prompty 0.1.9__py3-none-any.whl → 0.1.33__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- prompty/__init__.py +312 -117
- prompty/azure/__init__.py +10 -0
- prompty/azure/executor.py +218 -0
- prompty/azure/processor.py +142 -0
- prompty/cli.py +74 -28
- prompty/core.py +138 -221
- prompty/invoker.py +297 -0
- prompty/openai/__init__.py +10 -0
- prompty/openai/executor.py +114 -0
- prompty/{processors.py → openai/processor.py} +25 -15
- prompty/parsers.py +18 -1
- prompty/renderers.py +19 -2
- prompty/serverless/__init__.py +8 -0
- prompty/serverless/executor.py +153 -0
- prompty/serverless/processor.py +78 -0
- prompty/tracer.py +162 -22
- prompty/utils.py +105 -0
- prompty-0.1.33.dist-info/METADATA +218 -0
- prompty-0.1.33.dist-info/RECORD +22 -0
- {prompty-0.1.9.dist-info → prompty-0.1.33.dist-info}/WHEEL +1 -1
- prompty-0.1.33.dist-info/entry_points.txt +5 -0
- prompty/executors.py +0 -94
- prompty-0.1.9.dist-info/METADATA +0 -136
- prompty-0.1.9.dist-info/RECORD +0 -12
- {prompty-0.1.9.dist-info → prompty-0.1.33.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,218 @@
|
|
1
|
+
import azure.identity
|
2
|
+
import importlib.metadata
|
3
|
+
from typing import AsyncIterator, Iterator
|
4
|
+
from openai import AzureOpenAI, AsyncAzureOpenAI
|
5
|
+
|
6
|
+
from prompty.tracer import Tracer
|
7
|
+
from ..core import AsyncPromptyStream, Prompty, PromptyStream
|
8
|
+
from ..invoker import Invoker, InvokerFactory
|
9
|
+
|
10
|
+
VERSION = importlib.metadata.version("prompty")
|
11
|
+
|
12
|
+
|
13
|
+
@InvokerFactory.register_executor("azure")
|
14
|
+
@InvokerFactory.register_executor("azure_openai")
|
15
|
+
class AzureOpenAIExecutor(Invoker):
|
16
|
+
"""Azure OpenAI Executor"""
|
17
|
+
|
18
|
+
def __init__(self, prompty: Prompty) -> None:
|
19
|
+
super().__init__(prompty)
|
20
|
+
self.kwargs = {
|
21
|
+
key: value
|
22
|
+
for key, value in self.prompty.model.configuration.items()
|
23
|
+
if key != "type"
|
24
|
+
}
|
25
|
+
|
26
|
+
# no key, use default credentials
|
27
|
+
if "api_key" not in self.kwargs:
|
28
|
+
# managed identity if client id
|
29
|
+
if "client_id" in self.kwargs:
|
30
|
+
default_credential = azure.identity.ManagedIdentityCredential(
|
31
|
+
client_id=self.kwargs.pop("client_id"),
|
32
|
+
)
|
33
|
+
# default credential
|
34
|
+
else:
|
35
|
+
default_credential = azure.identity.DefaultAzureCredential(
|
36
|
+
exclude_shared_token_cache_credential=True
|
37
|
+
)
|
38
|
+
|
39
|
+
self.kwargs["azure_ad_token_provider"] = (
|
40
|
+
azure.identity.get_bearer_token_provider(
|
41
|
+
default_credential, "https://cognitiveservices.azure.com/.default"
|
42
|
+
)
|
43
|
+
)
|
44
|
+
|
45
|
+
self.api = self.prompty.model.api
|
46
|
+
self.deployment = self.prompty.model.configuration["azure_deployment"]
|
47
|
+
self.parameters = self.prompty.model.parameters
|
48
|
+
|
49
|
+
def invoke(self, data: any) -> any:
|
50
|
+
"""Invoke the Azure OpenAI API
|
51
|
+
|
52
|
+
Parameters
|
53
|
+
----------
|
54
|
+
data : any
|
55
|
+
The data to send to the Azure OpenAI API
|
56
|
+
|
57
|
+
Returns
|
58
|
+
-------
|
59
|
+
any
|
60
|
+
The response from the Azure OpenAI API
|
61
|
+
"""
|
62
|
+
|
63
|
+
with Tracer.start("AzureOpenAI") as trace:
|
64
|
+
trace("type", "LLM")
|
65
|
+
trace("signature", "AzureOpenAI.ctor")
|
66
|
+
trace("description", "Azure OpenAI Constructor")
|
67
|
+
trace("inputs", self.kwargs)
|
68
|
+
client = AzureOpenAI(
|
69
|
+
default_headers={
|
70
|
+
"User-Agent": f"prompty/{VERSION}",
|
71
|
+
"x-ms-useragent": f"prompty/{VERSION}",
|
72
|
+
},
|
73
|
+
**self.kwargs,
|
74
|
+
)
|
75
|
+
trace("result", client)
|
76
|
+
|
77
|
+
with Tracer.start("create") as trace:
|
78
|
+
trace("type", "LLM")
|
79
|
+
trace("description", "Azure OpenAI Client")
|
80
|
+
|
81
|
+
if self.api == "chat":
|
82
|
+
trace("signature", "AzureOpenAI.chat.completions.create")
|
83
|
+
args = {
|
84
|
+
"model": self.deployment,
|
85
|
+
"messages": data if isinstance(data, list) else [data],
|
86
|
+
**self.parameters,
|
87
|
+
}
|
88
|
+
trace("inputs", args)
|
89
|
+
response = client.chat.completions.create(**args)
|
90
|
+
trace("result", response)
|
91
|
+
|
92
|
+
elif self.api == "completion":
|
93
|
+
trace("signature", "AzureOpenAI.completions.create")
|
94
|
+
args = {
|
95
|
+
"prompt": data,
|
96
|
+
"model": self.deployment,
|
97
|
+
**self.parameters,
|
98
|
+
}
|
99
|
+
trace("inputs", args)
|
100
|
+
response = client.completions.create(**args)
|
101
|
+
trace("result", response)
|
102
|
+
|
103
|
+
elif self.api == "embedding":
|
104
|
+
trace("signature", "AzureOpenAI.embeddings.create")
|
105
|
+
args = {
|
106
|
+
"input": data if isinstance(data, list) else [data],
|
107
|
+
"model": self.deployment,
|
108
|
+
**self.parameters,
|
109
|
+
}
|
110
|
+
trace("inputs", args)
|
111
|
+
response = client.embeddings.create(**args)
|
112
|
+
trace("result", response)
|
113
|
+
|
114
|
+
elif self.api == "image":
|
115
|
+
trace("signature", "AzureOpenAI.images.generate")
|
116
|
+
args = {
|
117
|
+
"prompt": data,
|
118
|
+
"model": self.deployment,
|
119
|
+
**self.parameters,
|
120
|
+
}
|
121
|
+
trace("inputs", args)
|
122
|
+
response = client.images.generate.create(**args)
|
123
|
+
trace("result", response)
|
124
|
+
|
125
|
+
# stream response
|
126
|
+
if isinstance(response, Iterator):
|
127
|
+
if self.api == "chat":
|
128
|
+
# TODO: handle the case where there might be no usage in the stream
|
129
|
+
return PromptyStream("AzureOpenAIExecutor", response)
|
130
|
+
else:
|
131
|
+
return PromptyStream("AzureOpenAIExecutor", response)
|
132
|
+
else:
|
133
|
+
return response
|
134
|
+
|
135
|
+
async def invoke_async(self, data: str) -> str:
|
136
|
+
"""Invoke the Prompty Chat Parser (Async)
|
137
|
+
|
138
|
+
Parameters
|
139
|
+
----------
|
140
|
+
data : str
|
141
|
+
The data to parse
|
142
|
+
|
143
|
+
Returns
|
144
|
+
-------
|
145
|
+
str
|
146
|
+
The parsed data
|
147
|
+
"""
|
148
|
+
with Tracer.start("AzureOpenAIAsync") as trace:
|
149
|
+
trace("type", "LLM")
|
150
|
+
trace("signature", "AzureOpenAIAsync.ctor")
|
151
|
+
trace("description", "Async Azure OpenAI Constructor")
|
152
|
+
trace("inputs", self.kwargs)
|
153
|
+
client = AsyncAzureOpenAI(
|
154
|
+
default_headers={
|
155
|
+
"User-Agent": f"prompty/{VERSION}",
|
156
|
+
"x-ms-useragent": f"prompty/{VERSION}",
|
157
|
+
},
|
158
|
+
**self.kwargs,
|
159
|
+
)
|
160
|
+
trace("result", client)
|
161
|
+
|
162
|
+
with Tracer.start("create") as trace:
|
163
|
+
trace("type", "LLM")
|
164
|
+
trace("description", "Azure OpenAI Client")
|
165
|
+
|
166
|
+
if self.api == "chat":
|
167
|
+
trace("signature", "AzureOpenAIAsync.chat.completions.create")
|
168
|
+
args = {
|
169
|
+
"model": self.deployment,
|
170
|
+
"messages": data if isinstance(data, list) else [data],
|
171
|
+
**self.parameters,
|
172
|
+
}
|
173
|
+
trace("inputs", args)
|
174
|
+
response = await client.chat.completions.create(**args)
|
175
|
+
trace("result", response)
|
176
|
+
|
177
|
+
elif self.api == "completion":
|
178
|
+
trace("signature", "AzureOpenAIAsync.completions.create")
|
179
|
+
args = {
|
180
|
+
"prompt": data,
|
181
|
+
"model": self.deployment,
|
182
|
+
**self.parameters,
|
183
|
+
}
|
184
|
+
trace("inputs", args)
|
185
|
+
response = await client.completions.create(**args)
|
186
|
+
trace("result", response)
|
187
|
+
|
188
|
+
elif self.api == "embedding":
|
189
|
+
trace("signature", "AzureOpenAIAsync.embeddings.create")
|
190
|
+
args = {
|
191
|
+
"input": data if isinstance(data, list) else [data],
|
192
|
+
"model": self.deployment,
|
193
|
+
**self.parameters,
|
194
|
+
}
|
195
|
+
trace("inputs", args)
|
196
|
+
response = await client.embeddings.create(**args)
|
197
|
+
trace("result", response)
|
198
|
+
|
199
|
+
elif self.api == "image":
|
200
|
+
trace("signature", "AzureOpenAIAsync.images.generate")
|
201
|
+
args = {
|
202
|
+
"prompt": data,
|
203
|
+
"model": self.deployment,
|
204
|
+
**self.parameters,
|
205
|
+
}
|
206
|
+
trace("inputs", args)
|
207
|
+
response = await client.images.generate.create(**args)
|
208
|
+
trace("result", response)
|
209
|
+
|
210
|
+
# stream response
|
211
|
+
if isinstance(response, AsyncIterator):
|
212
|
+
if self.api == "chat":
|
213
|
+
# TODO: handle the case where there might be no usage in the stream
|
214
|
+
return AsyncPromptyStream("AzureOpenAIExecutorAsync", response)
|
215
|
+
else:
|
216
|
+
return AsyncPromptyStream("AzureOpenAIExecutorAsync", response)
|
217
|
+
else:
|
218
|
+
return response
|
@@ -0,0 +1,142 @@
|
|
1
|
+
from typing import AsyncIterator, Iterator
|
2
|
+
from openai.types.completion import Completion
|
3
|
+
from openai.types.images_response import ImagesResponse
|
4
|
+
from openai.types.chat.chat_completion import ChatCompletion
|
5
|
+
from ..core import AsyncPromptyStream, Prompty, PromptyStream, ToolCall
|
6
|
+
from ..invoker import Invoker, InvokerFactory
|
7
|
+
from openai.types.create_embedding_response import CreateEmbeddingResponse
|
8
|
+
|
9
|
+
|
10
|
+
@InvokerFactory.register_processor("azure")
|
11
|
+
@InvokerFactory.register_processor("azure_openai")
|
12
|
+
class AzureOpenAIProcessor(Invoker):
|
13
|
+
"""Azure OpenAI Processor"""
|
14
|
+
|
15
|
+
def __init__(self, prompty: Prompty) -> None:
|
16
|
+
super().__init__(prompty)
|
17
|
+
|
18
|
+
def invoke(self, data: any) -> any:
|
19
|
+
"""Invoke the OpenAI/Azure API
|
20
|
+
|
21
|
+
Parameters
|
22
|
+
----------
|
23
|
+
data : any
|
24
|
+
The data to send to the OpenAI/Azure API
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
any
|
29
|
+
The response from the OpenAI/Azure API
|
30
|
+
"""
|
31
|
+
if isinstance(data, ChatCompletion):
|
32
|
+
response = data.choices[0].message
|
33
|
+
# tool calls available in response
|
34
|
+
if response.tool_calls:
|
35
|
+
return [
|
36
|
+
ToolCall(
|
37
|
+
id=tool_call.id,
|
38
|
+
name=tool_call.function.name,
|
39
|
+
arguments=tool_call.function.arguments,
|
40
|
+
)
|
41
|
+
for tool_call in response.tool_calls
|
42
|
+
]
|
43
|
+
else:
|
44
|
+
return response.content
|
45
|
+
|
46
|
+
elif isinstance(data, Completion):
|
47
|
+
return data.choices[0].text
|
48
|
+
elif isinstance(data, CreateEmbeddingResponse):
|
49
|
+
if len(data.data) == 0:
|
50
|
+
raise ValueError("Invalid data")
|
51
|
+
elif len(data.data) == 1:
|
52
|
+
return data.data[0].embedding
|
53
|
+
else:
|
54
|
+
return [item.embedding for item in data.data]
|
55
|
+
elif isinstance(data, ImagesResponse):
|
56
|
+
self.prompty.model.parameters
|
57
|
+
item: ImagesResponse = data
|
58
|
+
|
59
|
+
if len(data.data) == 0:
|
60
|
+
raise ValueError("Invalid data")
|
61
|
+
elif len(data.data) == 1:
|
62
|
+
return data.data[0].url if item.data[0].url else item.data[0].b64_json
|
63
|
+
else:
|
64
|
+
return [item.url if item.url else item.b64_json for item in data.data]
|
65
|
+
|
66
|
+
elif isinstance(data, Iterator):
|
67
|
+
|
68
|
+
def generator():
|
69
|
+
for chunk in data:
|
70
|
+
if (
|
71
|
+
len(chunk.choices) == 1
|
72
|
+
and chunk.choices[0].delta.content != None
|
73
|
+
):
|
74
|
+
content = chunk.choices[0].delta.content
|
75
|
+
yield content
|
76
|
+
|
77
|
+
return PromptyStream("AzureOpenAIProcessor", generator())
|
78
|
+
else:
|
79
|
+
return data
|
80
|
+
|
81
|
+
async def invoke_async(self, data: str) -> str:
|
82
|
+
"""Invoke the Prompty Chat Parser (Async)
|
83
|
+
|
84
|
+
Parameters
|
85
|
+
----------
|
86
|
+
data : str
|
87
|
+
The data to parse
|
88
|
+
|
89
|
+
Returns
|
90
|
+
-------
|
91
|
+
str
|
92
|
+
The parsed data
|
93
|
+
"""
|
94
|
+
if isinstance(data, ChatCompletion):
|
95
|
+
response = data.choices[0].message
|
96
|
+
# tool calls available in response
|
97
|
+
if response.tool_calls:
|
98
|
+
return [
|
99
|
+
ToolCall(
|
100
|
+
id=tool_call.id,
|
101
|
+
name=tool_call.function.name,
|
102
|
+
arguments=tool_call.function.arguments,
|
103
|
+
)
|
104
|
+
for tool_call in response.tool_calls
|
105
|
+
]
|
106
|
+
else:
|
107
|
+
return response.content
|
108
|
+
|
109
|
+
elif isinstance(data, Completion):
|
110
|
+
return data.choices[0].text
|
111
|
+
elif isinstance(data, CreateEmbeddingResponse):
|
112
|
+
if len(data.data) == 0:
|
113
|
+
raise ValueError("Invalid data")
|
114
|
+
elif len(data.data) == 1:
|
115
|
+
return data.data[0].embedding
|
116
|
+
else:
|
117
|
+
return [item.embedding for item in data.data]
|
118
|
+
elif isinstance(data, ImagesResponse):
|
119
|
+
self.prompty.model.parameters
|
120
|
+
item: ImagesResponse = data
|
121
|
+
|
122
|
+
if len(data.data) == 0:
|
123
|
+
raise ValueError("Invalid data")
|
124
|
+
elif len(data.data) == 1:
|
125
|
+
return data.data[0].url if item.data[0].url else item.data[0].b64_json
|
126
|
+
else:
|
127
|
+
return [item.url if item.url else item.b64_json for item in data.data]
|
128
|
+
|
129
|
+
elif isinstance(data, AsyncIterator):
|
130
|
+
|
131
|
+
async def generator():
|
132
|
+
async for chunk in data:
|
133
|
+
if (
|
134
|
+
len(chunk.choices) == 1
|
135
|
+
and chunk.choices[0].delta.content != None
|
136
|
+
):
|
137
|
+
content = chunk.choices[0].delta.content
|
138
|
+
yield content
|
139
|
+
|
140
|
+
return AsyncPromptyStream("AsyncAzureOpenAIProcessor", generator())
|
141
|
+
else:
|
142
|
+
return data
|
prompty/cli.py
CHANGED
@@ -1,17 +1,15 @@
|
|
1
1
|
import os
|
2
2
|
import json
|
3
3
|
import click
|
4
|
-
|
4
|
+
import importlib
|
5
5
|
|
6
6
|
from pathlib import Path
|
7
7
|
from pydantic import BaseModel
|
8
8
|
|
9
|
-
|
10
|
-
from .tracer import trace,
|
9
|
+
import prompty
|
10
|
+
from prompty.tracer import trace, PromptyTracer, console_tracer, Tracer
|
11
11
|
from dotenv import load_dotenv
|
12
12
|
|
13
|
-
load_dotenv()
|
14
|
-
Trace.add_tracer("prompty", PromptyTracer())
|
15
13
|
|
16
14
|
def normalize_path(p, create_dir=False) -> Path:
|
17
15
|
path = Path(p)
|
@@ -28,57 +26,105 @@ def normalize_path(p, create_dir=False) -> Path:
|
|
28
26
|
return path
|
29
27
|
|
30
28
|
|
29
|
+
def dynamic_import(module: str):
|
30
|
+
# built in modules
|
31
|
+
if module == "azure" or module == "azure_openai":
|
32
|
+
t = "prompty.azure"
|
33
|
+
elif module == "serverless":
|
34
|
+
t = "prompty.serverless"
|
35
|
+
else:
|
36
|
+
t = module
|
37
|
+
|
38
|
+
print(f"Loading invokers from {t}")
|
39
|
+
importlib.import_module(t)
|
40
|
+
|
41
|
+
|
31
42
|
@trace
|
32
43
|
def chat_mode(prompt_path: str):
|
33
|
-
W = "\033[0m"
|
44
|
+
W = "\033[0m" # white (normal)
|
34
45
|
R = "\033[31m" # red
|
35
46
|
G = "\033[32m" # green
|
36
47
|
O = "\033[33m" # orange
|
37
48
|
B = "\033[34m" # blue
|
38
49
|
P = "\033[35m" # purple
|
39
50
|
print(f"Executing {str(prompt_path)} in chat mode...")
|
40
|
-
|
41
|
-
if "chat_history" not in
|
51
|
+
p = prompty.load(str(prompt_path))
|
52
|
+
if "chat_history" not in p.sample:
|
42
53
|
print(
|
43
54
|
f"{R}{str(prompt_path)} needs to have a chat_history input to work in chat mode{W}"
|
44
55
|
)
|
45
56
|
return
|
46
57
|
else:
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
+
|
59
|
+
try:
|
60
|
+
# load executor / processor types
|
61
|
+
dynamic_import(p.model.configuration["type"])
|
62
|
+
chat_history = p.sample["chat_history"]
|
63
|
+
while True:
|
64
|
+
user_input = input(f"\n{B}User:{W} ")
|
65
|
+
if user_input == "exit":
|
66
|
+
break
|
67
|
+
# reloadable prompty file
|
68
|
+
chat_history.append({"role": "user", "content": user_input})
|
69
|
+
result = prompty.execute(
|
70
|
+
prompt_path, inputs={"chat_history": chat_history}
|
71
|
+
)
|
72
|
+
print(f"\n{G}Assistant:{W} {result}")
|
73
|
+
chat_history.append({"role": "assistant", "content": result})
|
74
|
+
except Exception as e:
|
75
|
+
print(f"{type(e).__qualname__}: {e}")
|
76
|
+
|
77
|
+
print(f"\n{R}Goodbye!{W}\n")
|
78
|
+
|
79
|
+
|
80
|
+
@trace
|
81
|
+
def execute(prompt_path: str, raw=False):
|
82
|
+
p = prompty.load(prompt_path)
|
83
|
+
|
84
|
+
try:
|
85
|
+
# load executor / processor types
|
86
|
+
dynamic_import(p.model.configuration["type"])
|
87
|
+
|
88
|
+
result = prompty.execute(p, raw=raw)
|
89
|
+
if issubclass(type(result), BaseModel):
|
90
|
+
print("\n", json.dumps(result.model_dump(), indent=4), "\n")
|
91
|
+
elif isinstance(result, list):
|
92
|
+
print(
|
93
|
+
"\n", json.dumps([item.model_dump() for item in result], indent=4), "\n"
|
94
|
+
)
|
95
|
+
else:
|
96
|
+
print("\n", result, "\n")
|
97
|
+
except Exception as e:
|
98
|
+
print(f"{type(e).__qualname__}: {e}", "\n")
|
58
99
|
|
59
100
|
|
60
101
|
@click.command()
|
61
102
|
@click.option("--source", "-s", required=True)
|
103
|
+
@click.option("--env", "-e", required=False)
|
62
104
|
@click.option("--verbose", "-v", is_flag=True)
|
63
105
|
@click.option("--chat", "-c", is_flag=True)
|
64
106
|
@click.version_option()
|
65
|
-
|
66
|
-
|
107
|
+
def run(source, env, verbose, chat):
|
108
|
+
# load external env file
|
109
|
+
if env:
|
110
|
+
print(f"Loading environment variables from {env}")
|
111
|
+
load_dotenv(env)
|
112
|
+
|
67
113
|
prompt_path = normalize_path(source)
|
68
114
|
if not prompt_path.exists():
|
69
115
|
print(f"{str(prompt_path)} does not exist")
|
70
116
|
return
|
71
117
|
|
118
|
+
if verbose:
|
119
|
+
Tracer.add("console", console_tracer)
|
120
|
+
|
121
|
+
ptrace = PromptyTracer()
|
122
|
+
Tracer.add("prompty", ptrace.tracer)
|
123
|
+
|
72
124
|
if chat:
|
73
125
|
chat_mode(str(prompt_path))
|
74
126
|
else:
|
75
|
-
|
76
|
-
if issubclass(type(result), BaseModel):
|
77
|
-
print(json.dumps(result.model_dump(), indent=4))
|
78
|
-
elif isinstance(result, list):
|
79
|
-
print(json.dumps([item.model_dump() for item in result], indent=4))
|
80
|
-
else:
|
81
|
-
print(result)
|
127
|
+
execute(str(prompt_path), raw=verbose)
|
82
128
|
|
83
129
|
|
84
130
|
if __name__ == "__main__":
|