prompty 0.1.18__py2.py3-none-any.whl → 0.1.19__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
prompty/azure/executor.py CHANGED
@@ -2,6 +2,8 @@ import azure.identity
2
2
  import importlib.metadata
3
3
  from typing import Iterator
4
4
  from openai import AzureOpenAI
5
+
6
+ from prompty.tracer import Tracer
5
7
  from ..core import Invoker, InvokerFactory, Prompty, PromptyStream
6
8
 
7
9
  VERSION = importlib.metadata.version("prompty")
@@ -14,18 +16,18 @@ class AzureOpenAIExecutor(Invoker):
14
16
 
15
17
  def __init__(self, prompty: Prompty) -> None:
16
18
  super().__init__(prompty)
17
- kwargs = {
19
+ self.kwargs = {
18
20
  key: value
19
21
  for key, value in self.prompty.model.configuration.items()
20
22
  if key != "type"
21
23
  }
22
24
 
23
25
  # no key, use default credentials
24
- if "api_key" not in kwargs:
26
+ if "api_key" not in self.kwargs:
25
27
  # managed identity if client id
26
- if "client_id" in kwargs:
28
+ if "client_id" in self.kwargs:
27
29
  default_credential = azure.identity.ManagedIdentityCredential(
28
- client_id=kwargs.pop("client_id"),
30
+ client_id=self.kwargs.pop("client_id"),
29
31
  )
30
32
  # default credential
31
33
  else:
@@ -33,20 +35,12 @@ class AzureOpenAIExecutor(Invoker):
33
35
  exclude_shared_token_cache_credential=True
34
36
  )
35
37
 
36
- kwargs["azure_ad_token_provider"] = (
38
+ self.kwargs["azure_ad_token_provider"] = (
37
39
  azure.identity.get_bearer_token_provider(
38
40
  default_credential, "https://cognitiveservices.azure.com/.default"
39
41
  )
40
42
  )
41
43
 
42
- self.client = AzureOpenAI(
43
- default_headers={
44
- "User-Agent": f"prompty/{VERSION}",
45
- "x-ms-useragent": f"prompty/{VERSION}",
46
- },
47
- **kwargs,
48
- )
49
-
50
44
  self.api = self.prompty.model.api
51
45
  self.deployment = self.prompty.model.configuration["azure_deployment"]
52
46
  self.parameters = self.prompty.model.parameters
@@ -64,29 +58,60 @@ class AzureOpenAIExecutor(Invoker):
64
58
  any
65
59
  The response from the Azure OpenAI API
66
60
  """
67
- if self.api == "chat":
68
- response = self.client.chat.completions.create(
69
- model=self.deployment,
70
- messages=data if isinstance(data, list) else [data],
71
- **self.parameters,
72
- )
73
61
 
74
- elif self.api == "completion":
75
- response = self.client.completions.create(
76
- prompt=data.item,
77
- model=self.deployment,
78
- **self.parameters,
62
+ with Tracer.start("AzureOpenAI") as trace:
63
+ trace("type", "LLM")
64
+ trace("signature", "AzureOpenAI.ctor")
65
+ trace("description", "Azure OpenAI Constructor")
66
+ trace("inputs", self.kwargs)
67
+ client = AzureOpenAI(
68
+ default_headers={
69
+ "User-Agent": f"prompty/{VERSION}",
70
+ "x-ms-useragent": f"prompty/{VERSION}",
71
+ },
72
+ **self.kwargs,
79
73
  )
74
+ trace("result", client)
80
75
 
81
- elif self.api == "embedding":
82
- response = self.client.embeddings.create(
83
- input=data if isinstance(data, list) else [data],
84
- model=self.deployment,
85
- **self.parameters,
86
- )
76
+ with Tracer.start("create") as trace:
77
+ trace("type", "LLM")
78
+ trace("description", "Azure OpenAI Client")
79
+
80
+ if self.api == "chat":
81
+ trace("signature", "AzureOpenAI.chat.completions.create")
82
+ args = {
83
+ "model": self.deployment,
84
+ "messages": data if isinstance(data, list) else [data],
85
+ **self.parameters,
86
+ }
87
+ trace("inputs", args)
88
+ response = client.chat.completions.create(**args)
89
+ trace("result", response)
90
+
91
+ elif self.api == "completion":
92
+ trace("signature", "AzureOpenAI.completions.create")
93
+ args = {
94
+ "prompt": data.item,
95
+ "model": self.deployment,
96
+ **self.parameters,
97
+ }
98
+ trace("inputs", args)
99
+ response = client.completions.create(**args)
100
+ trace("result", response)
101
+
102
+ elif self.api == "embedding":
103
+ trace("signature", "AzureOpenAI.embeddings.create")
104
+ args = {
105
+ "input": data if isinstance(data, list) else [data],
106
+ "model": self.deployment,
107
+ **self.parameters,
108
+ }
109
+ trace("inputs", args)
110
+ response = client.embeddings.create(**args)
111
+ trace("result", response)
87
112
 
88
- elif self.api == "image":
89
- raise NotImplementedError("Azure OpenAI Image API is not implemented yet")
113
+ elif self.api == "image":
114
+ raise NotImplementedError("Azure OpenAI Image API is not implemented yet")
90
115
 
91
116
  # stream response
92
117
  if isinstance(response, Iterator):
@@ -1,6 +1,8 @@
1
1
  import importlib.metadata
2
2
  from openai import OpenAI
3
3
  from typing import Iterator
4
+
5
+ from prompty.tracer import Tracer
4
6
  from ..core import Invoker, InvokerFactory, Prompty, PromptyStream
5
7
 
6
8
  VERSION = importlib.metadata.version("prompty")
@@ -12,20 +14,12 @@ class OpenAIExecutor(Invoker):
12
14
 
13
15
  def __init__(self, prompty: Prompty) -> None:
14
16
  super().__init__(prompty)
15
- kwargs = {
17
+ self.kwargs = {
16
18
  key: value
17
19
  for key, value in self.prompty.model.configuration.items()
18
20
  if key != "type"
19
21
  }
20
22
 
21
- self.client = OpenAI(
22
- default_headers={
23
- "User-Agent": f"prompty/{VERSION}",
24
- "x-ms-useragent": f"prompty/{VERSION}",
25
- },
26
- **kwargs,
27
- )
28
-
29
23
  self.api = self.prompty.model.api
30
24
  self.deployment = self.prompty.model.configuration["azure_deployment"]
31
25
  self.parameters = self.prompty.model.parameters
@@ -43,32 +37,62 @@ class OpenAIExecutor(Invoker):
43
37
  any
44
38
  The response from the OpenAI API
45
39
  """
46
- if self.api == "chat":
47
- response = self.client.chat.completions.create(
48
- model=self.deployment,
49
- messages=data if isinstance(data, list) else [data],
50
- **self.parameters,
40
+ with Tracer.start("OpenAI") as trace:
41
+ trace("type", "LLM")
42
+ trace("signature", "OpenAI.ctor")
43
+ trace("description", "OpenAI Constructor")
44
+ trace("inputs", self.kwargs)
45
+ client = OpenAI(
46
+ default_headers={
47
+ "User-Agent": f"prompty/{VERSION}",
48
+ "x-ms-useragent": f"prompty/{VERSION}",
49
+ },
50
+ **self.kwargs,
51
51
  )
52
+ trace("result", client)
52
53
 
53
- elif self.api == "completion":
54
- response = self.client.completions.create(
55
- prompt=data.item,
56
- model=self.deployment,
57
- **self.parameters,
58
- )
54
+ with Tracer.start("create") as trace:
55
+ trace("type", "LLM")
56
+ trace("description", "OpenAI Prompty Execution Invoker")
59
57
 
60
- elif self.api == "embedding":
61
- response = self.client.embeddings.create(
62
- input=data if isinstance(data, list) else [data],
63
- model=self.deployment,
64
- **self.parameters,
65
- )
58
+ if self.api == "chat":
59
+ trace("signature", "OpenAI.chat.completions.create")
60
+ args = {
61
+ "model": self.deployment,
62
+ "messages": data if isinstance(data, list) else [data],
63
+ **self.parameters,
64
+ }
65
+ trace("inputs", args)
66
+ response = client.chat.completions.create(**args)
67
+
68
+ elif self.api == "completion":
69
+ trace("signature", "OpenAI.completions.create")
70
+ args = {
71
+ "prompt": data.item,
72
+ "model": self.deployment,
73
+ **self.parameters,
74
+ }
75
+ trace("inputs", args)
76
+ response = client.completions.create(**args)
77
+
78
+ elif self.api == "embedding":
79
+ trace("signature", "OpenAI.embeddings.create")
80
+ args = {
81
+ "input": data if isinstance(data, list) else [data],
82
+ "model": self.deployment,
83
+ **self.parameters,
84
+ }
85
+ trace("inputs", args)
86
+ response = client.embeddings.create(**args)
66
87
 
67
- elif self.api == "image":
68
- raise NotImplementedError("OpenAI Image API is not implemented yet")
88
+ elif self.api == "image":
89
+ raise NotImplementedError("OpenAI Image API is not implemented yet")
69
90
 
70
- # stream response
71
- if isinstance(response, Iterator):
72
- return PromptyStream("OpenAIExecutor", response)
73
- else:
74
- return response
91
+ # stream response
92
+ if isinstance(response, Iterator):
93
+ stream = PromptyStream("AzureOpenAIExecutor", response)
94
+ trace("result", stream)
95
+ return stream
96
+ else:
97
+ trace("result", response)
98
+ return response
@@ -9,6 +9,8 @@ from azure.ai.inference.models import (
9
9
  StreamingChatCompletions,
10
10
  AsyncStreamingChatCompletions,
11
11
  )
12
+
13
+ from prompty.tracer import Tracer
12
14
  from ..core import Invoker, InvokerFactory, Prompty, PromptyStream, AsyncPromptyStream
13
15
 
14
16
  VERSION = importlib.metadata.version("prompty")
@@ -29,6 +31,22 @@ class ServerlessExecutor(Invoker):
29
31
  # api type
30
32
  self.api = self.prompty.model.api
31
33
 
34
+ def _response(self, response: any) -> any:
35
+ # stream response
36
+ if isinstance(response, Iterator):
37
+ if isinstance(response, StreamingChatCompletions):
38
+ stream = PromptyStream("ServerlessExecutor", response)
39
+ return stream
40
+ elif isinstance(response, AsyncStreamingChatCompletions):
41
+ stream = AsyncPromptyStream("ServerlessExecutor", response)
42
+ return stream
43
+ else:
44
+ stream = PromptyStream("ServerlessExecutor", response)
45
+
46
+ return stream
47
+ else:
48
+ return response
49
+
32
50
  def invoke(self, data: any) -> any:
33
51
  """Invoke the Serverless SDK
34
52
 
@@ -42,16 +60,38 @@ class ServerlessExecutor(Invoker):
42
60
  any
43
61
  The response from the Serverless SDK
44
62
  """
63
+
64
+ cargs = {
65
+ "endpoint": self.endpoint,
66
+ "credential": AzureKeyCredential(self.key),
67
+ }
68
+
45
69
  if self.api == "chat":
46
- response = ChatCompletionsClient(
47
- endpoint=self.endpoint,
48
- credential=AzureKeyCredential(self.key),
49
- user_agent=f"prompty/{VERSION}"
50
- ).complete(
51
- model=self.model,
52
- messages=data if isinstance(data, list) else [data],
53
- **self.prompty.model.parameters,
54
- )
70
+ with Tracer.start("ChatCompletionsClient") as trace:
71
+ trace("type", "LLM")
72
+ trace("signature", "azure.ai.inference.ChatCompletionsClient.ctor")
73
+ trace("description", "Azure Unified Inference SDK Chat Completions Client")
74
+ trace("inputs", cargs)
75
+ client = ChatCompletionsClient(
76
+ user_agent=f"prompty/{VERSION}",
77
+ **cargs,
78
+ )
79
+ trace("result", client)
80
+
81
+ with Tracer.start("complete") as trace:
82
+ trace("type", "LLM")
83
+ trace("signature", "azure.ai.inference.ChatCompletionsClient.complete")
84
+ trace("description", "Azure Unified Inference SDK Chat Completions Client")
85
+ eargs = {
86
+ "model": self.model,
87
+ "messages": data if isinstance(data, list) else [data],
88
+ **self.prompty.model.parameters,
89
+ }
90
+ trace("inputs", eargs)
91
+ r = client.complete(**eargs)
92
+ trace("result", r)
93
+
94
+ response = self._response(r)
55
95
 
56
96
  elif self.api == "completion":
57
97
  raise NotImplementedError(
@@ -59,26 +99,33 @@ class ServerlessExecutor(Invoker):
59
99
  )
60
100
 
61
101
  elif self.api == "embedding":
62
- response = EmbeddingsClient(
63
- endpoint=self.endpoint,
64
- credential=AzureKeyCredential(self.key),
65
- user_agent=f"prompty/{VERSION}",
66
- ).complete(
67
- model=self.model,
68
- input=data if isinstance(data, list) else [data],
69
- **self.prompty.model.parameters,
70
- )
102
+ with Tracer.start("EmbeddingsClient") as trace:
103
+ trace("type", "LLM")
104
+ trace("signature", "azure.ai.inference.EmbeddingsClient.ctor")
105
+ trace("description", "Azure Unified Inference SDK Embeddings Client")
106
+ trace("inputs", cargs)
107
+ client = EmbeddingsClient(
108
+ user_agent=f"prompty/{VERSION}",
109
+ **cargs,
110
+ )
111
+ trace("result", client)
112
+
113
+ with Tracer.start("complete") as trace:
114
+ trace("type", "LLM")
115
+ trace("signature", "azure.ai.inference.ChatCompletionsClient.complete")
116
+ trace("description", "Azure Unified Inference SDK Chat Completions Client")
117
+ eargs = {
118
+ "model": self.model,
119
+ "input": data if isinstance(data, list) else [data],
120
+ **self.prompty.model.parameters,
121
+ }
122
+ trace("inputs", eargs)
123
+ r = client.complete(**eargs)
124
+ trace("result", r)
125
+
126
+ response = self._response(r)
71
127
 
72
128
  elif self.api == "image":
73
129
  raise NotImplementedError("Azure OpenAI Image API is not implemented yet")
74
130
 
75
- # stream response
76
- if isinstance(response, Iterator):
77
- if isinstance(response, StreamingChatCompletions):
78
- return PromptyStream("ServerlessExecutor", response)
79
- elif isinstance(response, AsyncStreamingChatCompletions):
80
- return AsyncPromptyStream("ServerlessExecutor", response)
81
- return PromptyStream("ServerlessExecutor", response)
82
- else:
83
-
84
- return response
131
+ return response
prompty/tracer.py CHANGED
@@ -11,6 +11,18 @@ from functools import wraps, partial
11
11
  from typing import Any, Callable, Dict, Iterator, List
12
12
 
13
13
 
14
+ # clean up key value pairs for sensitive values
15
+ def sanitize(key: str, value: Any) -> Any:
16
+ if isinstance(value, str) and any(
17
+ [s in key.lower() for s in ["key", "token", "secret", "password", "credential"]]
18
+ ):
19
+ return len(str(value)) * "*"
20
+ elif isinstance(value, dict):
21
+ return {k: sanitize(k, v) for k, v in value.items()}
22
+ else:
23
+ return value
24
+
25
+
14
26
  class Tracer:
15
27
  _tracers: Dict[str, Callable[[str], Iterator[Callable[[str, Any], None]]]] = {}
16
28
 
@@ -31,7 +43,11 @@ class Tracer:
31
43
  traces = [
32
44
  stack.enter_context(tracer(name)) for tracer in cls._tracers.values()
33
45
  ]
34
- yield lambda key, value: [trace(key, value) for trace in traces]
46
+ yield lambda key, value: [
47
+ # normalize and sanitize any trace values
48
+ trace(key, sanitize(key, to_dict(value)))
49
+ for trace in traces
50
+ ]
35
51
 
36
52
 
37
53
  def to_dict(obj: Any) -> Dict[str, Any]:
@@ -94,7 +110,9 @@ def _results(result: Any) -> dict:
94
110
  return to_dict(result) if result is not None else "None"
95
111
 
96
112
 
97
- def _trace_sync(func: Callable = None, *, description: str = None) -> Callable:
113
+ def _trace_sync(
114
+ func: Callable = None, *, description: str = None, type: str = None
115
+ ) -> Callable:
98
116
  description = description or ""
99
117
 
100
118
  @wraps(func)
@@ -105,6 +123,9 @@ def _trace_sync(func: Callable = None, *, description: str = None) -> Callable:
105
123
  if description and description != "":
106
124
  trace("description", description)
107
125
 
126
+ if type and type != "":
127
+ trace("type", type)
128
+
108
129
  inputs = _inputs(func, args, kwargs)
109
130
  trace("inputs", inputs)
110
131
 
@@ -118,7 +139,7 @@ def _trace_sync(func: Callable = None, *, description: str = None) -> Callable:
118
139
  "exception": {
119
140
  "type": type(e).__name__,
120
141
  "message": str(e),
121
- "args": e.args,
142
+ "args": to_dict(e.args),
122
143
  }
123
144
  },
124
145
  )
@@ -129,7 +150,9 @@ def _trace_sync(func: Callable = None, *, description: str = None) -> Callable:
129
150
  return wrapper
130
151
 
131
152
 
132
- def _trace_async(func: Callable = None, *, description: str = None) -> Callable:
153
+ def _trace_async(
154
+ func: Callable = None, *, description: str = None, type: str = None
155
+ ) -> Callable:
133
156
  description = description or ""
134
157
 
135
158
  @wraps(func)
@@ -140,6 +163,9 @@ def _trace_async(func: Callable = None, *, description: str = None) -> Callable:
140
163
  if description and description != "":
141
164
  trace("description", description)
142
165
 
166
+ if type and type != "":
167
+ trace("type", type)
168
+
143
169
  inputs = _inputs(func, args, kwargs)
144
170
  trace("inputs", inputs)
145
171
  try:
@@ -152,7 +178,7 @@ def _trace_async(func: Callable = None, *, description: str = None) -> Callable:
152
178
  "exception": {
153
179
  "type": type(e).__name__,
154
180
  "message": str(e),
155
- "args": e.args,
181
+ "args": to_dict(e.args),
156
182
  }
157
183
  },
158
184
  )
@@ -163,13 +189,15 @@ def _trace_async(func: Callable = None, *, description: str = None) -> Callable:
163
189
  return wrapper
164
190
 
165
191
 
166
- def trace(func: Callable = None, *, description: str = None) -> Callable:
192
+ def trace(
193
+ func: Callable = None, *, description: str = None, type: str = None
194
+ ) -> Callable:
167
195
  if func is None:
168
- return partial(trace, description=description)
196
+ return partial(trace, description=description, type=type)
169
197
 
170
198
  wrapped_method = _trace_async if inspect.iscoroutinefunction(func) else _trace_sync
171
199
 
172
- return wrapped_method(func, description=description)
200
+ return wrapped_method(func, description=description, type=type)
173
201
 
174
202
 
175
203
  class PromptyTracer:
@@ -280,6 +308,8 @@ class PromptyTracer:
280
308
  def console_tracer(name: str) -> Iterator[Callable[[str, Any], None]]:
281
309
  try:
282
310
  print(f"Starting {name}")
283
- yield lambda key, value: print(f"{key}:\n{json.dumps(value, indent=4)}")
311
+ yield lambda key, value: print(
312
+ f"{key}:\n{json.dumps(to_dict(value), indent=4)}"
313
+ )
284
314
  finally:
285
315
  print(f"Ending {name}")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: prompty
3
- Version: 0.1.18
3
+ Version: 0.1.19
4
4
  Summary: Prompty is a new asset class and format for LLM prompts that aims to provide observability, understandability, and portability for developers. It includes spec, tooling, and a runtime. This Prompty runtime supports Python
5
5
  Author-Email: Seth Juarez <seth.juarez@microsoft.com>
6
6
  Requires-Dist: pyyaml>=6.0.1
@@ -1,20 +1,20 @@
1
- prompty-0.1.18.dist-info/METADATA,sha256=xQtpcI0HepyxgkqLN5BnUT9RrbcrTSrY68XeMnEe1MM,8916
2
- prompty-0.1.18.dist-info/WHEEL,sha256=CuZGaXTwoRLAOVv0AcE3bCTxO5ejVuBEJkUBe9C-kvk,94
3
- prompty-0.1.18.dist-info/entry_points.txt,sha256=9y1lKPWUpPWRJzUslcVH-gMwbNoa2PzjyoZsKYLQqyw,45
4
- prompty-0.1.18.dist-info/licenses/LICENSE,sha256=KWSC4z9cfML_t0xThoQYjzTdcZQj86Y_mhXdatzU-KM,1052
1
+ prompty-0.1.19.dist-info/METADATA,sha256=PnyGMOsBjZ6U9t76hJ3xQNFUULeE1nr7ef8MWz9SJgA,8916
2
+ prompty-0.1.19.dist-info/WHEEL,sha256=CuZGaXTwoRLAOVv0AcE3bCTxO5ejVuBEJkUBe9C-kvk,94
3
+ prompty-0.1.19.dist-info/entry_points.txt,sha256=9y1lKPWUpPWRJzUslcVH-gMwbNoa2PzjyoZsKYLQqyw,45
4
+ prompty-0.1.19.dist-info/licenses/LICENSE,sha256=KWSC4z9cfML_t0xThoQYjzTdcZQj86Y_mhXdatzU-KM,1052
5
5
  prompty/__init__.py,sha256=XTUgJ3xT7HYJieuWW5PBItey0BWneg3G7iBBjIeNJZU,11628
6
6
  prompty/azure/__init__.py,sha256=ptGajCh68s_tugPv45Y4GJCyBToNFCExUzUh9yIBIfo,292
7
- prompty/azure/executor.py,sha256=x2ng2EbYUxbingjy8w27TFGWezs4QC0LHh_S0F0-E1U,3082
7
+ prompty/azure/executor.py,sha256=M52n_hxxT57-_VdGYK-pXoELT0CDwnJaxN3xNNabgp8,4210
8
8
  prompty/azure/processor.py,sha256=e9CcKG665zvCLPeJfS91FM6c_W_6YY0mVENxinCo19A,2253
9
9
  prompty/cli.py,sha256=k8Rxm41fMFNvmnsX737UiN6v-7756tpoJPN4rPXMNcU,3726
10
10
  prompty/core.py,sha256=VzhOp2tulAKAF0I_5ULlII6QZ0thN1FRtPqPhwDpjPY,17226
11
11
  prompty/openai/__init__.py,sha256=16LxFrG_qGMg_Nx_BTMkCZupPEADsi8Gj234uFiXoZo,273
12
- prompty/openai/executor.py,sha256=5LXME0ACvbX3PSpSfh9ohDGWB50ZYBXLZG238wQiVGc,2212
12
+ prompty/openai/executor.py,sha256=tpX2vkPIJKM4XqEU0KzahgALcR_IBRrY_ca-woST-uc,3314
13
13
  prompty/openai/processor.py,sha256=Cw-_O_r9B5QqiCsfIglI5lcJgKCStkse2iIDbPWxfhg,2169
14
14
  prompty/parsers.py,sha256=4mmIn4SVNs8B0R1BufanqUJk8v4r0OEEo8yx6UOxQpA,4670
15
15
  prompty/renderers.py,sha256=RSHFQFx7AtKLUfsMLCXR0a56Mb7DL1NJNgjUqgg3IqU,776
16
16
  prompty/serverless/__init__.py,sha256=NPqoFATEMQ96G8OQkVcGxUWU4llIQCwxfJePPo8YFY8,279
17
- prompty/serverless/executor.py,sha256=fYCMV01iLBLpH2SQ9nxmrvY9ijAGpZezwkobZwUjSVQ,2781
17
+ prompty/serverless/executor.py,sha256=jbTnYE2aq8oS5PWcZ96NhhjL-gU1a_tlUoB449QqHaY,4648
18
18
  prompty/serverless/processor.py,sha256=pft1XGbPzo0MzQMbAt1VxsLsvRrjQO3B8MXEE2PfSA0,1982
19
- prompty/tracer.py,sha256=tROL2gdDyjMi1WvyVzHXOsojGbPL2wvI2Dlnzt1VBcA,9628
20
- prompty-0.1.18.dist-info/RECORD,,
19
+ prompty/tracer.py,sha256=dtF7rlJVNkl30m5ZE_9nROGW6Nmm8vGSSWS6p3M3MXI,10436
20
+ prompty-0.1.19.dist-info/RECORD,,