is_enabled", is_enabled)
87
+
88
+ @property
89
+ @pulumi.getter(name="isEnabled")
90
+ def is_enabled(self) -> pulumi.Input[bool]:
91
+ """
92
+ (Updatable) Whether to enable the content moderation feature.
93
+ """
94
+ return pulumi.get(self, "is_enabled")
95
+
96
+ @is_enabled.setter
97
+ def is_enabled(self, value: pulumi.Input[bool]):
98
+ pulumi.set(self, "is_enabled", value)
99
+
100
+
101
+ @pulumi.input_type
102
+ class ModelFineTuneDetailsArgs:
103
+ def __init__(__self__, *,
104
+ dedicated_ai_cluster_id: pulumi.Input[str],
105
+ training_dataset: pulumi.Input['ModelFineTuneDetailsTrainingDatasetArgs'],
106
+ training_config: Optional[pulumi.Input['ModelFineTuneDetailsTrainingConfigArgs']] = None):
107
+ """
108
+ :param pulumi.Input[str] dedicated_ai_cluster_id: The OCID of the dedicated AI cluster this fine-tuning runs on.
109
+ :param pulumi.Input['ModelFineTuneDetailsTrainingDatasetArgs'] training_dataset: The dataset used to fine-tune the model.
110
+
111
+ Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
112
+ :param pulumi.Input['ModelFineTuneDetailsTrainingConfigArgs'] training_config: The fine-tuning method and hyperparameters used for fine-tuning a custom model.
113
+ """
114
+ pulumi.set(__self__, "dedicated_ai_cluster_id", dedicated_ai_cluster_id)
115
+ pulumi.set(__self__, "training_dataset", training_dataset)
116
+ if training_config is not None:
117
+ pulumi.set(__self__, "training_config", training_config)
118
+
119
+ @property
120
+ @pulumi.getter(name="dedicatedAiClusterId")
121
+ def dedicated_ai_cluster_id(self) -> pulumi.Input[str]:
122
+ """
123
+ The OCID of the dedicated AI cluster this fine-tuning runs on.
124
+ """
125
+ return pulumi.get(self, "dedicated_ai_cluster_id")
126
+
127
+ @dedicated_ai_cluster_id.setter
128
+ def dedicated_ai_cluster_id(self, value: pulumi.Input[str]):
129
+ pulumi.set(self, "dedicated_ai_cluster_id", value)
130
+
131
+ @property
132
+ @pulumi.getter(name="trainingDataset")
133
+ def training_dataset(self) -> pulumi.Input['ModelFineTuneDetailsTrainingDatasetArgs']:
134
+ """
135
+ The dataset used to fine-tune the model.
136
+
137
+ Only one dataset is allowed per custom model, which is split 90-10 for training and validating. You must provide the dataset in a JSON Lines (JSONL) file. Each line in the JSONL file must have the format: `{"prompt": "<first prompt>", "completion": "<expected completion given first prompt>"}`
138
+ """
139
+ return pulumi.get(self, "training_dataset")
140
+
141
+ @training_dataset.setter
142
+ def training_dataset(self, value: pulumi.Input['ModelFineTuneDetailsTrainingDatasetArgs']):
143
+ pulumi.set(self, "training_dataset", value)
144
+
145
+ @property
146
+ @pulumi.getter(name="trainingConfig")
147
+ def training_config(self) -> Optional[pulumi.Input['ModelFineTuneDetailsTrainingConfigArgs']]:
148
+ """
149
+ The fine-tuning method and hyperparameters used for fine-tuning a custom model.
150
+ """
151
+ return pulumi.get(self, "training_config")
152
+
153
+ @training_config.setter
154
+ def training_config(self, value: Optional[pulumi.Input['ModelFineTuneDetailsTrainingConfigArgs']]):
155
+ pulumi.set(self, "training_config", value)
156
+
157
+
158
+ @pulumi.input_type
159
+ class ModelFineTuneDetailsTrainingConfigArgs:
160
+ def __init__(__self__, *,
161
+ training_config_type: pulumi.Input[str],
162
+ early_stopping_patience: Optional[pulumi.Input[int]] = None,
163
+ early_stopping_threshold: Optional[pulumi.Input[float]] = None,
164
+ learning_rate: Optional[pulumi.Input[float]] = None,
165
+ log_model_metrics_interval_in_steps: Optional[pulumi.Input[int]] = None,
166
+ num_of_last_layers: Optional[pulumi.Input[int]] = None,
167
+ total_training_epochs: Optional[pulumi.Input[int]] = None,
168
+ training_batch_size: Optional[pulumi.Input[int]] = None):
169
+ """
170
+ :param pulumi.Input[str] training_config_type: The fine-tuning method for training a custom model.
171
+ :param pulumi.Input[int] early_stopping_patience: Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
172
+ :param pulumi.Input[float] early_stopping_threshold: How much the loss must improve to prevent early stopping.
173
+ :param pulumi.Input[float] learning_rate: The initial learning rate to be used during training
174
+ :param pulumi.Input[int] log_model_metrics_interval_in_steps: Determines how frequently to log model metrics.
175
+
176
+ Every step is logged for the first 20 steps and then follows this parameter for log frequency. Set to 0 to disable logging the model metrics.
177
+ :param pulumi.Input[int] num_of_last_layers: The number of last layers to be fine-tuned.
178
+ :param pulumi.Input[int] total_training_epochs: The maximum number of training epochs to run for.
179
+ :param pulumi.Input[int] training_batch_size: The batch size used during training.
180
+ """
181
+ pulumi.set(__self__, "training_config_type", training_config_type)
182
+ if early_stopping_patience is not None:
183
+ pulumi.set(__self__, "early_stopping_patience", early_stopping_patience)
184
+ if early_stopping_threshold is not None:
185
+ pulumi.set(__self__, "early_stopping_threshold", early_stopping_threshold)
186
+ if learning_rate is not None:
187
+ pulumi.set(__self__, "learning_rate", learning_rate)
188
+ if log_model_metrics_interval_in_steps is not None:
189
+ pulumi.set(__self__, "log_model_metrics_interval_in_steps", log_model_metrics_interval_in_steps)
190
+ if num_of_last_layers is not None:
191
+ pulumi.set(__self__, "num_of_last_layers", num_of_last_layers)
192
+ if total_training_epochs is not None:
193
+ pulumi.set(__self__, "total_training_epochs", total_training_epochs)
194
+ if training_batch_size is not None:
195
+ pulumi.set(__self__, "training_batch_size", training_batch_size)
196
+
197
+ @property
198
+ @pulumi.getter(name="trainingConfigType")
199
+ def training_config_type(self) -> pulumi.Input[str]:
200
+ """
201
+ The fine-tuning method for training a custom model.
202
+ """
203
+ return pulumi.get(self, "training_config_type")
204
+
205
+ @training_config_type.setter
206
+ def training_config_type(self, value: pulumi.Input[str]):
207
+ pulumi.set(self, "training_config_type", value)
208
+
209
+ @property
210
+ @pulumi.getter(name="earlyStoppingPatience")
211
+ def early_stopping_patience(self) -> Optional[pulumi.Input[int]]:
212
+ """
213
+ Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
214
+ """
215
+ return pulumi.get(self, "early_stopping_patience")
216
+
217
+ @early_stopping_patience.setter
218
+ def early_stopping_patience(self, value: Optional[pulumi.Input[int]]):
219
+ pulumi.set(self, "early_stopping_patience", value)
220
+
221
+ @property
222
+ @pulumi.getter(name="earlyStoppingThreshold")
223
+ def early_stopping_threshold(self) -> Optional[pulumi.Input[float]]:
224
+ """
225
+ How much the loss must improve to prevent early stopping.
226
+ """
227
+ return pulumi.get(self, "early_stopping_threshold")
228
+
229
+ @early_stopping_threshold.setter
230
+ def early_stopping_threshold(self, value: Optional[pulumi.Input[float]]):
231
+ pulumi.set(self, "early_stopping_threshold", value)
232
+
233
+ @property
234
+ @pulumi.getter(name="learningRate")
235
+ def learning_rate(self) -> Optional[pulumi.Input[float]]:
236
+ """
237
+ The initial learning rate to be used during training
238
+ """
239
+ return pulumi.get(self, "learning_rate")
240
+
241
+ @learning_rate.setter
242
+ def learning_rate(self, value: Optional[pulumi.Input[float]]):
243
+ pulumi.set(self, "learning_rate", value)
244
+
245
+ @property
246
+ @pulumi.getter(name="logModelMetricsIntervalInSteps")
247
+ def log_model_metrics_interval_in_steps(self) -> Optional[pulumi.Input[int]]:
248
+ """
249
+ Determines how frequently to log model metrics.
250
+
251
+ Every step is logged for the first 20 steps and then follows this parameter for log frequency. Set to 0 to disable logging the model metrics.
252
+ """
253
+ return pulumi.get(self, "log_model_metrics_interval_in_steps")
254
+
255
+ @log_model_metrics_interval_in_steps.setter
256
+ def log_model_metrics_interval_in_steps(self, value: Optional[pulumi.Input[int]]):
257
+ pulumi.set(self, "log_model_metrics_interval_in_steps", value)
258
+
259
+ @property
260
+ @pulumi.getter(name="numOfLastLayers")
261
+ def num_of_last_layers(self) -> Optional[pulumi.Input[int]]:
262
+ """
263
+ The number of last layers to be fine-tuned.
264
+ """
265
+ return pulumi.get(self, "num_of_last_layers")
266
+
267
+ @num_of_last_layers.setter
268
+ def num_of_last_layers(self, value: Optional[pulumi.Input[int]]):
269
+ pulumi.set(self, "num_of_last_layers", value)
270
+
271
+ @property
272
+ @pulumi.getter(name="totalTrainingEpochs")
273
+ def total_training_epochs(self) -> Optional[pulumi.Input[int]]:
274
+ """
275
+ The maximum number of training epochs to run for.
276
+ """
277
+ return pulumi.get(self, "total_training_epochs")
278
+
279
+ @total_training_epochs.setter
280
+ def total_training_epochs(self, value: Optional[pulumi.Input[int]]):
281
+ pulumi.set(self, "total_training_epochs", value)
282
+
283
+ @property
284
+ @pulumi.getter(name="trainingBatchSize")
285
+ def training_batch_size(self) -> Optional[pulumi.Input[int]]:
286
+ """
287
+ The batch size used during training.
288
+ """
289
+ return pulumi.get(self, "training_batch_size")
290
+
291
+ @training_batch_size.setter
292
+ def training_batch_size(self, value: Optional[pulumi.Input[int]]):
293
+ pulumi.set(self, "training_batch_size", value)
294
+
295
+
296
+ @pulumi.input_type
297
+ class ModelFineTuneDetailsTrainingDatasetArgs:
298
+ def __init__(__self__, *,
299
+ bucket: pulumi.Input[str],
300
+ dataset_type: pulumi.Input[str],
301
+ namespace: pulumi.Input[str],
302
+ object: pulumi.Input[str]):
303
+ """
304
+ :param pulumi.Input[str] bucket: The Object Storage bucket name.
305
+ :param pulumi.Input[str] dataset_type: The type of the data asset.
306
+ :param pulumi.Input[str] namespace: The Object Storage namespace.
307
+ :param pulumi.Input[str] object: The Object Storage object name.
308
+ """
309
+ pulumi.set(__self__, "bucket", bucket)
310
+ pulumi.set(__self__, "dataset_type", dataset_type)
311
+ pulumi.set(__self__, "namespace", namespace)
312
+ pulumi.set(__self__, "object", object)
313
+
314
+ @property
315
+ @pulumi.getter
316
+ def bucket(self) -> pulumi.Input[str]:
317
+ """
318
+ The Object Storage bucket name.
319
+ """
320
+ return pulumi.get(self, "bucket")
321
+
322
+ @bucket.setter
323
+ def bucket(self, value: pulumi.Input[str]):
324
+ pulumi.set(self, "bucket", value)
325
+
326
+ @property
327
+ @pulumi.getter(name="datasetType")
328
+ def dataset_type(self) -> pulumi.Input[str]:
329
+ """
330
+ The type of the data asset.
331
+ """
332
+ return pulumi.get(self, "dataset_type")
333
+
334
+ @dataset_type.setter
335
+ def dataset_type(self, value: pulumi.Input[str]):
336
+ pulumi.set(self, "dataset_type", value)
337
+
338
+ @property
339
+ @pulumi.getter
340
+ def namespace(self) -> pulumi.Input[str]:
341
+ """
342
+ The Object Storage namespace.
343
+ """
344
+ return pulumi.get(self, "namespace")
345
+
346
+ @namespace.setter
347
+ def namespace(self, value: pulumi.Input[str]):
348
+ pulumi.set(self, "namespace", value)
349
+
350
+ @property
351
+ @pulumi.getter
352
+ def object(self) -> pulumi.Input[str]:
353
+ """
354
+ The Object Storage object name.
355
+ """
356
+ return pulumi.get(self, "object")
357
+
358
+ @object.setter
359
+ def object(self, value: pulumi.Input[str]):
360
+ pulumi.set(self, "object", value)
361
+
362
+
363
+ @pulumi.input_type
364
+ class ModelModelMetricArgs:
365
+ def __init__(__self__, *,
366
+ final_accuracy: Optional[pulumi.Input[float]] = None,
367
+ final_loss: Optional[pulumi.Input[float]] = None,
368
+ model_metrics_type: Optional[pulumi.Input[str]] = None):
369
+ """
370
+ :param pulumi.Input[float] final_accuracy: Fine-tuned model accuracy.
371
+ :param pulumi.Input[float] final_loss: Fine-tuned model loss.
372
+ :param pulumi.Input[str] model_metrics_type: The type of the model metrics. Each type of model can expect a different set of model metrics.
373
+ """
374
+ if final_accuracy is not None:
375
+ pulumi.set(__self__, "final_accuracy", final_accuracy)
376
+ if final_loss is not None:
377
+ pulumi.set(__self__, "final_loss", final_loss)
378
+ if model_metrics_type is not None:
379
+ pulumi.set(__self__, "model_metrics_type", model_metrics_type)
380
+
381
+ @property
382
+ @pulumi.getter(name="finalAccuracy")
383
+ def final_accuracy(self) -> Optional[pulumi.Input[float]]:
384
+ """
385
+ Fine-tuned model accuracy.
386
+ """
387
+ return pulumi.get(self, "final_accuracy")
388
+
389
+ @final_accuracy.setter
390
+ def final_accuracy(self, value: Optional[pulumi.Input[float]]):
391
+ pulumi.set(self, "final_accuracy", value)
392
+
393
+ @property
394
+ @pulumi.getter(name="finalLoss")
395
+ def final_loss(self) -> Optional[pulumi.Input[float]]:
396
+ """
397
+ Fine-tuned model loss.
398
+ """
399
+ return pulumi.get(self, "final_loss")
400
+
401
+ @final_loss.setter
402
+ def final_loss(self, value: Optional[pulumi.Input[float]]):
403
+ pulumi.set(self, "final_loss", value)
404
+
405
+ @property
406
+ @pulumi.getter(name="modelMetricsType")
407
+ def model_metrics_type(self) -> Optional[pulumi.Input[str]]:
408
+ """
409
+ The type of the model metrics. Each type of model can expect a different set of model metrics.
410
+ """
411
+ return pulumi.get(self, "model_metrics_type")
412
+
413
+ @model_metrics_type.setter
414
+ def model_metrics_type(self, value: Optional[pulumi.Input[str]]):
415
+ pulumi.set(self, "model_metrics_type", value)
416
+
417
+
418
+ @pulumi.input_type
419
+ class GetDedicatedAiClustersFilterArgs:
420
+ def __init__(__self__, *,
421
+ name: str,
422
+ values: Sequence[str],
423
+ regex: Optional[bool] = None):
424
+ pulumi.set(__self__, "name", name)
425
+ pulumi.set(__self__, "values", values)
426
+ if regex is not None:
427
+ pulumi.set(__self__, "regex", regex)
428
+
429
+ @property
430
+ @pulumi.getter
431
+ def name(self) -> str:
432
+ return pulumi.get(self, "name")
433
+
434
+ @name.setter
435
+ def name(self, value: str):
436
+ pulumi.set(self, "name", value)
437
+
438
+ @property
439
+ @pulumi.getter
440
+ def values(self) -> Sequence[str]:
441
+ return pulumi.get(self, "values")
442
+
443
+ @values.setter
444
+ def values(self, value: Sequence[str]):
445
+ pulumi.set(self, "values", value)
446
+
447
+ @property
448
+ @pulumi.getter
449
+ def regex(self) -> Optional[bool]:
450
+ return pulumi.get(self, "regex")
451
+
452
+ @regex.setter
453
+ def regex(self, value: Optional[bool]):
454
+ pulumi.set(self, "regex", value)
455
+
456
+
457
+ @pulumi.input_type
458
+ class GetEndpointsFilterArgs:
459
+ def __init__(__self__, *,
460
+ name: str,
461
+ values: Sequence[str],
462
+ regex: Optional[bool] = None):
463
+ pulumi.set(__self__, "name", name)
464
+ pulumi.set(__self__, "values", values)
465
+ if regex is not None:
466
+ pulumi.set(__self__, "regex", regex)
467
+
468
+ @property
469
+ @pulumi.getter
470
+ def name(self) -> str:
471
+ return pulumi.get(self, "name")
472
+
473
+ @name.setter
474
+ def name(self, value: str):
475
+ pulumi.set(self, "name", value)
476
+
477
+ @property
478
+ @pulumi.getter
479
+ def values(self) -> Sequence[str]:
480
+ return pulumi.get(self, "values")
481
+
482
+ @values.setter
483
+ def values(self, value: Sequence[str]):
484
+ pulumi.set(self, "values", value)
485
+
486
+ @property
487
+ @pulumi.getter
488
+ def regex(self) -> Optional[bool]:
489
+ return pulumi.get(self, "regex")
490
+
491
+ @regex.setter
492
+ def regex(self, value: Optional[bool]):
493
+ pulumi.set(self, "regex", value)
494
+
495
+
496
+ @pulumi.input_type
497
+ class GetModelsFilterArgs:
498
+ def __init__(__self__, *,
499
+ name: str,
500
+ values: Sequence[str],
501
+ regex: Optional[bool] = None):
502
+ pulumi.set(__self__, "name", name)
503
+ pulumi.set(__self__, "values", values)
504
+ if regex is not None:
505
+ pulumi.set(__self__, "regex", regex)
506
+
507
+ @property
508
+ @pulumi.getter
509
+ def name(self) -> str:
510
+ return pulumi.get(self, "name")
511
+
512
+ @name.setter
513
+ def name(self, value: str):
514
+ pulumi.set(self, "name", value)
515
+
516
+ @property
517
+ @pulumi.getter
518
+ def values(self) -> Sequence[str]:
519
+ return pulumi.get(self, "values")
520
+
521
+ @values.setter
522
+ def values(self, value: Sequence[str]):
523
+ pulumi.set(self, "values", value)
524
+
525
+ @property
526
+ @pulumi.getter
527
+ def regex(self) -> Optional[bool]:
528
+ return pulumi.get(self, "regex")
529
+
530
+ @regex.setter
531
+ def regex(self, value: Optional[bool]):
532
+ pulumi.set(self, "regex", value)
533
+
534
+