proofnest 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PKG-INFO +1 -1
- __init__.py +1 -1
- {proofnest-0.2.0.dist-info → proofnest-0.2.1.dist-info}/METADATA +1 -1
- proofnest-0.2.1.dist-info/RECORD +21 -0
- pyproject.toml +18 -1
- .planning/PROJECT.md +0 -99
- .planning/ROADMAP.md +0 -152
- .planning/STATE.md +0 -91
- .planning/config.json +0 -18
- .planning/quick/001-artikkel-proofnest-vs-moltbook/001-PLAN.md +0 -190
- .planning/quick/001-artikkel-proofnest-vs-moltbook/001-SUMMARY.md +0 -85
- .planning/quick/002-twitter-thread-proofnest-moltbook/002-PLAN.md +0 -53
- .planning/quick/002-twitter-thread-proofnest-moltbook/002-SUMMARY.md +0 -58
- .planning/research/ARCHITECTURE.md +0 -585
- .planning/research/FEATURES.md +0 -192
- .planning/research/PITFALLS.md +0 -487
- .planning/research/STACK.md +0 -378
- .planning/research/SUMMARY.md +0 -385
- AUDIT_GPT4o_2026-02-03.md +0 -65
- AUDIT_GPT52_2026-02-03.md +0 -137
- AUDIT_GPT52_FULL_2026-02-03.md +0 -116
- AUDIT_GPT52_ROUND2_2026-02-03.md +0 -79
- README.md +0 -132
- content/articles/proofnest-vs-moltbook-en.md +0 -165
- content/social/twitter-thread-001.md +0 -168
- proofnest-0.2.0.dist-info/RECORD +0 -45
- tests/test_api.py +0 -270
- tests/test_did_registry.py +0 -206
- tests/test_proof.py +0 -279
- tests/test_staking.py +0 -174
- {proofnest-0.2.0.dist-info → proofnest-0.2.1.dist-info}/WHEEL +0 -0
- {proofnest-0.2.0.dist-info → proofnest-0.2.1.dist-info}/entry_points.txt +0 -0
- {proofnest-0.2.0.dist-info → proofnest-0.2.1.dist-info}/licenses/LICENSE +0 -0
.planning/research/FEATURES.md
DELETED
|
@@ -1,192 +0,0 @@
|
|
|
1
|
-
# Feature Landscape: AI-Human Collaboration Platforms
|
|
2
|
-
|
|
3
|
-
**Domain:** AI-Human Collaboration Platform with Cryptographic Trust
|
|
4
|
-
**Researched:** 2026-02-03
|
|
5
|
-
**Confidence:** HIGH (based on multiple verified sources including Wiz Research, industry reports)
|
|
6
|
-
|
|
7
|
-
---
|
|
8
|
-
|
|
9
|
-
## Table Stakes
|
|
10
|
-
|
|
11
|
-
Features users expect. Missing = product feels incomplete.
|
|
12
|
-
|
|
13
|
-
| Feature | Why Expected | Complexity | Notes |
|
|
14
|
-
|---------|--------------|------------|-------|
|
|
15
|
-
| **Agent Registration** | Every platform requires this | Low | Must be secure - Moltbook had no rate limiting |
|
|
16
|
-
| **Content Posting** | Core social function | Low | Agents/humans must be able to share content |
|
|
17
|
-
| **Threading/Comments** | Discussion is fundamental | Medium | Nested conversations, reply chains |
|
|
18
|
-
| **Voting/Reactions** | Community signal mechanism | Low | Upvotes, downvotes, emoji reactions |
|
|
19
|
-
| **User Profiles** | Identity presentation | Low | Bio, avatar, credentials display |
|
|
20
|
-
| **Follow/Social Graph** | Network building | Medium | Subscribe to agents/humans |
|
|
21
|
-
| **Direct Messaging** | Private communication | Medium | CRITICAL: Must be encrypted (Moltbook DMs leaked) |
|
|
22
|
-
| **Notifications** | Engagement driver | Medium | Real-time alerts for interactions |
|
|
23
|
-
| **Search** | Content discovery | Medium | Full-text search across posts, profiles |
|
|
24
|
-
| **API Access** | Agent integration | High | OAuth2/API keys for programmatic access |
|
|
25
|
-
| **Mobile Responsiveness** | Modern expectation | Medium | Works on all devices |
|
|
26
|
-
| **Basic Moderation** | Platform health | Medium | Report, block, hide functionality |
|
|
27
|
-
|
|
28
|
-
---
|
|
29
|
-
|
|
30
|
-
## Differentiators
|
|
31
|
-
|
|
32
|
-
Features that set PROOFNEST apart. Not expected, but highly valued.
|
|
33
|
-
|
|
34
|
-
### PROOFNEST Core Differentiators (Trust Layer)
|
|
35
|
-
|
|
36
|
-
| Feature | Value Proposition | Complexity | Notes |
|
|
37
|
-
|---------|-------------------|------------|-------|
|
|
38
|
-
| **Cryptographic Decision Signing** | Every AI action is signed with DID key | High | W3C DID standard - creates immutable accountability |
|
|
39
|
-
| **Bitcoin Anchoring** | Decisions timestamped on Bitcoin | High | Tamper-proof audit trail - RFC 3161 + blockchain |
|
|
40
|
-
| **Verifiable Credentials** | Agents hold VCs proving capabilities | High | W3C VC standard - trust without central authority |
|
|
41
|
-
| **Proof-of-Decision** | Any action can be cryptographically verified | High | "Did AI really make this decision?" - provable |
|
|
42
|
-
| **Decision Explainability** | Why AI decided what it did - stored immutably | High | Regulatory compliance (EU AI Act by Aug 2026) |
|
|
43
|
-
| **Kill-Switch Capability** | Human can revoke agent permissions instantly | Medium | Enterprise requirement per KPMG (75% demand this) |
|
|
44
|
-
| **Reputation Chain** | Karma backed by on-chain proof-of-contribution | High | Unlike Moltbook's gameable karma system |
|
|
45
|
-
| **Agent-to-Agent Trust Protocol** | DIDs + VCs enable cross-platform trust | High | A2A protocol interoperability |
|
|
46
|
-
|
|
47
|
-
### Enterprise Differentiators
|
|
48
|
-
|
|
49
|
-
| Feature | Value Proposition | Complexity | Notes |
|
|
50
|
-
|---------|-------------------|------------|-------|
|
|
51
|
-
| **Compliance Dashboard** | Real-time EU AI Act, NIST RMF compliance | High | Control catalog, compliance matrix, risk register |
|
|
52
|
-
| **Audit Trail Export** | Tamper-evident logs for regulators | Medium | Required for high-risk AI systems |
|
|
53
|
-
| **Human-in-the-Loop Controls** | 60% of enterprises require this | Medium | Approval workflows for sensitive actions |
|
|
54
|
-
| **Role-Based Access Control** | Enterprise IAM integration | Medium | SSO, least-privilege principle |
|
|
55
|
-
| **Data Lineage Tracking** | Link outputs to source data + model version | High | KPMG: top 3 enterprise priority |
|
|
56
|
-
| **Sensitive Data Segmentation** | Privacy by design | High | GDPR, data residency compliance |
|
|
57
|
-
| **Multi-Agent Orchestration** | Specialized agents working together | High | 1,445% surge in multi-agent inquiries (Gartner) |
|
|
58
|
-
|
|
59
|
-
### Social/UX Differentiators
|
|
60
|
-
|
|
61
|
-
| Feature | Value Proposition | Complexity | Notes |
|
|
62
|
-
|---------|-------------------|------------|-------|
|
|
63
|
-
| **Proof Badges** | Visual verification of agent authenticity | Low | Instantly see: "This agent is verified" |
|
|
64
|
-
| **Decision Timeline** | Visual history of all proven decisions | Medium | Like Git history but for AI actions |
|
|
65
|
-
| **Trust Score** | Cryptographically-backed reputation | Medium | Not gameable like Moltbook karma |
|
|
66
|
-
| **Collaboration Spaces** | Human + AI project workspaces | High | Teams working together with full audit |
|
|
67
|
-
| **Attestation System** | 3+ validators confirm agent work | Medium | Shipyard model: decentralized verification |
|
|
68
|
-
|
|
69
|
-
---
|
|
70
|
-
|
|
71
|
-
## Anti-Features
|
|
72
|
-
|
|
73
|
-
Features to explicitly NOT build. Lessons from Moltbook and industry failures.
|
|
74
|
-
|
|
75
|
-
### Critical Anti-Features (from Moltbook breach)
|
|
76
|
-
|
|
77
|
-
| Anti-Feature | Why Avoid | What to Do Instead |
|
|
78
|
-
|--------------|-----------|-------------------|
|
|
79
|
-
| **Hardcoded API keys in client JS** | Exposed 1.5M credentials | Server-side key storage, never expose in client |
|
|
80
|
-
| **No Row Level Security (RLS)** | Anyone could read/write entire DB | Supabase RLS mandatory on ALL tables |
|
|
81
|
-
| **Unencrypted DMs** | Private messages contained API keys in plaintext | End-to-end encryption for all private communication |
|
|
82
|
-
| **No rate limiting on registration** | 500K fake agents from single actor (OpenClaw) | Rate limit + proof-of-humanity/proof-of-stake |
|
|
83
|
-
| **No agent verification** | Humans could post as AI with simple POST request | Cryptographic proof of agent identity required |
|
|
84
|
-
| **"Vibe coding" without security review** | Root cause of entire breach | Security audit BEFORE deploy, not after |
|
|
85
|
-
| **Trust-based audit logs** | "Promises not proof" - worthless in incident | Cryptographic audit trails with hash chains |
|
|
86
|
-
|
|
87
|
-
### Architectural Anti-Patterns
|
|
88
|
-
|
|
89
|
-
| Anti-Feature | Why Avoid | What to Do Instead |
|
|
90
|
-
|--------------|-----------|-------------------|
|
|
91
|
-
| **Centralized credential storage** | Single point of failure/breach | Decentralized identity (DIDs), user-controlled keys |
|
|
92
|
-
| **Plaintext secret storage in DB** | Moltbook stored OpenAI keys in clear | Encrypt at rest, ideally don't store 3rd party keys |
|
|
93
|
-
| **Unauthenticated write access** | Anyone could edit any post | Authentication + authorization on ALL endpoints |
|
|
94
|
-
| **Single admin account** | No accountability for changes | Multi-sig for admin actions, audit everything |
|
|
95
|
-
| **No human oversight for AI** | Regulatory non-compliance | Human-in-the-loop for high-risk decisions |
|
|
96
|
-
| **Karma without proof** | Easily gamed, meaningless metric | On-chain reputation backed by verified actions |
|
|
97
|
-
| **Monolithic agent access** | Breached agent = full access | Zero-trust, least-privilege per action |
|
|
98
|
-
|
|
99
|
-
### Business Model Anti-Patterns
|
|
100
|
-
|
|
101
|
-
| Anti-Feature | Why Avoid | What to Do Instead |
|
|
102
|
-
|--------------|-----------|-------------------|
|
|
103
|
-
| **Vanity metrics (fake agents)** | Moltbook: 1.5M agents, only 17K humans (88:1) | Honest metrics: verified unique entities only |
|
|
104
|
-
| **Growth over security** | "Ship fast, fix later" caused breach | Security-first, verified growth |
|
|
105
|
-
| **No identity verification** | Enables sybil attacks, spam | Proof-of-humanity or proof-of-stake |
|
|
106
|
-
| **Hype-driven marketing** | "Singularity!" claims backfired after breach | Honest value proposition based on provable trust |
|
|
107
|
-
|
|
108
|
-
---
|
|
109
|
-
|
|
110
|
-
## Feature Dependencies
|
|
111
|
-
|
|
112
|
-
```
|
|
113
|
-
CORE IDENTITY LAYER (Phase 1)
|
|
114
|
-
├── DID Infrastructure → Required for ALL other features
|
|
115
|
-
├── Key Management → Required for signing
|
|
116
|
-
└── Verifiable Credentials → Required for trust
|
|
117
|
-
|
|
118
|
-
PROOF LAYER (Phase 2)
|
|
119
|
-
├── Decision Signing → Requires DID
|
|
120
|
-
├── Bitcoin Anchoring → Requires signed decisions
|
|
121
|
-
└── Audit Trail → Requires both above
|
|
122
|
-
|
|
123
|
-
SOCIAL LAYER (Phase 3)
|
|
124
|
-
├── Agent Registration → Requires DID + VC
|
|
125
|
-
├── Content Posting → Requires Agent Registration
|
|
126
|
-
├── Threading → Requires Content Posting
|
|
127
|
-
├── Voting/Reputation → Requires verified actions
|
|
128
|
-
└── Messaging → Requires encryption + identity
|
|
129
|
-
|
|
130
|
-
ENTERPRISE LAYER (Phase 4)
|
|
131
|
-
├── Compliance Dashboard → Requires Audit Trail
|
|
132
|
-
├── Human-in-the-Loop → Requires Proof Layer
|
|
133
|
-
├── Multi-Agent Orchestration → Requires A2A protocol
|
|
134
|
-
└── Data Lineage → Requires complete Proof Layer
|
|
135
|
-
```
|
|
136
|
-
|
|
137
|
-
---
|
|
138
|
-
|
|
139
|
-
## MVP Recommendation
|
|
140
|
-
|
|
141
|
-
For MVP ("1 company milestone"), prioritize:
|
|
142
|
-
|
|
143
|
-
### Must Have (Phase 1-2)
|
|
144
|
-
1. **DID-based identity** - Foundation for everything else
|
|
145
|
-
2. **Decision signing** - Core value proposition ("AI decisions you can prove")
|
|
146
|
-
3. **Bitcoin anchoring** - Immutable proof
|
|
147
|
-
4. **Basic posting + threading** - Minimum social function
|
|
148
|
-
5. **Encrypted messaging** - Learn from Moltbook failure
|
|
149
|
-
6. **Rate-limited registration** - Prevent fake agent floods
|
|
150
|
-
|
|
151
|
-
### Should Have (Phase 3)
|
|
152
|
-
7. **Attestation/verification system** - Multi-party validation
|
|
153
|
-
8. **Reputation with on-chain backing** - Trust score that means something
|
|
154
|
-
9. **Human-in-the-loop controls** - Enterprise requirement
|
|
155
|
-
10. **Basic compliance dashboard** - EU AI Act deadline Aug 2026
|
|
156
|
-
|
|
157
|
-
### Defer to Post-MVP
|
|
158
|
-
- Advanced multi-agent orchestration (complex, can add later)
|
|
159
|
-
- Full data lineage tracking (enterprise complexity)
|
|
160
|
-
- Cross-platform A2A protocol (requires ecosystem adoption)
|
|
161
|
-
- Token economics (regulatory complexity)
|
|
162
|
-
|
|
163
|
-
---
|
|
164
|
-
|
|
165
|
-
## Competitive Landscape Summary
|
|
166
|
-
|
|
167
|
-
| Platform | Strength | Weakness | PROOFNEST Opportunity |
|
|
168
|
-
|----------|----------|----------|----------------------|
|
|
169
|
-
| **Moltbook** | First mover, viral growth | Security disaster, fake agents | Trust-first alternative |
|
|
170
|
-
| **The Shipyard** | Proof-of-Ship, tokenized | Agent-only, no human collab | AI-Human hybrid |
|
|
171
|
-
| **Enterprise platforms** | Compliance, governance | Closed, expensive | Open + compliant |
|
|
172
|
-
| **A2A protocol** | Interoperability standard | No social layer | Add social on A2A |
|
|
173
|
-
|
|
174
|
-
---
|
|
175
|
-
|
|
176
|
-
## Sources
|
|
177
|
-
|
|
178
|
-
### Primary (HIGH confidence)
|
|
179
|
-
- [Wiz Research: Moltbook Security Analysis](https://www.wiz.io/blog/exposed-moltbook-database-reveals-millions-of-api-keys)
|
|
180
|
-
- [W3C DID + VC Standards](https://www.w3.org/TR/did-core/)
|
|
181
|
-
- [Arxiv: AI Agents with DIDs and VCs](https://arxiv.org/abs/2511.02841)
|
|
182
|
-
|
|
183
|
-
### Secondary (MEDIUM confidence)
|
|
184
|
-
- [IBM/e& Enterprise Agentic AI Governance](https://newsroom.ibm.com/2026-01-19-e-and-ibm-unveil-enterprise-grade-agentic-AI-to-transform-governance-and-compliance)
|
|
185
|
-
- [Indicio: Verifiable Credentials for AI 2026](https://indicio.tech/blog/why-verifiable-credentials-will-power-real-world-ai-in-2026/)
|
|
186
|
-
- [KPMG: Agent-Driven Enterprise 2026](https://kpmg.com/us/en/media/news/q4-ai-pulse.html)
|
|
187
|
-
- [VeritasChain Protocol: Cryptographic Audit Trails](https://dev.to/veritaschain/vcp-v11-building-cryptographic-audit-trails-for-ai-trading-systems-after-the-2026-silver-crash-1gkp)
|
|
188
|
-
- [The Shipyard Platform](https://shipyard.bot/ships)
|
|
189
|
-
|
|
190
|
-
### Tertiary (LOW confidence - verify before relying)
|
|
191
|
-
- Various news coverage of Moltbook breach
|
|
192
|
-
- General agentic AI trend articles
|
.planning/research/PITFALLS.md
DELETED
|
@@ -1,487 +0,0 @@
|
|
|
1
|
-
# Domain Pitfalls: AI Trust Infrastructure
|
|
2
|
-
|
|
3
|
-
**Domain:** AI decision verification, provenance, audit trails
|
|
4
|
-
**Researched:** 2026-02-03
|
|
5
|
-
**Confidence:** HIGH (verified via multiple authoritative sources)
|
|
6
|
-
|
|
7
|
-
---
|
|
8
|
-
|
|
9
|
-
## Executive Summary
|
|
10
|
-
|
|
11
|
-
The AI trust/verification space is a minefield. The Moltbook breach (January 2026) exposed 1.5M API keys through basic security failures. EU AI Act compliance (August 2026) creates hard regulatory deadlines. 95% of enterprise AI pilots fail. This document catalogs pitfalls to avoid so PROOFNEST doesn't repeat industry mistakes.
|
|
12
|
-
|
|
13
|
-
**Key insight:** The biggest failures aren't technical—they're organizational: weak controls, unclear ownership, and treating security/compliance as afterthoughts.
|
|
14
|
-
|
|
15
|
-
---
|
|
16
|
-
|
|
17
|
-
## Critical Pitfalls (Blocks Launch / Major Rewrite Required)
|
|
18
|
-
|
|
19
|
-
### CP-1: The Moltbook Pattern — "Vibe Coding" Security Failures
|
|
20
|
-
|
|
21
|
-
**What goes wrong:**
|
|
22
|
-
Projects built rapidly with AI assistance ship with fundamental security flaws: exposed API keys, missing access controls, default credentials, no authentication.
|
|
23
|
-
|
|
24
|
-
**Case study — Moltbook Breach (Jan 31, 2026):**
|
|
25
|
-
- Supabase API key hardcoded in client-side JavaScript
|
|
26
|
-
- Missing Row Level Security (RLS) policies
|
|
27
|
-
- Result: 1.5M API keys exposed, 35K emails leaked, 4,060 private messages readable
|
|
28
|
-
- Full write access to database was possible
|
|
29
|
-
- Root cause: "AI tools don't yet reason about security posture"
|
|
30
|
-
|
|
31
|
-
**Why it happens:**
|
|
32
|
-
- Speed prioritized over security audits
|
|
33
|
-
- Non-security engineers using AI to generate code
|
|
34
|
-
- 45% of AI-generated code introduces security vulnerabilities (Veracode 2025)
|
|
35
|
-
- "The code looks correct and works—creating false sense of security"
|
|
36
|
-
|
|
37
|
-
**Warning signs:**
|
|
38
|
-
- No dedicated security review before launch
|
|
39
|
-
- API keys in frontend code
|
|
40
|
-
- Database queries without authentication checks
|
|
41
|
-
- Default credentials anywhere in system
|
|
42
|
-
- "We'll fix security later" attitude
|
|
43
|
-
|
|
44
|
-
**Prevention strategy:**
|
|
45
|
-
- Security audit BEFORE any public deployment (already done: GPT-5.2 audit)
|
|
46
|
-
- Implement RLS/RBAC from day 1
|
|
47
|
-
- Never expose credentials client-side
|
|
48
|
-
- Mandatory security prompts when generating code with AI
|
|
49
|
-
- Treat every AI-generated line as untrusted until reviewed
|
|
50
|
-
|
|
51
|
-
**Which phase should address it:** Phase 1 (Foundation) — non-negotiable
|
|
52
|
-
**Severity:** BLOCKS LAUNCH
|
|
53
|
-
|
|
54
|
-
**Sources:**
|
|
55
|
-
- [Wiz Security Blog: Moltbook Breach](https://www.wiz.io/blog/exposed-moltbook-database-reveals-millions-of-api-keys)
|
|
56
|
-
- [Infosecurity Magazine: Vibe-Coded Moltbook](https://www.infosecurity-magazine.com/news/moltbook-exposes-user-data-api/)
|
|
57
|
-
- [Kaspersky: Vibe Coding Security Risks](https://www.kaspersky.com/blog/vibe-coding-2025-risks/54584/)
|
|
58
|
-
|
|
59
|
-
---
|
|
60
|
-
|
|
61
|
-
### CP-2: EU AI Act Non-Compliance — Missing Mandatory Capabilities
|
|
62
|
-
|
|
63
|
-
**What goes wrong:**
|
|
64
|
-
Products launch without required capabilities for EU AI Act compliance. Post-launch retrofitting is expensive and may be impossible without architecture changes.
|
|
65
|
-
|
|
66
|
-
**EU AI Act Requirements (Effective August 2, 2026):**
|
|
67
|
-
|
|
68
|
-
| Article | Requirement | PROOFNEST Implication |
|
|
69
|
-
|---------|-------------|----------------------|
|
|
70
|
-
| **Article 12** | Automatic, tamper-resistant event logging throughout system lifetime | Core product feature—must be immutable audit trail |
|
|
71
|
-
| **Article 13** | Transparency: Deployers must understand how system works, what outputs mean | Documentation + explainability layer required |
|
|
72
|
-
| **Article 14** | Human oversight: Ability to monitor, intervene, override AI decisions | Dashboard, alerts, human-in-the-loop mechanisms |
|
|
73
|
-
| **Article 73** | Serious incident reporting within 2-15 days | Incident detection, classification, reporting pipeline |
|
|
74
|
-
|
|
75
|
-
**Specific Article 12 logging requirements:**
|
|
76
|
-
- Enable identification of situations that may result in risk
|
|
77
|
-
- Facilitate post-market monitoring
|
|
78
|
-
- Support operational oversight
|
|
79
|
-
- Include identification of natural persons involved in verification
|
|
80
|
-
- Traceability and integrity of logs (tamper-evident)
|
|
81
|
-
|
|
82
|
-
**Penalties:**
|
|
83
|
-
- Up to EUR 35 million or 7% of global turnover
|
|
84
|
-
- High-risk system rules take effect August 2026
|
|
85
|
-
|
|
86
|
-
**Warning signs:**
|
|
87
|
-
- Audit logs that can be modified/deleted
|
|
88
|
-
- No human override mechanism
|
|
89
|
-
- No incident classification system
|
|
90
|
-
- Documentation is an afterthought
|
|
91
|
-
|
|
92
|
-
**Prevention strategy:**
|
|
93
|
-
- Build EU AI Act compliance into architecture from day 1
|
|
94
|
-
- Immutable audit trails (cryptographic, append-only)
|
|
95
|
-
- Human oversight interface as core feature
|
|
96
|
-
- Incident reporting workflow built-in
|
|
97
|
-
- Transparency documentation as product requirement
|
|
98
|
-
|
|
99
|
-
**Which phase should address it:** Phase 1 (Architecture) + Phase 2 (Implementation)
|
|
100
|
-
**Severity:** BLOCKS LAUNCH (for EU market)
|
|
101
|
-
|
|
102
|
-
**Sources:**
|
|
103
|
-
- [EU AI Act Article 12: Record-Keeping](https://artificialintelligenceact.eu/article/12/)
|
|
104
|
-
- [EU AI Act Article 13: Transparency](https://artificialintelligenceact.eu/article/13/)
|
|
105
|
-
- [EU AI Act Article 14: Human Oversight](https://www.euaiact.com/key-issue/4)
|
|
106
|
-
- [EU AI Act Article 73: Incident Reporting](https://www.taylorwessing.com/en/insights-and-events/insights/2025/10/eu-ai-act-deep-dive)
|
|
107
|
-
|
|
108
|
-
---
|
|
109
|
-
|
|
110
|
-
### CP-3: API Key Management Catastrophe
|
|
111
|
-
|
|
112
|
-
**What goes wrong:**
|
|
113
|
-
API keys (own and users') are exposed, leaked, or improperly stored. One breach can compromise entire user base.
|
|
114
|
-
|
|
115
|
-
**Industry pattern (2025-2026):**
|
|
116
|
-
- Rabbit R1: Hardcoded API keys
|
|
117
|
-
- ChatGPT: Redis vulnerability
|
|
118
|
-
- McHire: Default credentials "123456/123456" with no MFA, exposing 64M records
|
|
119
|
-
- Moltbook: 1.5M API keys in plaintext database
|
|
120
|
-
|
|
121
|
-
**Key statistic:** 95% of API attacks came from authenticated sessions (Palo Alto 2025)
|
|
122
|
-
|
|
123
|
-
**Warning signs:**
|
|
124
|
-
- API keys stored in plaintext
|
|
125
|
-
- No key rotation mechanism
|
|
126
|
-
- No per-user key scoping
|
|
127
|
-
- Keys visible in logs
|
|
128
|
-
- No rate limiting per key
|
|
129
|
-
|
|
130
|
-
**Prevention strategy:**
|
|
131
|
-
- HSM or secure enclave for key storage
|
|
132
|
-
- Automatic key rotation
|
|
133
|
-
- Scoped, revocable tokens (not long-lived keys)
|
|
134
|
-
- Keys never in logs, never in frontend
|
|
135
|
-
- Rate limiting and anomaly detection per key
|
|
136
|
-
- Breach notification system if key exposure detected
|
|
137
|
-
|
|
138
|
-
**Which phase should address it:** Phase 1 (Security Foundation)
|
|
139
|
-
**Severity:** BLOCKS LAUNCH
|
|
140
|
-
|
|
141
|
-
**Sources:**
|
|
142
|
-
- [Reco AI: Cloud Security Breaches 2025](https://www.reco.ai/blog/ai-and-cloud-security-breaches-2025)
|
|
143
|
-
- [Equixly: Top 5 API Incidents 2025](https://equixly.com/blog/2025/09/08/2025-top-5-api-incidents/)
|
|
144
|
-
|
|
145
|
-
---
|
|
146
|
-
|
|
147
|
-
### CP-4: Scalability Afterthought — Cryptographic Audit Trails
|
|
148
|
-
|
|
149
|
-
**What goes wrong:**
|
|
150
|
-
Cryptographic audit systems designed for correctness but not for scale. High-volume operations bring system to crawl or cause data loss.
|
|
151
|
-
|
|
152
|
-
**Performance challenges:**
|
|
153
|
-
- Blockchain-based audit trails hit scalability limits under high transaction loads
|
|
154
|
-
- Storage grows continuously with immutable data
|
|
155
|
-
- Key management becomes complex at scale
|
|
156
|
-
- Integration with legacy systems is rigid
|
|
157
|
-
|
|
158
|
-
**Real-world benchmarks:**
|
|
159
|
-
- Unoptimized: Systems struggle with high-volume audit generation
|
|
160
|
-
- Optimized: 12,000 transactions/second achievable with proper architecture
|
|
161
|
-
- 87% reduction in transaction costs possible with batch processing
|
|
162
|
-
|
|
163
|
-
**Warning signs:**
|
|
164
|
-
- Synchronous audit write on every operation
|
|
165
|
-
- No batch processing for audit trail
|
|
166
|
-
- No storage tier strategy
|
|
167
|
-
- Linear storage growth without archival
|
|
168
|
-
- Single cryptographic verification bottleneck
|
|
169
|
-
|
|
170
|
-
**Prevention strategy:**
|
|
171
|
-
- Asynchronous, batch audit generation
|
|
172
|
-
- Hierarchical storage management (hot/warm/cold)
|
|
173
|
-
- Merkle tree structures for efficient verification
|
|
174
|
-
- Performance testing under realistic load BEFORE launch
|
|
175
|
-
- Storage cost modeling in business plan
|
|
176
|
-
|
|
177
|
-
**Which phase should address it:** Phase 2 (Architecture) + Phase 3 (Scale Testing)
|
|
178
|
-
**Severity:** BLOCKS LAUNCH (at scale)
|
|
179
|
-
|
|
180
|
-
**Sources:**
|
|
181
|
-
- [Medium: 5 Trends AI ROI 2026](https://medium.com/origintrail/5-trends-to-drive-the-ai-roi-in-2026-trust-is-capital-372ac5dabc38)
|
|
182
|
-
- [VeritasChain: EU AI Act Cryptographic Trails](https://veritaschain.org/blog/posts/2026-01-19-eu-ai-act-vcp-v1-1-cryptographic-audit-trails/)
|
|
183
|
-
|
|
184
|
-
---
|
|
185
|
-
|
|
186
|
-
## Moderate Pitfalls (Delays / Technical Debt)
|
|
187
|
-
|
|
188
|
-
### MP-1: Explainability Theater — Looks Good, Proves Nothing
|
|
189
|
-
|
|
190
|
-
**What goes wrong:**
|
|
191
|
-
Explainability features are built for demos, not for actual verification. Users can't actually prove anything with them.
|
|
192
|
-
|
|
193
|
-
**Industry pattern:**
|
|
194
|
-
- Most XAI tools built for technical users, not regulators or end-users
|
|
195
|
-
- No standardized evaluation criteria for explanation quality
|
|
196
|
-
- What's "good" for data scientist fails regulators
|
|
197
|
-
- 62% of enterprises lack visibility into AI decisions
|
|
198
|
-
|
|
199
|
-
**Warning signs:**
|
|
200
|
-
- Explainability dashboard looks nice but doesn't answer "why did this happen?"
|
|
201
|
-
- No formal verification of explanations
|
|
202
|
-
- Explanations can't be exported for legal/regulatory use
|
|
203
|
-
- Different explanations for same decision on different views
|
|
204
|
-
|
|
205
|
-
**Prevention strategy:**
|
|
206
|
-
- Define explainability requirements with regulatory lens
|
|
207
|
-
- Machine-verifiable proofs, not just human-readable narratives
|
|
208
|
-
- Export formats for legal/compliance use
|
|
209
|
-
- Test explainability with non-technical users
|
|
210
|
-
|
|
211
|
-
**Which phase should address it:** Phase 2 (Core Features)
|
|
212
|
-
**Severity:** DEGRADES QUALITY (and regulatory compliance)
|
|
213
|
-
|
|
214
|
-
**Sources:**
|
|
215
|
-
- [McKinsey: Building AI Trust](https://www.mckinsey.com/capabilities/quantumblack/our-insights/building-ai-trust-the-key-role-of-explainability)
|
|
216
|
-
- [CFA Institute: Explainable AI in Finance](https://rpc.cfainstitute.org/research/reports/2025/explainable-ai-in-finance)
|
|
217
|
-
|
|
218
|
-
---
|
|
219
|
-
|
|
220
|
-
### MP-2: Governance-Adoption Gap — Moving Faster Than Controls
|
|
221
|
-
|
|
222
|
-
**What goes wrong:**
|
|
223
|
-
Product ships features faster than governance can keep up. Shadow usage, ungoverned deployments, compliance gaps emerge.
|
|
224
|
-
|
|
225
|
-
**Industry data:**
|
|
226
|
-
- 67% of tech leaders say governance capabilities lag behind AI project speed
|
|
227
|
-
- Only 6% of organizations have advanced AI security strategies
|
|
228
|
-
- Shadow AI accounts for 20% of all breaches (IBM 2025)
|
|
229
|
-
- Shadow AI breaches cost $670K more than standard incidents
|
|
230
|
-
|
|
231
|
-
**Warning signs:**
|
|
232
|
-
- New features without updated compliance documentation
|
|
233
|
-
- No approval workflow for sensitive operations
|
|
234
|
-
- Users creating workarounds for governance friction
|
|
235
|
-
- "We'll document later" pattern
|
|
236
|
-
|
|
237
|
-
**Prevention strategy:**
|
|
238
|
-
- Governance as feature, not friction
|
|
239
|
-
- Automated compliance checks in CI/CD
|
|
240
|
-
- Real-time governance dashboard
|
|
241
|
-
- Make compliant path easier than workaround path
|
|
242
|
-
|
|
243
|
-
**Which phase should address it:** Phase 2-3 (Continuous)
|
|
244
|
-
**Severity:** DEGRADES QUALITY + Regulatory risk
|
|
245
|
-
|
|
246
|
-
**Sources:**
|
|
247
|
-
- [Lexology: AI Governance 2026](https://www.lexology.com/library/detail.aspx?g=3f9471f4-090e-4c86-8065-85cd35c40b35)
|
|
248
|
-
- [IBM Cost of Data Breach 2025](https://www.ibm.com/reports/data-breach)
|
|
249
|
-
|
|
250
|
-
---
|
|
251
|
-
|
|
252
|
-
### MP-3: ROI Ambiguity — No Clear Value Metric
|
|
253
|
-
|
|
254
|
-
**What goes wrong:**
|
|
255
|
-
Enterprise pilots fail because ROI isn't defined upfront. Projects drift into R&D with no measurable outcome.
|
|
256
|
-
|
|
257
|
-
**Industry data:**
|
|
258
|
-
- 95% of enterprise AI pilots fail to deliver measurable P&L impact (MIT 2025)
|
|
259
|
-
- 72% of executives delay AI investments due to ROI unclear (IBM 2025)
|
|
260
|
-
- 49% of CIOs cite demonstrating AI value as top barrier
|
|
261
|
-
- Only 7% have fully scaled AI across organization
|
|
262
|
-
|
|
263
|
-
**Warning signs:**
|
|
264
|
-
- "We'll figure out the business case later"
|
|
265
|
-
- No success metrics defined before pilot
|
|
266
|
-
- Pilot extends indefinitely
|
|
267
|
-
- Stakeholders can't articulate what success looks like
|
|
268
|
-
|
|
269
|
-
**Prevention strategy:**
|
|
270
|
-
- Define ROI metric before building
|
|
271
|
-
- Quantifiable value propositions (audit hours saved, compliance cost avoided)
|
|
272
|
-
- Pilot → Production criteria defined upfront
|
|
273
|
-
- Regular ROI reviews during development
|
|
274
|
-
|
|
275
|
-
**Which phase should address it:** Phase 0 (Planning) + ongoing
|
|
276
|
-
**Severity:** DEGRADES ADOPTION
|
|
277
|
-
|
|
278
|
-
**Sources:**
|
|
279
|
-
- [Gruve AI: Enterprise AI Reality Check](https://gruve.ai/blog/enterprise-ai-reality-check-4-lessons-we-learned-in-2025-and-4-predictions-for-2026/)
|
|
280
|
-
- [PwC: AI Business Predictions 2026](https://www.pwc.com/us/en/tech-effect/ai-analytics/ai-predictions.html)
|
|
281
|
-
|
|
282
|
-
---
|
|
283
|
-
|
|
284
|
-
### MP-4: Human Oversight That Doesn't Scale
|
|
285
|
-
|
|
286
|
-
**What goes wrong:**
|
|
287
|
-
Human-in-the-loop mechanisms work at demo scale but break in production.
|
|
288
|
-
|
|
289
|
-
**Industry insight:**
|
|
290
|
-
"Human oversight scales poorly: Tool permission prompts work great for a few sensitive actions per day. Beyond that, you need approval workflows, not console prompts."
|
|
291
|
-
|
|
292
|
-
**Warning signs:**
|
|
293
|
-
- Every operation requires human approval
|
|
294
|
-
- Approval backlog grows
|
|
295
|
-
- Users bypass oversight for speed
|
|
296
|
-
- No tiered oversight levels
|
|
297
|
-
|
|
298
|
-
**Prevention strategy:**
|
|
299
|
-
- Risk-based oversight tiers (auto-approve low risk, human-approve high risk)
|
|
300
|
-
- Approval workflows, not blocking prompts
|
|
301
|
-
- Async approval with SLA guarantees
|
|
302
|
-
- Audit all auto-approved decisions
|
|
303
|
-
|
|
304
|
-
**Which phase should address it:** Phase 2 (UX Design)
|
|
305
|
-
**Severity:** DEGRADES QUALITY
|
|
306
|
-
|
|
307
|
-
**Sources:**
|
|
308
|
-
- [IAPP: Human Oversight Needs](https://iapp.org/news/a/eu-ai-act-shines-light-on-human-oversight-needs)
|
|
309
|
-
- [EyreAct: Human Oversight Implementation Guide](https://www.eyreact.com/eu-ai-act-human-oversight-requirements-comprehensive-implementation-guide/)
|
|
310
|
-
|
|
311
|
-
---
|
|
312
|
-
|
|
313
|
-
### MP-5: Legacy Integration Nightmare
|
|
314
|
-
|
|
315
|
-
**What goes wrong:**
|
|
316
|
-
Product can't integrate with enterprise systems, limiting adoption to greenfield deployments only.
|
|
317
|
-
|
|
318
|
-
**Industry data:**
|
|
319
|
-
- 60% of enterprises cite legacy integration as primary AI adoption barrier
|
|
320
|
-
- 70% of Fortune 500 have significant tech debt (McKinsey 2024)
|
|
321
|
-
- 85% expect to modify infrastructure before deploying AI at scale
|
|
322
|
-
|
|
323
|
-
**Warning signs:**
|
|
324
|
-
- API-only integration strategy
|
|
325
|
-
- No support for on-premise deployment
|
|
326
|
-
- Requires specific tech stack
|
|
327
|
-
- No data import/export capabilities
|
|
328
|
-
|
|
329
|
-
**Prevention strategy:**
|
|
330
|
-
- Design for integration from start
|
|
331
|
-
- Multiple integration patterns (API, SDK, agent, file-based)
|
|
332
|
-
- Support common enterprise patterns (SSO, audit log forwarding)
|
|
333
|
-
- Hybrid cloud/on-premise deployment option
|
|
334
|
-
|
|
335
|
-
**Which phase should address it:** Phase 2-3 (Integration Layer)
|
|
336
|
-
**Severity:** DEGRADES ADOPTION
|
|
337
|
-
|
|
338
|
-
**Sources:**
|
|
339
|
-
- [Deloitte: AI Adoption Challenges](https://www.deloitte.com/us/en/services/consulting/blogs/ai-adoption-challenges-ai-trends.html)
|
|
340
|
-
- [Help Net Security: AI Governance Maturity](https://www.helpnetsecurity.com/2025/12/24/csa-ai-security-governance-report/)
|
|
341
|
-
|
|
342
|
-
---
|
|
343
|
-
|
|
344
|
-
## Minor Pitfalls (Fixable / Nice to Avoid)
|
|
345
|
-
|
|
346
|
-
### mP-1: Documentation Debt
|
|
347
|
-
|
|
348
|
-
**What goes wrong:**
|
|
349
|
-
Compliance requires documentation. Retroactive documentation is expensive and often inaccurate.
|
|
350
|
-
|
|
351
|
-
**Prevention:** Document as you build. Compliance documentation is product feature.
|
|
352
|
-
**Which phase:** All phases (continuous)
|
|
353
|
-
**Severity:** NICE TO FIX
|
|
354
|
-
|
|
355
|
-
---
|
|
356
|
-
|
|
357
|
-
### mP-2: Timestamp Standardization
|
|
358
|
-
|
|
359
|
-
**What goes wrong:**
|
|
360
|
-
Audit trails have inconsistent timestamp formats across systems, making cross-system verification difficult.
|
|
361
|
-
|
|
362
|
-
**Prevention:** UTC everywhere, ISO 8601 format, single time source.
|
|
363
|
-
**Which phase:** Phase 1 (Data Model)
|
|
364
|
-
**Severity:** NICE TO FIX
|
|
365
|
-
|
|
366
|
-
---
|
|
367
|
-
|
|
368
|
-
### mP-3: Overselling Capabilities
|
|
369
|
-
|
|
370
|
-
**What goes wrong:**
|
|
371
|
-
Marketing promises "AI proof" but product delivers "logging with verification." Mismatch creates trust issues.
|
|
372
|
-
|
|
373
|
-
**Prevention:** Precise technical claims. "Verify, Don't Trust" approach.
|
|
374
|
-
**Which phase:** Phase 3 (Go-to-Market)
|
|
375
|
-
**Severity:** NICE TO FIX (but can damage trust)
|
|
376
|
-
|
|
377
|
-
---
|
|
378
|
-
|
|
379
|
-
## Anti-Features (Explicitly Avoid Building)
|
|
380
|
-
|
|
381
|
-
### AF-1: "Trust Us" Architecture
|
|
382
|
-
|
|
383
|
-
**Why avoid:** Trust emerges from design, not claims. Centralized trust models are the primary failure mode in this space.
|
|
384
|
-
|
|
385
|
-
**Instead:** Cryptographic verification, open standards, user-controlled keys.
|
|
386
|
-
|
|
387
|
-
---
|
|
388
|
-
|
|
389
|
-
### AF-2: Black-Box Verification
|
|
390
|
-
|
|
391
|
-
**Why avoid:** Users can't verify what they can't understand. Opaque verification is not verification.
|
|
392
|
-
|
|
393
|
-
**Instead:** Transparent, inspectable verification. Show your work.
|
|
394
|
-
|
|
395
|
-
---
|
|
396
|
-
|
|
397
|
-
### AF-3: Compliance Checkbox Theater
|
|
398
|
-
|
|
399
|
-
**Why avoid:** Meeting letter of regulation while missing spirit. Invites regulatory scrutiny.
|
|
400
|
-
|
|
401
|
-
**Instead:** Genuine capability, not checkbox. If Article 14 says "human oversight," build actual oversight, not a disabled button.
|
|
402
|
-
|
|
403
|
-
---
|
|
404
|
-
|
|
405
|
-
## Phase-Specific Warnings
|
|
406
|
-
|
|
407
|
-
| Phase | Topic | Likely Pitfall | Mitigation |
|
|
408
|
-
|-------|-------|---------------|------------|
|
|
409
|
-
| 1 | Foundation | CP-1: Vibe coding security | Security audit before any deployment |
|
|
410
|
-
| 1 | Architecture | CP-2: Missing EU AI Act capabilities | Compliance requirements in architecture |
|
|
411
|
-
| 2 | API Design | CP-3: Key management | HSM, scoped tokens, rotation |
|
|
412
|
-
| 2 | Audit Trail | CP-4: Scalability | Async, batch, Merkle trees |
|
|
413
|
-
| 2 | Explainability | MP-1: Explainability theater | Regulatory-valid proofs |
|
|
414
|
-
| 3 | Scale | MP-4: Human oversight scaling | Risk-based tiers, workflows |
|
|
415
|
-
| 3 | Enterprise | MP-5: Legacy integration | Multiple integration patterns |
|
|
416
|
-
| All | Process | MP-2: Governance gap | Continuous compliance |
|
|
417
|
-
|
|
418
|
-
---
|
|
419
|
-
|
|
420
|
-
## Competitive Differentiation: "Proof-Coded" vs "Vibe-Coded"
|
|
421
|
-
|
|
422
|
-
**Moltbook was "vibe-coded":** Built fast, shipped faster, security as afterthought. Result: catastrophic breach.
|
|
423
|
-
|
|
424
|
-
**PROOFNEST must be "proof-coded":**
|
|
425
|
-
- Security-first architecture (GPT-5.2 audit: done)
|
|
426
|
-
- EU AI Act compliance baked in
|
|
427
|
-
- Cryptographic verification, not trust
|
|
428
|
-
- Immutable audit trails from day 1
|
|
429
|
-
- Human oversight that actually works
|
|
430
|
-
|
|
431
|
-
**Market positioning:** "The trust infrastructure that trusts nothing."
|
|
432
|
-
|
|
433
|
-
---
|
|
434
|
-
|
|
435
|
-
## Research Confidence Assessment
|
|
436
|
-
|
|
437
|
-
| Topic | Confidence | Sources | Notes |
|
|
438
|
-
|-------|------------|---------|-------|
|
|
439
|
-
| Moltbook breach details | HIGH | Wiz, 404 Media, Infosecurity | Well-documented, multiple sources |
|
|
440
|
-
| EU AI Act requirements | HIGH | Official EU sources, law firms | Regulatory text available |
|
|
441
|
-
| Enterprise adoption barriers | HIGH | McKinsey, IBM, PwC surveys | Quantitative data |
|
|
442
|
-
| Cryptographic audit scaling | MEDIUM | Research papers, industry blogs | Implementation varies |
|
|
443
|
-
| Vibe coding risks | HIGH | Veracode study, multiple CVEs | Quantified statistics |
|
|
444
|
-
|
|
445
|
-
---
|
|
446
|
-
|
|
447
|
-
## Key Takeaways
|
|
448
|
-
|
|
449
|
-
1. **Security is table stakes.** Moltbook proves the market has zero tolerance for security failures.
|
|
450
|
-
|
|
451
|
-
2. **EU AI Act compliance is non-negotiable.** August 2026 deadline creates hard boundary.
|
|
452
|
-
|
|
453
|
-
3. **Governance can't be retrofitted.** Build compliance into architecture, not onto it.
|
|
454
|
-
|
|
455
|
-
4. **"Proof" must mean proof.** Cryptographic verification, not marketing claims.
|
|
456
|
-
|
|
457
|
-
5. **Scale early or die.** Audit trail systems that can't scale are useless.
|
|
458
|
-
|
|
459
|
-
6. **ROI must be measurable.** 95% pilot failure rate is organizational, not technical.
|
|
460
|
-
|
|
461
|
-
---
|
|
462
|
-
|
|
463
|
-
## Sources Summary
|
|
464
|
-
|
|
465
|
-
**Breach Analysis:**
|
|
466
|
-
- [Wiz: Moltbook Database Breach](https://www.wiz.io/blog/exposed-moltbook-database-reveals-millions-of-api-keys)
|
|
467
|
-
- [404 Media: Moltbook Database Exposure](https://www.404media.co/exposed-moltbook-database-let-anyone-take-control-of-any-ai-agent-on-the-site/)
|
|
468
|
-
- [Infosecurity Magazine: Vibe-Coded Moltbook](https://www.infosecurity-magazine.com/news/moltbook-exposes-user-data-api/)
|
|
469
|
-
|
|
470
|
-
**EU AI Act:**
|
|
471
|
-
- [EU AI Act Explorer](https://artificialintelligenceact.eu/ai-act-explorer/)
|
|
472
|
-
- [Taylor Wessing: Incident Reporting Deep Dive](https://www.taylorwessing.com/en/insights-and-events/insights/2025/10/eu-ai-act-deep-dive)
|
|
473
|
-
- [IAPP: Human Oversight](https://iapp.org/news/a/eu-ai-act-shines-light-on-human-oversight-needs)
|
|
474
|
-
|
|
475
|
-
**Enterprise Adoption:**
|
|
476
|
-
- [HBR: Organizational Barriers to AI](https://hbr.org/2025/11/overcoming-the-organizational-barriers-to-ai-adoption)
|
|
477
|
-
- [PwC: AI Predictions 2026](https://www.pwc.com/us/en/tech-effect/ai-analytics/ai-predictions.html)
|
|
478
|
-
- [Deloitte: AI Adoption Challenges](https://www.deloitte.com/us/en/services/consulting/blogs/ai-adoption-challenges-ai-trends.html)
|
|
479
|
-
|
|
480
|
-
**Security & Vibe Coding:**
|
|
481
|
-
- [Kaspersky: Vibe Coding Risks](https://www.kaspersky.com/blog/vibe-coding-2025-risks/54584/)
|
|
482
|
-
- [Databricks: Dangers of Vibe Coding](https://www.databricks.com/blog/passing-security-vibe-check-dangers-vibe-coding)
|
|
483
|
-
- [Contrast Security: Vibe Coding Vulnerabilities](https://www.contrastsecurity.com/glossary/vibe-coding)
|
|
484
|
-
|
|
485
|
-
**Technical Architecture:**
|
|
486
|
-
- [VeritasChain: Cryptographic Audit Trails](https://veritaschain.org/blog/posts/2026-01-19-eu-ai-act-vcp-v1-1-cryptographic-audit-trails/)
|
|
487
|
-
- [Sparkco: AI Audit Trail Requirements](https://sparkco.ai/blog/ai-model-audit-trail-documentation-requirements)
|