pulumi-alicloud 3.77.0a1746076596__py3-none-any.whl → 3.77.0a1746220593__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pulumi-alicloud might be problematic. Click here for more details.

Files changed (83) hide show
  1. pulumi_alicloud/__init__.py +72 -0
  2. pulumi_alicloud/_inputs.py +13 -0
  3. pulumi_alicloud/adb/db_cluster_lake_version.py +94 -0
  4. pulumi_alicloud/alb/_inputs.py +6 -3
  5. pulumi_alicloud/alb/outputs.py +4 -2
  6. pulumi_alicloud/apig/environment.py +2 -2
  7. pulumi_alicloud/apig/http_api.py +2 -2
  8. pulumi_alicloud/arms/grafana_workspace.py +56 -14
  9. pulumi_alicloud/cloudfirewall/instance_member.py +4 -4
  10. pulumi_alicloud/cloudfirewall/vpc_cen_tr_firewall.py +2 -2
  11. pulumi_alicloud/cloudsso/_inputs.py +697 -7
  12. pulumi_alicloud/cloudsso/directory.py +345 -65
  13. pulumi_alicloud/cloudsso/outputs.py +557 -8
  14. pulumi_alicloud/config/outputs.py +8 -0
  15. pulumi_alicloud/cs/_inputs.py +18 -18
  16. pulumi_alicloud/cs/edge_kubernetes.py +136 -100
  17. pulumi_alicloud/cs/get_kubernetes_node_pools.py +21 -1
  18. pulumi_alicloud/cs/kubernetes.py +118 -39
  19. pulumi_alicloud/cs/managed_kubernetes.py +125 -46
  20. pulumi_alicloud/cs/outputs.py +14 -14
  21. pulumi_alicloud/cs/serverless_kubernetes.py +66 -73
  22. pulumi_alicloud/ddos/ddos_coo_instance.py +175 -25
  23. pulumi_alicloud/dns/ddos_coo_instance.py +175 -25
  24. pulumi_alicloud/dts/job_monitor_rule.py +2 -2
  25. pulumi_alicloud/dts/synchronization_job.py +2 -2
  26. pulumi_alicloud/ecs/get_instance_types.py +4 -4
  27. pulumi_alicloud/ecs/instance.py +28 -28
  28. pulumi_alicloud/ecs/outputs.py +2 -2
  29. pulumi_alicloud/ecs/security_group_rule.py +32 -4
  30. pulumi_alicloud/eflo/__init__.py +3 -0
  31. pulumi_alicloud/eflo/_inputs.py +623 -0
  32. pulumi_alicloud/eflo/experiment_plan.py +573 -0
  33. pulumi_alicloud/eflo/experiment_plan_template.py +464 -0
  34. pulumi_alicloud/eflo/outputs.py +476 -0
  35. pulumi_alicloud/eflo/resource.py +388 -0
  36. pulumi_alicloud/ens/disk.py +120 -69
  37. pulumi_alicloud/ens/eip.py +45 -41
  38. pulumi_alicloud/esa/__init__.py +2 -0
  39. pulumi_alicloud/esa/scheduled_preload_execution.py +479 -0
  40. pulumi_alicloud/esa/scheduled_preload_job.py +467 -0
  41. pulumi_alicloud/gwlb/listener.py +2 -2
  42. pulumi_alicloud/gwlb/load_balancer.py +2 -2
  43. pulumi_alicloud/gwlb/server_group.py +2 -2
  44. pulumi_alicloud/ims/__init__.py +2 -0
  45. pulumi_alicloud/ims/get_oidc_providers.py +216 -0
  46. pulumi_alicloud/ims/outputs.py +138 -0
  47. pulumi_alicloud/mongodb/__init__.py +2 -0
  48. pulumi_alicloud/mongodb/_inputs.py +154 -0
  49. pulumi_alicloud/mongodb/instance.py +7 -7
  50. pulumi_alicloud/mongodb/outputs.py +121 -0
  51. pulumi_alicloud/mongodb/public_network_address.py +275 -0
  52. pulumi_alicloud/mongodb/replica_set_role.py +533 -0
  53. pulumi_alicloud/nas/_inputs.py +252 -18
  54. pulumi_alicloud/nas/file_system.py +649 -264
  55. pulumi_alicloud/nas/outputs.py +198 -12
  56. pulumi_alicloud/nlb/server_group_server_attachment.py +4 -0
  57. pulumi_alicloud/pai/__init__.py +1 -0
  58. pulumi_alicloud/pai/flow_pipeline.py +491 -0
  59. pulumi_alicloud/pulumi-plugin.json +1 -1
  60. pulumi_alicloud/ram/__init__.py +1 -0
  61. pulumi_alicloud/ram/get_role_policy_attachments.py +272 -0
  62. pulumi_alicloud/ram/outputs.py +63 -0
  63. pulumi_alicloud/ram/security_preference.py +496 -110
  64. pulumi_alicloud/rdc/organization.py +2 -2
  65. pulumi_alicloud/rds/instance.py +1 -1
  66. pulumi_alicloud/sae/application_scaling_rule.py +2 -2
  67. pulumi_alicloud/sae/ingress.py +2 -2
  68. pulumi_alicloud/schedulerx/app_group.py +2 -2
  69. pulumi_alicloud/schedulerx/job.py +2 -2
  70. pulumi_alicloud/selectdb/db_cluster.py +2 -0
  71. pulumi_alicloud/selectdb/db_instance.py +43 -13
  72. pulumi_alicloud/selectdb/get_db_clusters.py +2 -0
  73. pulumi_alicloud/selectdb/get_db_instances.py +2 -0
  74. pulumi_alicloud/selectdb/outputs.py +3 -3
  75. pulumi_alicloud/sls/__init__.py +1 -0
  76. pulumi_alicloud/sls/_inputs.py +295 -0
  77. pulumi_alicloud/sls/etl.py +516 -0
  78. pulumi_alicloud/sls/outputs.py +209 -0
  79. pulumi_alicloud/vpc/network.py +156 -88
  80. {pulumi_alicloud-3.77.0a1746076596.dist-info → pulumi_alicloud-3.77.0a1746220593.dist-info}/METADATA +1 -1
  81. {pulumi_alicloud-3.77.0a1746076596.dist-info → pulumi_alicloud-3.77.0a1746220593.dist-info}/RECORD +83 -71
  82. {pulumi_alicloud-3.77.0a1746076596.dist-info → pulumi_alicloud-3.77.0a1746220593.dist-info}/WHEEL +0 -0
  83. {pulumi_alicloud-3.77.0a1746076596.dist-info → pulumi_alicloud-3.77.0a1746220593.dist-info}/top_level.txt +0 -0
@@ -46,6 +46,10 @@ __all__ = [
46
46
  'ClusterNodeGroupArgsDict',
47
47
  'ClusterNodeGroupNodeArgs',
48
48
  'ClusterNodeGroupNodeArgsDict',
49
+ 'ExperimentPlanTemplateTemplatePipelineArgs',
50
+ 'ExperimentPlanTemplateTemplatePipelineArgsDict',
51
+ 'ExperimentPlanTemplateTemplatePipelineEnvParamsArgs',
52
+ 'ExperimentPlanTemplateTemplatePipelineEnvParamsArgsDict',
49
53
  'NodeGroupIpAllocationPolicyArgs',
50
54
  'NodeGroupIpAllocationPolicyArgsDict',
51
55
  'NodeGroupIpAllocationPolicyBondPolicyArgs',
@@ -62,6 +66,10 @@ __all__ = [
62
66
  'NodeGroupIpAllocationPolicyNodePolicyBondArgsDict',
63
67
  'NodeGroupNodeArgs',
64
68
  'NodeGroupNodeArgsDict',
69
+ 'ResourceMachineTypesArgs',
70
+ 'ResourceMachineTypesArgsDict',
71
+ 'ResourceUserAccessParamArgs',
72
+ 'ResourceUserAccessParamArgsDict',
65
73
  ]
66
74
 
67
75
  MYPY = False
@@ -1227,6 +1235,323 @@ class ClusterNodeGroupNodeArgs:
1227
1235
  pulumi.set(self, "vswitch_id", value)
1228
1236
 
1229
1237
 
1238
+ if not MYPY:
1239
+ class ExperimentPlanTemplateTemplatePipelineArgsDict(TypedDict):
1240
+ env_params: pulumi.Input['ExperimentPlanTemplateTemplatePipelineEnvParamsArgsDict']
1241
+ """
1242
+ Contains a series of parameters related to the environment. See `env_params` below.
1243
+ """
1244
+ pipeline_order: pulumi.Input[builtins.int]
1245
+ """
1246
+ Indicates the sequence number of the pipeline node.
1247
+ """
1248
+ scene: pulumi.Input[builtins.str]
1249
+ """
1250
+ The use of the template scenario. It can have the following optional parameters:
1251
+ - baseline: benchmark evaluation
1252
+ """
1253
+ workload_id: pulumi.Input[builtins.int]
1254
+ """
1255
+ Used to uniquely identify a specific payload.
1256
+ """
1257
+ workload_name: pulumi.Input[builtins.str]
1258
+ """
1259
+ The name used to represent a specific payload.
1260
+ """
1261
+ setting_params: NotRequired[pulumi.Input[Mapping[str, pulumi.Input[builtins.str]]]]
1262
+ """
1263
+ Represents additional parameters for the run.
1264
+ """
1265
+ elif False:
1266
+ ExperimentPlanTemplateTemplatePipelineArgsDict: TypeAlias = Mapping[str, Any]
1267
+
1268
+ @pulumi.input_type
1269
+ class ExperimentPlanTemplateTemplatePipelineArgs:
1270
+ def __init__(__self__, *,
1271
+ env_params: pulumi.Input['ExperimentPlanTemplateTemplatePipelineEnvParamsArgs'],
1272
+ pipeline_order: pulumi.Input[builtins.int],
1273
+ scene: pulumi.Input[builtins.str],
1274
+ workload_id: pulumi.Input[builtins.int],
1275
+ workload_name: pulumi.Input[builtins.str],
1276
+ setting_params: Optional[pulumi.Input[Mapping[str, pulumi.Input[builtins.str]]]] = None):
1277
+ """
1278
+ :param pulumi.Input['ExperimentPlanTemplateTemplatePipelineEnvParamsArgs'] env_params: Contains a series of parameters related to the environment. See `env_params` below.
1279
+ :param pulumi.Input[builtins.int] pipeline_order: Indicates the sequence number of the pipeline node.
1280
+ :param pulumi.Input[builtins.str] scene: The use of the template scenario. It can have the following optional parameters:
1281
+ - baseline: benchmark evaluation
1282
+ :param pulumi.Input[builtins.int] workload_id: Used to uniquely identify a specific payload.
1283
+ :param pulumi.Input[builtins.str] workload_name: The name used to represent a specific payload.
1284
+ :param pulumi.Input[Mapping[str, pulumi.Input[builtins.str]]] setting_params: Represents additional parameters for the run.
1285
+ """
1286
+ pulumi.set(__self__, "env_params", env_params)
1287
+ pulumi.set(__self__, "pipeline_order", pipeline_order)
1288
+ pulumi.set(__self__, "scene", scene)
1289
+ pulumi.set(__self__, "workload_id", workload_id)
1290
+ pulumi.set(__self__, "workload_name", workload_name)
1291
+ if setting_params is not None:
1292
+ pulumi.set(__self__, "setting_params", setting_params)
1293
+
1294
+ @property
1295
+ @pulumi.getter(name="envParams")
1296
+ def env_params(self) -> pulumi.Input['ExperimentPlanTemplateTemplatePipelineEnvParamsArgs']:
1297
+ """
1298
+ Contains a series of parameters related to the environment. See `env_params` below.
1299
+ """
1300
+ return pulumi.get(self, "env_params")
1301
+
1302
+ @env_params.setter
1303
+ def env_params(self, value: pulumi.Input['ExperimentPlanTemplateTemplatePipelineEnvParamsArgs']):
1304
+ pulumi.set(self, "env_params", value)
1305
+
1306
+ @property
1307
+ @pulumi.getter(name="pipelineOrder")
1308
+ def pipeline_order(self) -> pulumi.Input[builtins.int]:
1309
+ """
1310
+ Indicates the sequence number of the pipeline node.
1311
+ """
1312
+ return pulumi.get(self, "pipeline_order")
1313
+
1314
+ @pipeline_order.setter
1315
+ def pipeline_order(self, value: pulumi.Input[builtins.int]):
1316
+ pulumi.set(self, "pipeline_order", value)
1317
+
1318
+ @property
1319
+ @pulumi.getter
1320
+ def scene(self) -> pulumi.Input[builtins.str]:
1321
+ """
1322
+ The use of the template scenario. It can have the following optional parameters:
1323
+ - baseline: benchmark evaluation
1324
+ """
1325
+ return pulumi.get(self, "scene")
1326
+
1327
+ @scene.setter
1328
+ def scene(self, value: pulumi.Input[builtins.str]):
1329
+ pulumi.set(self, "scene", value)
1330
+
1331
+ @property
1332
+ @pulumi.getter(name="workloadId")
1333
+ def workload_id(self) -> pulumi.Input[builtins.int]:
1334
+ """
1335
+ Used to uniquely identify a specific payload.
1336
+ """
1337
+ return pulumi.get(self, "workload_id")
1338
+
1339
+ @workload_id.setter
1340
+ def workload_id(self, value: pulumi.Input[builtins.int]):
1341
+ pulumi.set(self, "workload_id", value)
1342
+
1343
+ @property
1344
+ @pulumi.getter(name="workloadName")
1345
+ def workload_name(self) -> pulumi.Input[builtins.str]:
1346
+ """
1347
+ The name used to represent a specific payload.
1348
+ """
1349
+ return pulumi.get(self, "workload_name")
1350
+
1351
+ @workload_name.setter
1352
+ def workload_name(self, value: pulumi.Input[builtins.str]):
1353
+ pulumi.set(self, "workload_name", value)
1354
+
1355
+ @property
1356
+ @pulumi.getter(name="settingParams")
1357
+ def setting_params(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[builtins.str]]]]:
1358
+ """
1359
+ Represents additional parameters for the run.
1360
+ """
1361
+ return pulumi.get(self, "setting_params")
1362
+
1363
+ @setting_params.setter
1364
+ def setting_params(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[builtins.str]]]]):
1365
+ pulumi.set(self, "setting_params", value)
1366
+
1367
+
1368
+ if not MYPY:
1369
+ class ExperimentPlanTemplateTemplatePipelineEnvParamsArgsDict(TypedDict):
1370
+ cpu_per_worker: pulumi.Input[builtins.int]
1371
+ """
1372
+ Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
1373
+ """
1374
+ gpu_per_worker: pulumi.Input[builtins.int]
1375
+ """
1376
+ Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
1377
+ """
1378
+ memory_per_worker: pulumi.Input[builtins.int]
1379
+ """
1380
+ The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
1381
+ """
1382
+ share_memory: pulumi.Input[builtins.int]
1383
+ """
1384
+ Shared memory GB allocation
1385
+ """
1386
+ worker_num: pulumi.Input[builtins.int]
1387
+ """
1388
+ The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
1389
+ """
1390
+ cuda_version: NotRequired[pulumi.Input[builtins.str]]
1391
+ """
1392
+ The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
1393
+ """
1394
+ gpu_driver_version: NotRequired[pulumi.Input[builtins.str]]
1395
+ """
1396
+ The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
1397
+ """
1398
+ nccl_version: NotRequired[pulumi.Input[builtins.str]]
1399
+ """
1400
+ The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
1401
+ """
1402
+ py_torch_version: NotRequired[pulumi.Input[builtins.str]]
1403
+ """
1404
+ The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
1405
+ """
1406
+ elif False:
1407
+ ExperimentPlanTemplateTemplatePipelineEnvParamsArgsDict: TypeAlias = Mapping[str, Any]
1408
+
1409
+ @pulumi.input_type
1410
+ class ExperimentPlanTemplateTemplatePipelineEnvParamsArgs:
1411
+ def __init__(__self__, *,
1412
+ cpu_per_worker: pulumi.Input[builtins.int],
1413
+ gpu_per_worker: pulumi.Input[builtins.int],
1414
+ memory_per_worker: pulumi.Input[builtins.int],
1415
+ share_memory: pulumi.Input[builtins.int],
1416
+ worker_num: pulumi.Input[builtins.int],
1417
+ cuda_version: Optional[pulumi.Input[builtins.str]] = None,
1418
+ gpu_driver_version: Optional[pulumi.Input[builtins.str]] = None,
1419
+ nccl_version: Optional[pulumi.Input[builtins.str]] = None,
1420
+ py_torch_version: Optional[pulumi.Input[builtins.str]] = None):
1421
+ """
1422
+ :param pulumi.Input[builtins.int] cpu_per_worker: Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
1423
+ :param pulumi.Input[builtins.int] gpu_per_worker: Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
1424
+ :param pulumi.Input[builtins.int] memory_per_worker: The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
1425
+ :param pulumi.Input[builtins.int] share_memory: Shared memory GB allocation
1426
+ :param pulumi.Input[builtins.int] worker_num: The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
1427
+ :param pulumi.Input[builtins.str] cuda_version: The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
1428
+ :param pulumi.Input[builtins.str] gpu_driver_version: The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
1429
+ :param pulumi.Input[builtins.str] nccl_version: The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
1430
+ :param pulumi.Input[builtins.str] py_torch_version: The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
1431
+ """
1432
+ pulumi.set(__self__, "cpu_per_worker", cpu_per_worker)
1433
+ pulumi.set(__self__, "gpu_per_worker", gpu_per_worker)
1434
+ pulumi.set(__self__, "memory_per_worker", memory_per_worker)
1435
+ pulumi.set(__self__, "share_memory", share_memory)
1436
+ pulumi.set(__self__, "worker_num", worker_num)
1437
+ if cuda_version is not None:
1438
+ pulumi.set(__self__, "cuda_version", cuda_version)
1439
+ if gpu_driver_version is not None:
1440
+ pulumi.set(__self__, "gpu_driver_version", gpu_driver_version)
1441
+ if nccl_version is not None:
1442
+ pulumi.set(__self__, "nccl_version", nccl_version)
1443
+ if py_torch_version is not None:
1444
+ pulumi.set(__self__, "py_torch_version", py_torch_version)
1445
+
1446
+ @property
1447
+ @pulumi.getter(name="cpuPerWorker")
1448
+ def cpu_per_worker(self) -> pulumi.Input[builtins.int]:
1449
+ """
1450
+ Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
1451
+ """
1452
+ return pulumi.get(self, "cpu_per_worker")
1453
+
1454
+ @cpu_per_worker.setter
1455
+ def cpu_per_worker(self, value: pulumi.Input[builtins.int]):
1456
+ pulumi.set(self, "cpu_per_worker", value)
1457
+
1458
+ @property
1459
+ @pulumi.getter(name="gpuPerWorker")
1460
+ def gpu_per_worker(self) -> pulumi.Input[builtins.int]:
1461
+ """
1462
+ Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
1463
+ """
1464
+ return pulumi.get(self, "gpu_per_worker")
1465
+
1466
+ @gpu_per_worker.setter
1467
+ def gpu_per_worker(self, value: pulumi.Input[builtins.int]):
1468
+ pulumi.set(self, "gpu_per_worker", value)
1469
+
1470
+ @property
1471
+ @pulumi.getter(name="memoryPerWorker")
1472
+ def memory_per_worker(self) -> pulumi.Input[builtins.int]:
1473
+ """
1474
+ The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
1475
+ """
1476
+ return pulumi.get(self, "memory_per_worker")
1477
+
1478
+ @memory_per_worker.setter
1479
+ def memory_per_worker(self, value: pulumi.Input[builtins.int]):
1480
+ pulumi.set(self, "memory_per_worker", value)
1481
+
1482
+ @property
1483
+ @pulumi.getter(name="shareMemory")
1484
+ def share_memory(self) -> pulumi.Input[builtins.int]:
1485
+ """
1486
+ Shared memory GB allocation
1487
+ """
1488
+ return pulumi.get(self, "share_memory")
1489
+
1490
+ @share_memory.setter
1491
+ def share_memory(self, value: pulumi.Input[builtins.int]):
1492
+ pulumi.set(self, "share_memory", value)
1493
+
1494
+ @property
1495
+ @pulumi.getter(name="workerNum")
1496
+ def worker_num(self) -> pulumi.Input[builtins.int]:
1497
+ """
1498
+ The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
1499
+ """
1500
+ return pulumi.get(self, "worker_num")
1501
+
1502
+ @worker_num.setter
1503
+ def worker_num(self, value: pulumi.Input[builtins.int]):
1504
+ pulumi.set(self, "worker_num", value)
1505
+
1506
+ @property
1507
+ @pulumi.getter(name="cudaVersion")
1508
+ def cuda_version(self) -> Optional[pulumi.Input[builtins.str]]:
1509
+ """
1510
+ The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
1511
+ """
1512
+ return pulumi.get(self, "cuda_version")
1513
+
1514
+ @cuda_version.setter
1515
+ def cuda_version(self, value: Optional[pulumi.Input[builtins.str]]):
1516
+ pulumi.set(self, "cuda_version", value)
1517
+
1518
+ @property
1519
+ @pulumi.getter(name="gpuDriverVersion")
1520
+ def gpu_driver_version(self) -> Optional[pulumi.Input[builtins.str]]:
1521
+ """
1522
+ The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
1523
+ """
1524
+ return pulumi.get(self, "gpu_driver_version")
1525
+
1526
+ @gpu_driver_version.setter
1527
+ def gpu_driver_version(self, value: Optional[pulumi.Input[builtins.str]]):
1528
+ pulumi.set(self, "gpu_driver_version", value)
1529
+
1530
+ @property
1531
+ @pulumi.getter(name="ncclVersion")
1532
+ def nccl_version(self) -> Optional[pulumi.Input[builtins.str]]:
1533
+ """
1534
+ The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
1535
+ """
1536
+ return pulumi.get(self, "nccl_version")
1537
+
1538
+ @nccl_version.setter
1539
+ def nccl_version(self, value: Optional[pulumi.Input[builtins.str]]):
1540
+ pulumi.set(self, "nccl_version", value)
1541
+
1542
+ @property
1543
+ @pulumi.getter(name="pyTorchVersion")
1544
+ def py_torch_version(self) -> Optional[pulumi.Input[builtins.str]]:
1545
+ """
1546
+ The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
1547
+ """
1548
+ return pulumi.get(self, "py_torch_version")
1549
+
1550
+ @py_torch_version.setter
1551
+ def py_torch_version(self, value: Optional[pulumi.Input[builtins.str]]):
1552
+ pulumi.set(self, "py_torch_version", value)
1553
+
1554
+
1230
1555
  if not MYPY:
1231
1556
  class NodeGroupIpAllocationPolicyArgsDict(TypedDict):
1232
1557
  bond_policy: NotRequired[pulumi.Input['NodeGroupIpAllocationPolicyBondPolicyArgsDict']]
@@ -1716,3 +2041,301 @@ class NodeGroupNodeArgs:
1716
2041
  pulumi.set(self, "vswitch_id", value)
1717
2042
 
1718
2043
 
2044
+ if not MYPY:
2045
+ class ResourceMachineTypesArgsDict(TypedDict):
2046
+ cpu_info: pulumi.Input[builtins.str]
2047
+ """
2048
+ Provides CPU details, including the number of cores, number of threads, clock frequency, and architecture type. This information helps to evaluate the processing power and identify whether it can meet the performance requirements of a particular application.
2049
+ """
2050
+ gpu_info: pulumi.Input[builtins.str]
2051
+ """
2052
+ Provides detailed information about the GPU, including the number, model, memory size, and computing capability. This information is particularly important for tasks such as deep learning, scientific computing, and graph processing, helping users understand the graph processing capabilities of nodes.
2053
+ """
2054
+ bond_num: NotRequired[pulumi.Input[builtins.int]]
2055
+ """
2056
+ This property specifies the number of network bindings, which relates to the number of physical or virtual network cards connected to the network through the network interface card (NIC). Multiple network bindings can increase bandwidth and redundancy and improve network reliability.
2057
+ """
2058
+ disk_info: NotRequired[pulumi.Input[builtins.str]]
2059
+ """
2060
+ Displays information about the storage device, including the disk type (such as SSD or HDD), capacity, and I/O performance. Storage performance is critical in data-intensive applications such as big data processing and databases.
2061
+ """
2062
+ memory_info: NotRequired[pulumi.Input[builtins.str]]
2063
+ """
2064
+ This property provides memory details, including total memory, available memory, and usage. This helps users understand the memory processing capabilities of compute nodes, especially when running heavy-duty applications.
2065
+ """
2066
+ name: NotRequired[pulumi.Input[builtins.str]]
2067
+ """
2068
+ Specification Name.
2069
+ """
2070
+ network_info: NotRequired[pulumi.Input[builtins.str]]
2071
+ """
2072
+ Contains detailed information about the network interface, such as network bandwidth, latency, protocol types supported by the network, IP addresses, and network topology. Optimizing network information is essential to ensure efficient data transmission and low latency.
2073
+ """
2074
+ network_mode: NotRequired[pulumi.Input[builtins.str]]
2075
+ """
2076
+ Specifies the network mode, such as bridge mode, NAT mode, or direct connection mode. Different network modes affect the network configuration and data transmission performance of nodes, and affect the network access methods of computing instances.
2077
+ """
2078
+ node_count: NotRequired[pulumi.Input[builtins.int]]
2079
+ """
2080
+ Specifies the total number of compute nodes. This property is particularly important in distributed computing and cluster environments, because the number of nodes often directly affects the computing power and the ability to parallel processing.
2081
+ """
2082
+ type: NotRequired[pulumi.Input[builtins.str]]
2083
+ """
2084
+ Usually refers to a specific resource type (such as virtual machine, physical server, container, etc.), which is used to distinguish different computing units or resource categories.
2085
+ """
2086
+ elif False:
2087
+ ResourceMachineTypesArgsDict: TypeAlias = Mapping[str, Any]
2088
+
2089
+ @pulumi.input_type
2090
+ class ResourceMachineTypesArgs:
2091
+ def __init__(__self__, *,
2092
+ cpu_info: pulumi.Input[builtins.str],
2093
+ gpu_info: pulumi.Input[builtins.str],
2094
+ bond_num: Optional[pulumi.Input[builtins.int]] = None,
2095
+ disk_info: Optional[pulumi.Input[builtins.str]] = None,
2096
+ memory_info: Optional[pulumi.Input[builtins.str]] = None,
2097
+ name: Optional[pulumi.Input[builtins.str]] = None,
2098
+ network_info: Optional[pulumi.Input[builtins.str]] = None,
2099
+ network_mode: Optional[pulumi.Input[builtins.str]] = None,
2100
+ node_count: Optional[pulumi.Input[builtins.int]] = None,
2101
+ type: Optional[pulumi.Input[builtins.str]] = None):
2102
+ """
2103
+ :param pulumi.Input[builtins.str] cpu_info: Provides CPU details, including the number of cores, number of threads, clock frequency, and architecture type. This information helps to evaluate the processing power and identify whether it can meet the performance requirements of a particular application.
2104
+ :param pulumi.Input[builtins.str] gpu_info: Provides detailed information about the GPU, including the number, model, memory size, and computing capability. This information is particularly important for tasks such as deep learning, scientific computing, and graph processing, helping users understand the graph processing capabilities of nodes.
2105
+ :param pulumi.Input[builtins.int] bond_num: This property specifies the number of network bindings, which relates to the number of physical or virtual network cards connected to the network through the network interface card (NIC). Multiple network bindings can increase bandwidth and redundancy and improve network reliability.
2106
+ :param pulumi.Input[builtins.str] disk_info: Displays information about the storage device, including the disk type (such as SSD or HDD), capacity, and I/O performance. Storage performance is critical in data-intensive applications such as big data processing and databases.
2107
+ :param pulumi.Input[builtins.str] memory_info: This property provides memory details, including total memory, available memory, and usage. This helps users understand the memory processing capabilities of compute nodes, especially when running heavy-duty applications.
2108
+ :param pulumi.Input[builtins.str] name: Specification Name.
2109
+ :param pulumi.Input[builtins.str] network_info: Contains detailed information about the network interface, such as network bandwidth, latency, protocol types supported by the network, IP addresses, and network topology. Optimizing network information is essential to ensure efficient data transmission and low latency.
2110
+ :param pulumi.Input[builtins.str] network_mode: Specifies the network mode, such as bridge mode, NAT mode, or direct connection mode. Different network modes affect the network configuration and data transmission performance of nodes, and affect the network access methods of computing instances.
2111
+ :param pulumi.Input[builtins.int] node_count: Specifies the total number of compute nodes. This property is particularly important in distributed computing and cluster environments, because the number of nodes often directly affects the computing power and the ability to parallel processing.
2112
+ :param pulumi.Input[builtins.str] type: Usually refers to a specific resource type (such as virtual machine, physical server, container, etc.), which is used to distinguish different computing units or resource categories.
2113
+ """
2114
+ pulumi.set(__self__, "cpu_info", cpu_info)
2115
+ pulumi.set(__self__, "gpu_info", gpu_info)
2116
+ if bond_num is not None:
2117
+ pulumi.set(__self__, "bond_num", bond_num)
2118
+ if disk_info is not None:
2119
+ pulumi.set(__self__, "disk_info", disk_info)
2120
+ if memory_info is not None:
2121
+ pulumi.set(__self__, "memory_info", memory_info)
2122
+ if name is not None:
2123
+ pulumi.set(__self__, "name", name)
2124
+ if network_info is not None:
2125
+ pulumi.set(__self__, "network_info", network_info)
2126
+ if network_mode is not None:
2127
+ pulumi.set(__self__, "network_mode", network_mode)
2128
+ if node_count is not None:
2129
+ pulumi.set(__self__, "node_count", node_count)
2130
+ if type is not None:
2131
+ pulumi.set(__self__, "type", type)
2132
+
2133
+ @property
2134
+ @pulumi.getter(name="cpuInfo")
2135
+ def cpu_info(self) -> pulumi.Input[builtins.str]:
2136
+ """
2137
+ Provides CPU details, including the number of cores, number of threads, clock frequency, and architecture type. This information helps to evaluate the processing power and identify whether it can meet the performance requirements of a particular application.
2138
+ """
2139
+ return pulumi.get(self, "cpu_info")
2140
+
2141
+ @cpu_info.setter
2142
+ def cpu_info(self, value: pulumi.Input[builtins.str]):
2143
+ pulumi.set(self, "cpu_info", value)
2144
+
2145
+ @property
2146
+ @pulumi.getter(name="gpuInfo")
2147
+ def gpu_info(self) -> pulumi.Input[builtins.str]:
2148
+ """
2149
+ Provides detailed information about the GPU, including the number, model, memory size, and computing capability. This information is particularly important for tasks such as deep learning, scientific computing, and graph processing, helping users understand the graph processing capabilities of nodes.
2150
+ """
2151
+ return pulumi.get(self, "gpu_info")
2152
+
2153
+ @gpu_info.setter
2154
+ def gpu_info(self, value: pulumi.Input[builtins.str]):
2155
+ pulumi.set(self, "gpu_info", value)
2156
+
2157
+ @property
2158
+ @pulumi.getter(name="bondNum")
2159
+ def bond_num(self) -> Optional[pulumi.Input[builtins.int]]:
2160
+ """
2161
+ This property specifies the number of network bindings, which relates to the number of physical or virtual network cards connected to the network through the network interface card (NIC). Multiple network bindings can increase bandwidth and redundancy and improve network reliability.
2162
+ """
2163
+ return pulumi.get(self, "bond_num")
2164
+
2165
+ @bond_num.setter
2166
+ def bond_num(self, value: Optional[pulumi.Input[builtins.int]]):
2167
+ pulumi.set(self, "bond_num", value)
2168
+
2169
+ @property
2170
+ @pulumi.getter(name="diskInfo")
2171
+ def disk_info(self) -> Optional[pulumi.Input[builtins.str]]:
2172
+ """
2173
+ Displays information about the storage device, including the disk type (such as SSD or HDD), capacity, and I/O performance. Storage performance is critical in data-intensive applications such as big data processing and databases.
2174
+ """
2175
+ return pulumi.get(self, "disk_info")
2176
+
2177
+ @disk_info.setter
2178
+ def disk_info(self, value: Optional[pulumi.Input[builtins.str]]):
2179
+ pulumi.set(self, "disk_info", value)
2180
+
2181
+ @property
2182
+ @pulumi.getter(name="memoryInfo")
2183
+ def memory_info(self) -> Optional[pulumi.Input[builtins.str]]:
2184
+ """
2185
+ This property provides memory details, including total memory, available memory, and usage. This helps users understand the memory processing capabilities of compute nodes, especially when running heavy-duty applications.
2186
+ """
2187
+ return pulumi.get(self, "memory_info")
2188
+
2189
+ @memory_info.setter
2190
+ def memory_info(self, value: Optional[pulumi.Input[builtins.str]]):
2191
+ pulumi.set(self, "memory_info", value)
2192
+
2193
+ @property
2194
+ @pulumi.getter
2195
+ def name(self) -> Optional[pulumi.Input[builtins.str]]:
2196
+ """
2197
+ Specification Name.
2198
+ """
2199
+ return pulumi.get(self, "name")
2200
+
2201
+ @name.setter
2202
+ def name(self, value: Optional[pulumi.Input[builtins.str]]):
2203
+ pulumi.set(self, "name", value)
2204
+
2205
+ @property
2206
+ @pulumi.getter(name="networkInfo")
2207
+ def network_info(self) -> Optional[pulumi.Input[builtins.str]]:
2208
+ """
2209
+ Contains detailed information about the network interface, such as network bandwidth, latency, protocol types supported by the network, IP addresses, and network topology. Optimizing network information is essential to ensure efficient data transmission and low latency.
2210
+ """
2211
+ return pulumi.get(self, "network_info")
2212
+
2213
+ @network_info.setter
2214
+ def network_info(self, value: Optional[pulumi.Input[builtins.str]]):
2215
+ pulumi.set(self, "network_info", value)
2216
+
2217
+ @property
2218
+ @pulumi.getter(name="networkMode")
2219
+ def network_mode(self) -> Optional[pulumi.Input[builtins.str]]:
2220
+ """
2221
+ Specifies the network mode, such as bridge mode, NAT mode, or direct connection mode. Different network modes affect the network configuration and data transmission performance of nodes, and affect the network access methods of computing instances.
2222
+ """
2223
+ return pulumi.get(self, "network_mode")
2224
+
2225
+ @network_mode.setter
2226
+ def network_mode(self, value: Optional[pulumi.Input[builtins.str]]):
2227
+ pulumi.set(self, "network_mode", value)
2228
+
2229
+ @property
2230
+ @pulumi.getter(name="nodeCount")
2231
+ def node_count(self) -> Optional[pulumi.Input[builtins.int]]:
2232
+ """
2233
+ Specifies the total number of compute nodes. This property is particularly important in distributed computing and cluster environments, because the number of nodes often directly affects the computing power and the ability to parallel processing.
2234
+ """
2235
+ return pulumi.get(self, "node_count")
2236
+
2237
+ @node_count.setter
2238
+ def node_count(self, value: Optional[pulumi.Input[builtins.int]]):
2239
+ pulumi.set(self, "node_count", value)
2240
+
2241
+ @property
2242
+ @pulumi.getter
2243
+ def type(self) -> Optional[pulumi.Input[builtins.str]]:
2244
+ """
2245
+ Usually refers to a specific resource type (such as virtual machine, physical server, container, etc.), which is used to distinguish different computing units or resource categories.
2246
+ """
2247
+ return pulumi.get(self, "type")
2248
+
2249
+ @type.setter
2250
+ def type(self, value: Optional[pulumi.Input[builtins.str]]):
2251
+ pulumi.set(self, "type", value)
2252
+
2253
+
2254
+ if not MYPY:
2255
+ class ResourceUserAccessParamArgsDict(TypedDict):
2256
+ access_id: pulumi.Input[builtins.str]
2257
+ """
2258
+ Access keys are important credentials for authentication.
2259
+ """
2260
+ access_key: pulumi.Input[builtins.str]
2261
+ """
2262
+ A Secret Key is a Secret credential paired with an access Key to verify a user's identity and protect the security of an interface.
2263
+ """
2264
+ endpoint: pulumi.Input[builtins.str]
2265
+ """
2266
+ An Endpoint is a network address for accessing a service or API, usually a URL to a specific service instance.
2267
+ """
2268
+ workspace_id: pulumi.Input[builtins.str]
2269
+ """
2270
+ A Workspace generally refers to a separate space created by a user on a particular computing environment or platform.
2271
+ """
2272
+ elif False:
2273
+ ResourceUserAccessParamArgsDict: TypeAlias = Mapping[str, Any]
2274
+
2275
+ @pulumi.input_type
2276
+ class ResourceUserAccessParamArgs:
2277
+ def __init__(__self__, *,
2278
+ access_id: pulumi.Input[builtins.str],
2279
+ access_key: pulumi.Input[builtins.str],
2280
+ endpoint: pulumi.Input[builtins.str],
2281
+ workspace_id: pulumi.Input[builtins.str]):
2282
+ """
2283
+ :param pulumi.Input[builtins.str] access_id: Access keys are important credentials for authentication.
2284
+ :param pulumi.Input[builtins.str] access_key: A Secret Key is a Secret credential paired with an access Key to verify a user's identity and protect the security of an interface.
2285
+ :param pulumi.Input[builtins.str] endpoint: An Endpoint is a network address for accessing a service or API, usually a URL to a specific service instance.
2286
+ :param pulumi.Input[builtins.str] workspace_id: A Workspace generally refers to a separate space created by a user on a particular computing environment or platform.
2287
+ """
2288
+ pulumi.set(__self__, "access_id", access_id)
2289
+ pulumi.set(__self__, "access_key", access_key)
2290
+ pulumi.set(__self__, "endpoint", endpoint)
2291
+ pulumi.set(__self__, "workspace_id", workspace_id)
2292
+
2293
+ @property
2294
+ @pulumi.getter(name="accessId")
2295
+ def access_id(self) -> pulumi.Input[builtins.str]:
2296
+ """
2297
+ Access keys are important credentials for authentication.
2298
+ """
2299
+ return pulumi.get(self, "access_id")
2300
+
2301
+ @access_id.setter
2302
+ def access_id(self, value: pulumi.Input[builtins.str]):
2303
+ pulumi.set(self, "access_id", value)
2304
+
2305
+ @property
2306
+ @pulumi.getter(name="accessKey")
2307
+ def access_key(self) -> pulumi.Input[builtins.str]:
2308
+ """
2309
+ A Secret Key is a Secret credential paired with an access Key to verify a user's identity and protect the security of an interface.
2310
+ """
2311
+ return pulumi.get(self, "access_key")
2312
+
2313
+ @access_key.setter
2314
+ def access_key(self, value: pulumi.Input[builtins.str]):
2315
+ pulumi.set(self, "access_key", value)
2316
+
2317
+ @property
2318
+ @pulumi.getter
2319
+ def endpoint(self) -> pulumi.Input[builtins.str]:
2320
+ """
2321
+ An Endpoint is a network address for accessing a service or API, usually a URL to a specific service instance.
2322
+ """
2323
+ return pulumi.get(self, "endpoint")
2324
+
2325
+ @endpoint.setter
2326
+ def endpoint(self, value: pulumi.Input[builtins.str]):
2327
+ pulumi.set(self, "endpoint", value)
2328
+
2329
+ @property
2330
+ @pulumi.getter(name="workspaceId")
2331
+ def workspace_id(self) -> pulumi.Input[builtins.str]:
2332
+ """
2333
+ A Workspace generally refers to a separate space created by a user on a particular computing environment or platform.
2334
+ """
2335
+ return pulumi.get(self, "workspace_id")
2336
+
2337
+ @workspace_id.setter
2338
+ def workspace_id(self, value: pulumi.Input[builtins.str]):
2339
+ pulumi.set(self, "workspace_id", value)
2340
+
2341
+