psyke 0.8.7__py3-none-any.whl → 0.8.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of psyke might be problematic. Click here for more details.

psyke/__init__.py CHANGED
@@ -256,14 +256,14 @@ class Extractor(EvaluableModel, ABC):
256
256
  [Extractor.ClassificationScore.F1])[Extractor.ClassificationScore.F1][-1]
257
257
 
258
258
  @staticmethod
259
- def cart(predictor, max_depth: int = 3, max_leaves: int = 3,
259
+ def cart(predictor, max_depth: int = 3, max_leaves: int = 3, max_features=None,
260
260
  discretization: Iterable[DiscreteFeature] = None, normalization=None, simplify: bool = True) -> Extractor:
261
261
  """
262
262
  Creates a new Cart extractor.
263
263
  """
264
264
  from psyke.extraction.cart import Cart
265
- return Cart(predictor, max_depth, max_leaves, discretization=discretization, normalization=normalization,
266
- simplify=simplify)
265
+ return Cart(predictor, max_depth, max_leaves, max_features,
266
+ discretization=discretization, normalization=normalization, simplify=simplify)
267
267
 
268
268
  @staticmethod
269
269
  def divine(predictor, k: int = 5, patience: int = 15, close_to_center: bool = True,
@@ -1,3 +1,5 @@
1
+ from abc import ABC
2
+
1
3
  from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
2
4
 
3
5
  from psyke.extraction import PedagogicalExtractor
@@ -14,26 +16,28 @@ import pandas as pd
14
16
  TREE_SEED = get_default_random_seed()
15
17
 
16
18
 
17
- class Cart(PedagogicalExtractor):
19
+ class Cart(PedagogicalExtractor, ABC):
18
20
 
19
- def __init__(self, predictor, max_depth: int = 3, max_leaves: int = None,
21
+ def __init__(self, predictor, max_depth: int = 3, max_leaves: int = None, max_features=None,
20
22
  discretization: Iterable[DiscreteFeature] = None,
21
23
  normalization=None, simplify: bool = True):
22
24
  super().__init__(predictor, discretization, normalization)
23
25
  self._cart_predictor = CartPredictor(normalization=normalization)
24
26
  self.depth = max_depth
25
27
  self.leaves = max_leaves
28
+ self.max_features = max_features
26
29
  self._simplify = simplify
27
30
 
28
- def _create_body(self, variables: dict[str, Var], constraints: LeafConstraints) -> Iterable[Struct]:
31
+ def _create_body(self, variables: dict[str, Var], conditions: LeafConstraints) -> Iterable[Struct]:
29
32
  results = []
30
- for feature_name, constraint, value in constraints:
31
- features = [d for d in self.discretization if feature_name in d.admissible_values]
32
- feature: DiscreteFeature = features[0] if len(features) > 0 else None
33
- results.append(create_term(variables[feature_name], constraint) if feature is None else
34
- create_term(variables[feature.name],
35
- feature.admissible_values[feature_name],
36
- isinstance(constraint, GreaterThan)))
33
+ for feature_name, cond_list in conditions.items():
34
+ for condition in cond_list:
35
+ features = [d for d in self.discretization if feature_name in d.admissible_values]
36
+ feature: DiscreteFeature = features[0] if len(features) > 0 else None
37
+ results.append(create_term(variables[feature_name], condition) if feature is None else
38
+ create_term(variables[feature.name],
39
+ feature.admissible_values[feature_name],
40
+ isinstance(condition, GreaterThan)))
37
41
  return results
38
42
 
39
43
  @staticmethod
@@ -41,11 +45,12 @@ class Cart(PedagogicalExtractor):
41
45
  simplified = [nodes.pop(0)]
42
46
  while len(nodes) > 0:
43
47
  first_node = nodes[0][0]
44
- for condition in first_node:
45
- if all([condition in [node[0] for node in nodes][i] for i in range(len(nodes))]):
46
- [node[0].remove(condition) for node in nodes]
48
+ for k, conditions in first_node.items():
49
+ for condition in conditions:
50
+ if all(k in node[0] and condition in node[0][k] for node in nodes):
51
+ [node[0][k].remove(condition) for node in nodes]
47
52
  simplified.append(nodes.pop(0))
48
- return simplified
53
+ return [({k: v for k, v in rule.items() if v != []}, prediction) for rule, prediction in simplified]
49
54
 
50
55
  def _create_theory(self, data: pd.DataFrame) -> Theory:
51
56
  new_theory = mutable_theory()
@@ -66,13 +71,26 @@ class Cart(PedagogicalExtractor):
66
71
 
67
72
  def _extract(self, data: pd.DataFrame) -> Theory:
68
73
  tree = DecisionTreeClassifier if isinstance(data.iloc[0, -1], str) else DecisionTreeRegressor
69
- self._cart_predictor.predictor = tree(random_state=TREE_SEED, max_depth=self.depth, max_leaf_nodes=self.leaves)
74
+ self._cart_predictor.predictor = tree(random_state=TREE_SEED, max_depth=self.depth,
75
+ max_leaf_nodes=self.leaves, max_features=self.max_features)
70
76
  self._cart_predictor.predictor.fit(data.iloc[:, :-1], data.iloc[:, -1])
71
77
  return self._create_theory(data)
72
78
 
73
79
  def _predict(self, dataframe: pd.DataFrame) -> Iterable:
74
80
  return self._cart_predictor.predict(dataframe)
75
81
 
82
+ def predict_why(self, data: dict[str, float], verbose=True):
83
+ prediction = None
84
+ conditions = {}
85
+ if self.normalization is not None:
86
+ data = {k: v * self.normalization[k][1] + self.normalization[k][0] if k in self.normalization else v
87
+ for k, v in data.items()}
88
+ for conditions, prediction in self._cart_predictor:
89
+ if all(all(interval.is_in(data[variable]) for interval in intervals)
90
+ for variable, intervals in conditions.items()):
91
+ break
92
+ return prediction, conditions
93
+
76
94
  @property
77
95
  def n_rules(self) -> int:
78
96
  return self._cart_predictor.n_leaves
@@ -2,9 +2,9 @@ from collections import Iterable
2
2
  from typing import Union, Any
3
3
  import numpy as np
4
4
  from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
5
- from psyke.schema import Value, LessThan, GreaterThan
5
+ from psyke.schema import Value, LessThan, GreaterThan, SchemaException
6
6
 
7
- LeafConstraints = list[tuple[str, Value, bool]]
7
+ LeafConstraints = dict[str, list[Value]]
8
8
  LeafSequence = Iterable[tuple[LeafConstraints, Any]]
9
9
 
10
10
 
@@ -25,8 +25,17 @@ class CartPredictor:
25
25
  if self.normalization is not None:
26
26
  thresholds = [threshold * self.normalization[feature][1] + self.normalization[feature][0]
27
27
  for feature, threshold in zip(features, thresholds)]
28
- return [(feature, LessThan(threshold) if condition else GreaterThan(threshold), condition)
29
- for feature, condition, threshold in zip(features, conditions, thresholds)]
28
+ cond_dict = {}
29
+ for feature, condition, threshold in zip(features, conditions, thresholds):
30
+ cond = LessThan(threshold) if condition else GreaterThan(threshold)
31
+ if feature in cond_dict:
32
+ try:
33
+ cond_dict[feature][-1] *= cond
34
+ except SchemaException:
35
+ cond_dict[feature].append(cond)
36
+ else:
37
+ cond_dict[feature] = [cond]
38
+ return cond_dict
30
39
 
31
40
  def __get_leaves(self) -> Iterable[int]:
32
41
  return [i for i, (left_child, right_child) in enumerate(zip(
@@ -39,7 +48,8 @@ class CartPredictor:
39
48
  else:
40
49
  return self._predictor.tree_.value[node]
41
50
 
42
- def __path(self, node: int, path=[]) -> Iterable[(int, bool)]:
51
+ def __path(self, node: int, path=None) -> Iterable[(int, bool)]:
52
+ path = [] if path is None else path
43
53
  if node == 0:
44
54
  return path
45
55
  father = list(self._left_children if node in self._left_children else self._right_children).index(node)
psyke/schema/__init__.py CHANGED
@@ -3,20 +3,27 @@ import math
3
3
  from typing import Callable
4
4
  from psyke.utils import get_int_precision
5
5
 
6
+
7
+ class SchemaException(Exception):
8
+
9
+ def __init__(self, message: str):
10
+ super().__init__(message)
11
+
12
+
6
13
  _EMPTY_INTERSECTION_EXCEPTION: Callable = lambda x, y: \
7
- Exception(f"Empty intersection between two Value: {str(x)} and {str(y)}")
14
+ SchemaException(f"Empty intersection between two Value: {str(x)} and {str(y)}")
8
15
 
9
16
  _NOT_IMPLEMENTED_INTERSECTION: Callable = lambda x, y: \
10
- Exception("Not implemented intersection between: " + str(x) + ' and ' + str(y))
17
+ SchemaException(f"Not implemented intersection between: {str(x)} and {str(y)}")
11
18
 
12
19
  _OPERATION_WITH_WRONG_TYPE: Callable = lambda x, y: \
13
- Exception("Calling method with wrong type argument: " + str(x) + ' and ' + str(y))
20
+ SchemaException("Calling method with wrong type argument: " + str(x) + ' and ' + str(y))
14
21
 
15
22
  _EMPTY_UNION_EXCEPTION: Callable = lambda x, y: \
16
- Exception(f"Empty union between two Value: {str(x)} and {str(y)}")
23
+ SchemaException(f"Empty union between two Value: {str(x)} and {str(y)}")
17
24
 
18
25
  _NOT_IMPLEMENTED_UNION: Callable = lambda x, y: \
19
- Exception("Not implemented union between: " + str(x) + ' and ' + str(y))
26
+ SchemaException("Not implemented union between: " + str(x) + ' and ' + str(y))
20
27
 
21
28
  PRECISION = get_int_precision()
22
29
  STRING_PRECISION = str(PRECISION)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: psyke
3
- Version: 0.8.7
3
+ Version: 0.8.9
4
4
  Summary: Python-based implementation of PSyKE, i.e. a Platform for Symbolic Knowledge Extraction
5
5
  Home-page: https://github.com/psykei/psyke-python
6
6
  Author: Matteo Magnini
@@ -1,12 +1,12 @@
1
- psyke/__init__.py,sha256=_Gm4C_o9AifRNXjsPVe0znQy-kTfGxDih7O1YeO3KlY,18601
1
+ psyke/__init__.py,sha256=V_sOXKt_5fYmNABwpveJd10u7Wy7A6wlLECBJY_ra_E,18634
2
2
  psyke/hypercubepredictor.py,sha256=MlSRLky6J1I07qKcH98c9WvEjFHGyBiz_LU9W_oDnqs,4572
3
3
  psyke/clustering/__init__.py,sha256=36MokTVwwWR_-o0mesvXHaYEYVTK2pn2m0ZY4G3Y3qU,581
4
4
  psyke/clustering/utils.py,sha256=S0YwCKyHVYp9qUAQVzCMrTwcQFPJ5TD14Jwn10DE-Z4,1616
5
5
  psyke/clustering/cream/__init__.py,sha256=W6k7vdjuUdA_azYA4vb5JtpWrofhDJ0DbM2jsnRKzfw,2994
6
6
  psyke/clustering/exact/__init__.py,sha256=s4MPvGZ6gle3X9WH3YFHOEdinGcXIXh-7EFRcElWzsQ,5275
7
7
  psyke/extraction/__init__.py,sha256=ziZ8T9eAOZjKipepE5_j1zfZgyFPONjW8MGERSk83nI,743
8
- psyke/extraction/cart/__init__.py,sha256=LzocPLpZVGGVgUu4bh9Bu4GlzD1HuFQh795GgxV2Gys,3622
9
- psyke/extraction/cart/predictor.py,sha256=2-2mv5fI0lTwwfTaEonxKh0ZUdhxuIEE6OP_rJxgmqc,3019
8
+ psyke/extraction/cart/__init__.py,sha256=r2mDULg7oTHrIMPw9lqD6MyXhkkymP4r9PoGUKjAWCM,4569
9
+ psyke/extraction/cart/predictor.py,sha256=_YBedfyz4rGIBeNpN7OaL2BKWdF_5nuq8AlXkVfCtvk,3359
10
10
  psyke/extraction/hypercubic/__init__.py,sha256=w_NmfSjh8fCWLDXVXpRLiAApq697cvUSPTgju-jtZCA,10620
11
11
  psyke/extraction/hypercubic/hypercube.py,sha256=GKjplRl34BegrA3JclvlkrL7hXftdUUMXndmRFFoJic,25697
12
12
  psyke/extraction/hypercubic/strategy.py,sha256=X-roIsfcpJyMdo2px5JtbhP7-XE-zUNkaEK7XGXoWA8,1636
@@ -22,7 +22,7 @@ psyke/extraction/real/__init__.py,sha256=fFqiwgWTpu5Jx9lz5CdSfs1QyqWYFLQDG7tc5M6
22
22
  psyke/extraction/real/utils.py,sha256=eHGU-Y0inn_8jrk9lMcuRUKXpsTkI-s_myXSWz4bALQ,2190
23
23
  psyke/extraction/trepan/__init__.py,sha256=KpZpk0btCWV4bS-DOmpgpYscSQ5FEMyP54ekm7ZedME,6583
24
24
  psyke/extraction/trepan/utils.py,sha256=iSUJ1ooNQT_VO1KfBZuIUeUsyUbGdQf_pSEE87vMeQg,2320
25
- psyke/schema/__init__.py,sha256=GjT4Wyw008pS8WuuGz5-YC4iQphvk83B8dtkzL-3a_g,25929
25
+ psyke/schema/__init__.py,sha256=axv4ejZY0ItUwrC9IXb_yAhaQL5f1vwvXXmaIAHJmt0,26063
26
26
  psyke/tuning/__init__.py,sha256=yd_ForFmHeYbtRXltY1fOa-mPJvpE6ijzg50M_8Sdxw,3649
27
27
  psyke/tuning/crash/__init__.py,sha256=zIHEF75EFy_mRIieqzP04qKLG3GLsSc_mYZHpPfkzxU,2623
28
28
  psyke/tuning/orchid/__init__.py,sha256=s64iABbteik27CrRPHSVHNZX25JKlDu7YYjhseOizxw,3618
@@ -33,8 +33,8 @@ psyke/utils/logic.py,sha256=7bbW6qcKof5PlqoQ0n5Kt3Obcot-KqGAvpE8rMXvEPE,12419
33
33
  psyke/utils/metrics.py,sha256=Oo5BOonOSfo0qYsXWT5dmypZ7jiStByFC2MKEU0uMHg,2250
34
34
  psyke/utils/plot.py,sha256=dE8JJ6tQ0Ezosid-r2jqAisREjFe5LqExRzsVi5Ns-c,7785
35
35
  psyke/utils/sorted.py,sha256=C3CPW2JisND30BRk5c1sAAHs3Lb_wsRB2qZrYFuRnfM,678
36
- psyke-0.8.7.dist-info/LICENSE,sha256=KP9K6Hgezf_xdMFW7ORyKz9uA8Y8k52YJn292wcP-_E,11354
37
- psyke-0.8.7.dist-info/METADATA,sha256=DefC2-n4FXf0UlT6xFToHNOUuCbPGQZwrKrkjnYwX8k,8102
38
- psyke-0.8.7.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
39
- psyke-0.8.7.dist-info/top_level.txt,sha256=q1HglxOqqoIRukFtyis_ZNHczZg4gANRUPWkD7HAUTU,6
40
- psyke-0.8.7.dist-info/RECORD,,
36
+ psyke-0.8.9.dist-info/LICENSE,sha256=KP9K6Hgezf_xdMFW7ORyKz9uA8Y8k52YJn292wcP-_E,11354
37
+ psyke-0.8.9.dist-info/METADATA,sha256=KDPbq3WrDph3KhEDTTNaFuHawsgeDl2XQ24K4lZLx-4,8102
38
+ psyke-0.8.9.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
39
+ psyke-0.8.9.dist-info/top_level.txt,sha256=q1HglxOqqoIRukFtyis_ZNHczZg4gANRUPWkD7HAUTU,6
40
+ psyke-0.8.9.dist-info/RECORD,,
File without changes
File without changes