psaiops 0.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of psaiops might be problematic. Click here for more details.
- psaiops/__init__.py +0 -0
- psaiops/combine/__init__.py +0 -0
- psaiops/combine/app.py +366 -0
- psaiops/common/__init__.py +0 -0
- psaiops/common/data.py +31 -0
- psaiops/common/model.py +73 -0
- psaiops/common/tokenizer.py +41 -0
- psaiops/compose/__init__.py +0 -0
- psaiops/compose/contrast/__init__.py +0 -0
- psaiops/compose/contrast/app.py +195 -0
- psaiops/compose/contrast/lib.py +143 -0
- psaiops/compose/maths/__init__.py +0 -0
- psaiops/compose/maths/app.py +323 -0
- psaiops/compose/maths/lib.py +1 -0
- psaiops/edit/__init__.py +0 -0
- psaiops/reverse/__init__.py +0 -0
- psaiops/score/__init__.py +0 -0
- psaiops/score/attention/__init__.py +0 -0
- psaiops/score/attention/app.py +303 -0
- psaiops/score/attention/lib.py +118 -0
- psaiops/score/residual/__init__.py +0 -0
- psaiops/score/residual/app.py +507 -0
- psaiops/score/residual/lib.py +187 -0
- psaiops/score/router/__init__.py +0 -0
- psaiops/score/router/app.py +282 -0
- psaiops/score/router/lib.py +59 -0
- psaiops/score/shapley/__init__.py +0 -0
- psaiops/score/shapley/app.py +158 -0
- psaiops/score/shapley/lib.py +1 -0
- psaiops/score/similarity/__init__.py +0 -0
- psaiops/score/similarity/app.py +152 -0
- psaiops/score/similarity/lib.py +1 -0
- psaiops-0.4.7.dist-info/METADATA +34 -0
- psaiops-0.4.7.dist-info/RECORD +36 -0
- psaiops-0.4.7.dist-info/WHEEL +4 -0
- psaiops-0.4.7.dist-info/licenses/.github/LICENSE.md +661 -0
|
@@ -0,0 +1,303 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
|
|
3
|
+
import gradio
|
|
4
|
+
import torch
|
|
5
|
+
import torch.cuda
|
|
6
|
+
|
|
7
|
+
import psaiops.common.model
|
|
8
|
+
import psaiops.common.tokenizer
|
|
9
|
+
import psaiops.score.attention.lib
|
|
10
|
+
|
|
11
|
+
# META #########################################################################
|
|
12
|
+
|
|
13
|
+
STYLE = '''.white-text span { color: white; }'''
|
|
14
|
+
TITLE = '''Attention Scoring'''
|
|
15
|
+
INTRO = '''Score each token according to the weights of the attention layers.\nUnder construction, only "openai/gpt-oss-20b" is available for now.'''
|
|
16
|
+
|
|
17
|
+
MODEL = 'openai/gpt-oss-20b'
|
|
18
|
+
|
|
19
|
+
# COLORS #######################################################################
|
|
20
|
+
|
|
21
|
+
def create_color_map() -> dict:
|
|
22
|
+
return {
|
|
23
|
+
'-1': '#004444',
|
|
24
|
+
**{str(__i): '#{:02x}0000'.format(int(2.55 * __i)) for __i in range(101)}}
|
|
25
|
+
|
|
26
|
+
# INTRO ########################################################################
|
|
27
|
+
|
|
28
|
+
def create_intro_block(intro: str) -> dict:
|
|
29
|
+
__intro = gradio.Markdown(intro, line_breaks=True)
|
|
30
|
+
return {'intro_block': __intro}
|
|
31
|
+
|
|
32
|
+
# MODEL ########################################################################
|
|
33
|
+
|
|
34
|
+
def create_model_block() -> dict:
|
|
35
|
+
__model = gradio.Dropdown(label='Model', value='openai/gpt-oss-20b', choices=['openai/gpt-oss-20b'], scale=1, allow_custom_value=False, multiselect=False, interactive=True) # 'openai/gpt-oss-120b'
|
|
36
|
+
return {'model_block': __model,}
|
|
37
|
+
|
|
38
|
+
# SAMPLING #####################################################################
|
|
39
|
+
|
|
40
|
+
def create_sampling_block() -> dict:
|
|
41
|
+
__tokens = gradio.Slider(label='Tokens', value=16, minimum=1, maximum=128, step=1, scale=1, interactive=True)
|
|
42
|
+
__topk = gradio.Slider(label='Top K', value=4, minimum=1, maximum=8, step=1, scale=1, interactive=True)
|
|
43
|
+
__topp = gradio.Slider(label='Top P', value=0.9, minimum=0.0, maximum=1.0, step=0.1, scale=1, interactive=True)
|
|
44
|
+
return {
|
|
45
|
+
'tokens_block': __tokens,
|
|
46
|
+
'topk_block': __topk,
|
|
47
|
+
'topp_block': __topp}
|
|
48
|
+
|
|
49
|
+
# TARGET #######################################################################
|
|
50
|
+
|
|
51
|
+
def create_target_block() -> dict:
|
|
52
|
+
__target = gradio.Radio(label='Score', value='Inputs', choices=['Inputs', 'Everything'], scale=1, interactive=True)
|
|
53
|
+
return {'target_block': __target}
|
|
54
|
+
|
|
55
|
+
# DISPLAY ######################################################################
|
|
56
|
+
|
|
57
|
+
# def create_display_block() -> dict:
|
|
58
|
+
# __display = gradio.Radio(label='Display', value='Tokens', choices=['Tokens', 'Indexes'], scale=1, interactive=True)
|
|
59
|
+
# return {'display_block': __display}
|
|
60
|
+
|
|
61
|
+
# INPUTS #######################################################################
|
|
62
|
+
|
|
63
|
+
def create_inputs_block() -> dict:
|
|
64
|
+
__input = gradio.Textbox(label='Prompt', value='', placeholder='A string of tokens to score.', lines=4, scale=1, show_copy_button=True, interactive=True)
|
|
65
|
+
return {'input_block': __input}
|
|
66
|
+
|
|
67
|
+
# OUTPUTS ######################################################################
|
|
68
|
+
|
|
69
|
+
def create_outputs_block() -> dict:
|
|
70
|
+
__output = gradio.HighlightedText(label='Scores', value='', scale=1, interactive=False, show_legend=False, show_inline_category=False, combine_adjacent=False, color_map=create_color_map(), elem_classes='white-text')
|
|
71
|
+
return {'output_block': __output}
|
|
72
|
+
|
|
73
|
+
# SELECT #######################################################################
|
|
74
|
+
|
|
75
|
+
def create_selection_block() -> dict:
|
|
76
|
+
__position = gradio.Slider(label='Token Position', value=-1, minimum=-1, maximum=15, step=1, scale=1, interactive=True) # info='-1 to average on all tokens'
|
|
77
|
+
__layer = gradio.Slider(label='Layer Depth', value=12, minimum=-1, maximum=23, step=1, scale=1, interactive=True) # info='-1 to average on all layers'
|
|
78
|
+
__head = gradio.Slider(label='Attention Head', value=-1, minimum=-1, maximum=63, step=1, scale=1, interactive=True) # info='-1 to average on all heads'
|
|
79
|
+
return {
|
|
80
|
+
'position_block': __position,
|
|
81
|
+
'layer_block': __layer,
|
|
82
|
+
'head_block': __head,}
|
|
83
|
+
|
|
84
|
+
# ACTIONS ######################################################################
|
|
85
|
+
|
|
86
|
+
def create_actions_block() -> dict:
|
|
87
|
+
__process = gradio.Button('Process', variant='primary', size='lg', scale=1, interactive=True)
|
|
88
|
+
return {'process_block': __process,}
|
|
89
|
+
|
|
90
|
+
# STATE ########################################################################
|
|
91
|
+
|
|
92
|
+
def create_state() -> dict:
|
|
93
|
+
return {
|
|
94
|
+
'input_state': gradio.State(None),
|
|
95
|
+
'output_state': gradio.State(None),
|
|
96
|
+
'attention_state': gradio.State(None),}
|
|
97
|
+
|
|
98
|
+
# LAYOUT #######################################################################
|
|
99
|
+
|
|
100
|
+
def create_layout(intro: str=INTRO) -> dict:
|
|
101
|
+
__fields = {}
|
|
102
|
+
__fields.update(create_intro_block(intro=intro))
|
|
103
|
+
with gradio.Tabs():
|
|
104
|
+
with gradio.Tab('Score Tokens') as __main_tab:
|
|
105
|
+
__fields.update({'main_tab': __main_tab})
|
|
106
|
+
with gradio.Row(equal_height=True):
|
|
107
|
+
__fields.update(create_inputs_block())
|
|
108
|
+
__fields.update(create_outputs_block())
|
|
109
|
+
with gradio.Row(equal_height=True):
|
|
110
|
+
__fields.update(create_selection_block())
|
|
111
|
+
with gradio.Row(equal_height=True):
|
|
112
|
+
__fields.update(create_actions_block())
|
|
113
|
+
with gradio.Tab('Settings') as __settings_tab:
|
|
114
|
+
__fields.update({'settings_tab': __settings_tab})
|
|
115
|
+
with gradio.Column(scale=1):
|
|
116
|
+
with gradio.Row(equal_height=True):
|
|
117
|
+
__fields.update(create_model_block())
|
|
118
|
+
with gradio.Row(equal_height=True):
|
|
119
|
+
__fields.update(create_sampling_block())
|
|
120
|
+
with gradio.Row(equal_height=True):
|
|
121
|
+
__fields.update(create_target_block())
|
|
122
|
+
# __fields.update(create_display_block())
|
|
123
|
+
return __fields
|
|
124
|
+
|
|
125
|
+
# EVENTS #######################################################################
|
|
126
|
+
|
|
127
|
+
def update_layer_range(value: float, model: str) -> dict:
|
|
128
|
+
return gradio.update(maximum=35, value=min(35, int(value))) if '120b' in model else gradio.update(maximum=23, value=min(23, int(value)))
|
|
129
|
+
|
|
130
|
+
def update_position_range(value: float, tokens: float) -> dict:
|
|
131
|
+
return gradio.update(maximum=int(tokens) - 1, value=min(int(tokens) - 1, int(value)))
|
|
132
|
+
|
|
133
|
+
def update_computation_state(
|
|
134
|
+
token_num: float,
|
|
135
|
+
topk_num: float,
|
|
136
|
+
topp_num: float,
|
|
137
|
+
token_idx: float,
|
|
138
|
+
layer_idx: float,
|
|
139
|
+
head_idx: float,
|
|
140
|
+
prompt_str: str,
|
|
141
|
+
device_str: str,
|
|
142
|
+
model_obj: object,
|
|
143
|
+
tokenizer_obj: object,
|
|
144
|
+
) -> tuple:
|
|
145
|
+
# sanitize the inputs
|
|
146
|
+
__token_num = max(1, min(128, int(token_num)))
|
|
147
|
+
__topk_num = max(1, min(8, int(topk_num)))
|
|
148
|
+
__topp_num = max(0.0, min(1.0, float(topp_num)))
|
|
149
|
+
__token_idx = max(-1, min(__token_num, int(token_idx)))
|
|
150
|
+
__layer_idx = max(-1, int(layer_idx))
|
|
151
|
+
__head_idx = max(-1, int(head_idx))
|
|
152
|
+
__prompt_str = prompt_str.strip()
|
|
153
|
+
__device_str = device_str if (device_str in ['cpu', 'cuda']) else 'cpu'
|
|
154
|
+
# exit if some values are missing
|
|
155
|
+
if (not __prompt_str) or (model_obj is None) or (tokenizer_obj is None):
|
|
156
|
+
return ([], [], [], torch.empty(0))
|
|
157
|
+
# handle all exceptions at once
|
|
158
|
+
try:
|
|
159
|
+
# dictionary {'input_ids': _, 'attention_mask': _}
|
|
160
|
+
__input_data = psaiops.common.tokenizer.preprocess_token_ids(
|
|
161
|
+
tokenizer_obj=tokenizer_obj,
|
|
162
|
+
prompt_str=__prompt_str,
|
|
163
|
+
device_str=__device_str)
|
|
164
|
+
# parse the inputs
|
|
165
|
+
__input_dim = int(__input_data['input_ids'].shape[-1])
|
|
166
|
+
# tensor (1, T)
|
|
167
|
+
__output_data = psaiops.common.model.generate_token_ids(
|
|
168
|
+
model_obj=model_obj,
|
|
169
|
+
input_ids=__input_data['input_ids'],
|
|
170
|
+
attention_mask=__input_data['attention_mask'],
|
|
171
|
+
token_num=__token_num,
|
|
172
|
+
topk_num=__topk_num,
|
|
173
|
+
topp_num=__topp_num)
|
|
174
|
+
# tensor (L, S, H, T, T)
|
|
175
|
+
__attention_data = psaiops.score.attention.lib.compute_attention_weights(
|
|
176
|
+
model_obj=model_obj,
|
|
177
|
+
token_obj=__output_data)
|
|
178
|
+
# reduce the layer, sample, head and output token axes => tensor (T,)
|
|
179
|
+
__score_data = psaiops.score.attention.lib.reduce_attention_weights(
|
|
180
|
+
attention_data=__attention_data,
|
|
181
|
+
token_idx=__token_idx,
|
|
182
|
+
layer_idx=__layer_idx,
|
|
183
|
+
head_idx=__head_idx,
|
|
184
|
+
input_dim=__input_dim)
|
|
185
|
+
# translate the scores into integer labels
|
|
186
|
+
__labels = psaiops.score.attention.lib.postprocess_attention_scores(
|
|
187
|
+
attention_data=__score_data,
|
|
188
|
+
input_dim=__input_dim,
|
|
189
|
+
token_idx=__token_idx)
|
|
190
|
+
# detokenize the IDs
|
|
191
|
+
__tokens = psaiops.common.tokenizer.postprocess_token_ids(
|
|
192
|
+
tokenizer_obj=tokenizer_obj,
|
|
193
|
+
token_obj=__output_data)
|
|
194
|
+
# update each component => (input, output, attention, highligh) states
|
|
195
|
+
return (
|
|
196
|
+
list(zip(__tokens, __labels)),
|
|
197
|
+
__tokens[:__input_dim],
|
|
198
|
+
__tokens[__input_dim:],
|
|
199
|
+
__attention_data,)
|
|
200
|
+
except:
|
|
201
|
+
raise Exception('Attention generation aborted with an error.')
|
|
202
|
+
|
|
203
|
+
def update_text_highlight(
|
|
204
|
+
token_idx: float,
|
|
205
|
+
layer_idx: float,
|
|
206
|
+
head_idx: float,
|
|
207
|
+
input_data: list,
|
|
208
|
+
output_data: list,
|
|
209
|
+
attention_data: torch.Tensor,
|
|
210
|
+
) -> list:
|
|
211
|
+
# sanitize the inputs
|
|
212
|
+
__input_data = input_data or []
|
|
213
|
+
__output_data = output_data or []
|
|
214
|
+
__attention_data = torch.empty(0) if (attention_data is None) else attention_data
|
|
215
|
+
__input_dim = len(__input_data)
|
|
216
|
+
__output_dim = len(__output_data)
|
|
217
|
+
__token_idx = max(-1, min(__output_dim, int(token_idx)))
|
|
218
|
+
__layer_idx = max(-1, int(layer_idx))
|
|
219
|
+
__head_idx = max(-1, int(head_idx))
|
|
220
|
+
# exit if the data has not yet been computed
|
|
221
|
+
if (not __input_data) or (not __output_data) or (attention_data is None) or (len(attention_data) == 0):
|
|
222
|
+
return gradio.update()
|
|
223
|
+
# handle all exceptions at once
|
|
224
|
+
try:
|
|
225
|
+
# concat input and output tokens
|
|
226
|
+
__tokens = __input_data + __output_data
|
|
227
|
+
# reduce the layer, sample, head and output token axes => tensor (T,)
|
|
228
|
+
__scores = psaiops.score.attention.lib.reduce_attention_weights(
|
|
229
|
+
attention_data=__attention_data,
|
|
230
|
+
token_idx=__token_idx,
|
|
231
|
+
layer_idx=__layer_idx,
|
|
232
|
+
head_idx=__head_idx,
|
|
233
|
+
input_dim=__input_dim)
|
|
234
|
+
# translate the scores into integer labels
|
|
235
|
+
__labels = psaiops.score.attention.lib.postprocess_attention_scores(
|
|
236
|
+
attention_data=__scores,
|
|
237
|
+
input_dim=__input_dim,
|
|
238
|
+
token_idx=__token_idx)
|
|
239
|
+
# update the component with [(token, label), ...]
|
|
240
|
+
return list(zip(__tokens, __labels))
|
|
241
|
+
except:
|
|
242
|
+
raise Exception('Attention reduction aborted with an error.')
|
|
243
|
+
|
|
244
|
+
# APP ##########################################################################
|
|
245
|
+
|
|
246
|
+
def create_app(title: str=TITLE, intro: str=INTRO, style: str=STYLE, model: str=MODEL) -> gradio.Blocks:
|
|
247
|
+
__fields = {}
|
|
248
|
+
with gradio.Blocks(theme=gradio.themes.Soft(), title=title, css=style) as __app:
|
|
249
|
+
# load the model
|
|
250
|
+
__device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
251
|
+
__model = psaiops.common.model.get_model(name=model, device=__device)
|
|
252
|
+
__tokenizer = psaiops.common.tokenizer.get_tokenizer(name=model, device=__device)
|
|
253
|
+
# adapt the computing function
|
|
254
|
+
__compute = functools.partial(update_computation_state, model_obj=__model, tokenizer_obj=__tokenizer, device_str=__device)
|
|
255
|
+
# create the UI
|
|
256
|
+
__fields.update(create_layout(intro=intro))
|
|
257
|
+
# init the state
|
|
258
|
+
__fields.update(create_state())
|
|
259
|
+
# wire the input fields
|
|
260
|
+
__fields['tokens_block'].change(
|
|
261
|
+
fn=update_position_range,
|
|
262
|
+
inputs=[__fields[__k] for __k in ['position_block', 'tokens_block']],
|
|
263
|
+
outputs=__fields['position_block'],
|
|
264
|
+
queue=False,
|
|
265
|
+
show_progress='hidden')
|
|
266
|
+
__fields['model_block'].change(
|
|
267
|
+
fn=update_layer_range,
|
|
268
|
+
inputs=[__fields[__k] for __k in ['layer_block', 'model_block']],
|
|
269
|
+
outputs=__fields['layer_block'],
|
|
270
|
+
queue=False,
|
|
271
|
+
show_progress='hidden')
|
|
272
|
+
__fields['process_block'].click(
|
|
273
|
+
fn=__compute,
|
|
274
|
+
inputs=[__fields[__k] for __k in ['tokens_block', 'topk_block', 'topp_block', 'position_block', 'layer_block', 'head_block', 'input_block']],
|
|
275
|
+
outputs=[__fields[__k] for __k in ['output_block', 'input_state', 'output_state', 'attention_state']],
|
|
276
|
+
queue=False,
|
|
277
|
+
show_progress='full')
|
|
278
|
+
__fields['position_block'].change(
|
|
279
|
+
fn=update_text_highlight,
|
|
280
|
+
inputs=[__fields[__k] for __k in ['position_block', 'layer_block', 'head_block', 'input_state', 'output_state', 'attention_state']],
|
|
281
|
+
outputs=__fields['output_block'],
|
|
282
|
+
queue=False,
|
|
283
|
+
show_progress='hidden')
|
|
284
|
+
__fields['layer_block'].change(
|
|
285
|
+
fn=update_text_highlight,
|
|
286
|
+
inputs=[__fields[__k] for __k in ['position_block', 'layer_block', 'head_block', 'input_state', 'output_state', 'attention_state']],
|
|
287
|
+
outputs=__fields['output_block'],
|
|
288
|
+
queue=False,
|
|
289
|
+
show_progress='hidden')
|
|
290
|
+
__fields['head_block'].change(
|
|
291
|
+
fn=update_text_highlight,
|
|
292
|
+
inputs=[__fields[__k] for __k in ['position_block', 'layer_block', 'head_block', 'input_state', 'output_state', 'attention_state']],
|
|
293
|
+
outputs=__fields['output_block'],
|
|
294
|
+
queue=False,
|
|
295
|
+
show_progress='hidden')
|
|
296
|
+
# gradio application
|
|
297
|
+
return __app
|
|
298
|
+
|
|
299
|
+
# MAIN #########################################################################
|
|
300
|
+
|
|
301
|
+
if __name__ == '__main__':
|
|
302
|
+
__app = create_app()
|
|
303
|
+
__app.launch(share=True, debug=True)
|
|
@@ -0,0 +1,118 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
import psaiops.common.model
|
|
4
|
+
import psaiops.common.tokenizer
|
|
5
|
+
|
|
6
|
+
# COMPUTE ########################################################################
|
|
7
|
+
|
|
8
|
+
def compute_attention_weights(
|
|
9
|
+
model_obj: object,
|
|
10
|
+
token_obj: torch.Tensor,
|
|
11
|
+
) -> torch.Tensor:
|
|
12
|
+
# process the full sequence
|
|
13
|
+
with torch.no_grad():
|
|
14
|
+
__outputs = model_obj(
|
|
15
|
+
input_ids=token_obj,
|
|
16
|
+
output_attentions=True,
|
|
17
|
+
return_dict=True)
|
|
18
|
+
# parse the outputs
|
|
19
|
+
return torch.stack(__outputs.attentions, dim=0)
|
|
20
|
+
|
|
21
|
+
# REDUCE #######################################################################
|
|
22
|
+
|
|
23
|
+
def reduce_attention_weights(
|
|
24
|
+
attention_data: torch.Tensor,
|
|
25
|
+
token_idx: int, # -1 => avg over all tokens
|
|
26
|
+
layer_idx: int, # -1 => avg over layers
|
|
27
|
+
head_idx: int, # -1 => avg over heads
|
|
28
|
+
input_dim: int,
|
|
29
|
+
) -> torch.Tensor:
|
|
30
|
+
# parse
|
|
31
|
+
__layer_dim, __batch_dim, __head_dim, __output_dim, __output_dim = tuple(attention_data.shape) # L, B, H, T, T
|
|
32
|
+
__layer_idx = min(layer_idx, __layer_dim - 1)
|
|
33
|
+
__head_idx = min(head_idx, __head_dim - 1)
|
|
34
|
+
__token_idx = min(token_idx, __output_dim - input_dim - 1) # T = I + O
|
|
35
|
+
# select the relevant data along each axis
|
|
36
|
+
__layer_slice = slice(None) if (__layer_idx < 0) else slice(__layer_idx, __layer_idx + 1)
|
|
37
|
+
__sample_slice = slice(None)
|
|
38
|
+
__head_slice = slice(None) if (__head_idx < 0) else slice(__head_idx, __head_idx + 1)
|
|
39
|
+
__token_slice = slice(input_dim - 1, __output_dim) if (__token_idx < 0) else slice(input_dim + __token_idx - 1, input_dim + __token_idx)
|
|
40
|
+
# filter the data
|
|
41
|
+
__data = attention_data[__layer_slice, __sample_slice, __head_slice, __token_slice, slice(None)]
|
|
42
|
+
# reduce all the axes but the last
|
|
43
|
+
return __data.mean(dim=tuple(range(len(__data.shape) - 1)))
|
|
44
|
+
|
|
45
|
+
# FORMAT #########################################################################
|
|
46
|
+
|
|
47
|
+
def postprocess_attention_scores(
|
|
48
|
+
attention_data: torch.Tensor, # (T,)
|
|
49
|
+
input_dim: int,
|
|
50
|
+
token_idx: int,
|
|
51
|
+
) -> list:
|
|
52
|
+
__output_dim = int(attention_data.shape[-1])
|
|
53
|
+
# isolate the scores of the input prompt
|
|
54
|
+
__input_slice = slice(0, input_dim)
|
|
55
|
+
# mask the token that were used to compute the scores
|
|
56
|
+
__token_idx = min(token_idx, __output_dim - input_dim - 1) # T = I + O
|
|
57
|
+
__output_range = list(range(__output_dim - input_dim)) if (__token_idx < 0) else [__token_idx]
|
|
58
|
+
__output_mask = torch.BoolTensor([__i in __output_range for __i in range(__output_dim - input_dim)])
|
|
59
|
+
# normalize the scores
|
|
60
|
+
__input_scores = attention_data[__input_slice] / (attention_data[__input_slice].max() + 1e-5)
|
|
61
|
+
# round to obtain integer labels from 0 to 100
|
|
62
|
+
__input_scores = torch.round(100.0 * __input_scores, decimals=0).type(torch.int32)
|
|
63
|
+
# the generated tokens are not scored
|
|
64
|
+
__output_scores = torch.where(__output_mask, -1, 0).type(torch.int32)
|
|
65
|
+
# native list of serialized integers
|
|
66
|
+
return [str(__i) for __i in __input_scores.tolist() + __output_scores.tolist()] # (I,) + (O,) = (T,)
|
|
67
|
+
|
|
68
|
+
# COMPUTE ########################################################################
|
|
69
|
+
|
|
70
|
+
def score_tokens(
|
|
71
|
+
prompt_str: str,
|
|
72
|
+
token_num: int,
|
|
73
|
+
topk_num: int,
|
|
74
|
+
topp_num: float,
|
|
75
|
+
token_idx: int,
|
|
76
|
+
layer_idx: int,
|
|
77
|
+
head_idx: int,
|
|
78
|
+
device_str: str,
|
|
79
|
+
model_obj: object,
|
|
80
|
+
tokenizer_obj: object,
|
|
81
|
+
) -> list:
|
|
82
|
+
# dictionary {'input_ids': _, 'attention_mask': _}
|
|
83
|
+
__inputs = psaiops.common.tokenizer.preprocess_token_ids(
|
|
84
|
+
tokenizer_obj=tokenizer_obj,
|
|
85
|
+
prompt_str=prompt_str,
|
|
86
|
+
device_str=device_str)
|
|
87
|
+
# parse the inputs
|
|
88
|
+
__input_dim = int(__inputs['input_ids'].shape[-1])
|
|
89
|
+
# tensor (1, T)
|
|
90
|
+
__outputs = psaiops.common.tokenizer.model.generate_token_ids(
|
|
91
|
+
model_obj=model_obj,
|
|
92
|
+
input_ids=__inputs['input_ids'],
|
|
93
|
+
attention_mask=__inputs['attention_mask'],
|
|
94
|
+
token_num=token_num,
|
|
95
|
+
topk_num=topk_num,
|
|
96
|
+
topp_num=topp_num)
|
|
97
|
+
# tensor (L, S, H, T, T)
|
|
98
|
+
__attentions = compute_attention_weights(
|
|
99
|
+
model_obj=model_obj,
|
|
100
|
+
token_obj=__outputs)
|
|
101
|
+
# reduce the layer, sample, head and output token axes => tensor (T,)
|
|
102
|
+
__scores = reduce_attention_weights(
|
|
103
|
+
__attentions,
|
|
104
|
+
token_idx=token_idx,
|
|
105
|
+
layer_idx=layer_idx,
|
|
106
|
+
head_idx=head_idx,
|
|
107
|
+
input_dim=__input_dim)
|
|
108
|
+
# translate the scores into integer labels
|
|
109
|
+
__labels = postprocess_attention_scores(
|
|
110
|
+
__scores,
|
|
111
|
+
input_dim=__input_dim,
|
|
112
|
+
token_idx=token_idx)
|
|
113
|
+
# detokenize the IDs
|
|
114
|
+
__tokens = psaiops.common.tokenizer.postprocess_token_ids(
|
|
115
|
+
tokenizer_obj=tokenizer_obj,
|
|
116
|
+
token_obj=__outputs)
|
|
117
|
+
# match tokens and labels for the HighlightedText field
|
|
118
|
+
return list(zip(__tokens, __labels))
|
|
File without changes
|