proof-of-portfolio 0.0.103__py3-none-any.whl → 0.0.105__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,2 +1,2 @@
1
1
  # This file is auto-generated during build
2
- __version__ = "0.0.103"
2
+ __version__ = "0.0.105"
@@ -18,8 +18,8 @@ pub fn omega(
18
18
  if use_weighting {
19
19
  let mut product_sum_positive: i64 = 0;
20
20
  let mut product_sum_negative: i64 = 0;
21
- let mut sum_weights_positive: i64 = 0;
22
- let mut sum_weights_negative: i64 = 0;
21
+ let mut sum_weights_positive_raw: i64 = 0;
22
+ let mut sum_weights_negative_raw: i64 = 0;
23
23
 
24
24
  for i in 0..ARRAY_SIZE {
25
25
  if (i as u32) < actual_len {
@@ -27,31 +27,44 @@ pub fn omega(
27
27
  let log_return = log_returns[i];
28
28
  if log_return > 0 {
29
29
  product_sum_positive += log_return * weight;
30
- sum_weights_positive += weight;
30
+ sum_weights_positive_raw += weight;
31
31
  } else {
32
32
  product_sum_negative += log_return * weight;
33
- sum_weights_negative += weight;
33
+ sum_weights_negative_raw += weight;
34
34
  }
35
35
  }
36
36
  }
37
37
 
38
- let mean_pos = if sum_weights_positive != 0 {
39
- product_sum_positive / sum_weights_positive
38
+ // Apply max with omega_loss_min like in Python reference
39
+ let sum_weights_positive = if sum_weights_positive_raw >= omega_loss_min {
40
+ sum_weights_positive_raw
40
41
  } else {
41
- 0
42
+ omega_loss_min
42
43
  };
43
- let mean_neg = if sum_weights_negative != 0 {
44
- (-product_sum_negative) / sum_weights_negative
44
+ let sum_weights_negative = if sum_weights_negative_raw >= omega_loss_min {
45
+ sum_weights_negative_raw
45
46
  } else {
46
- 0
47
+ omega_loss_min
47
48
  };
48
49
 
49
- let effective_denominator = if mean_neg >= omega_loss_min {
50
- mean_neg
50
+ // Apply cross-multiplication with scaling to prevent overflow
51
+ // Scale down both factors before multiplication, then scale back up
52
+ let scale_down = SCALE / 1000; // Scale down by 1000 to prevent overflow
53
+ let product_sum_positive_scaled = product_sum_positive / scale_down;
54
+ let product_sum_negative_scaled = product_sum_negative / scale_down;
55
+
56
+ let positive_sum_weighted = product_sum_positive_scaled * sum_weights_negative;
57
+ let negative_sum_weighted = product_sum_negative_scaled * sum_weights_positive;
58
+
59
+ let effective_denominator = if (-negative_sum_weighted) >= (omega_loss_min / scale_down) {
60
+ -negative_sum_weighted
51
61
  } else {
52
- omega_loss_min
62
+ omega_loss_min / scale_down
53
63
  };
54
- (mean_pos * RATIO_SCALE_FACTOR) / effective_denominator
64
+
65
+ // Apply scale_down correction to RATIO_SCALE_FACTOR
66
+ let adjusted_ratio_scale = RATIO_SCALE_FACTOR * scale_down;
67
+ (positive_sum_weighted * adjusted_ratio_scale) / effective_denominator
55
68
  } else {
56
69
  let mut positive_sum: i64 = 0;
57
70
  let mut negative_sum: i64 = 0;