prompty 0.1.12__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- prompty/__init__.py +391 -0
- prompty/azure/__init__.py +3 -0
- prompty/azure/executor.py +95 -0
- prompty/azure/processor.py +66 -0
- prompty/cli.py +117 -0
- prompty/core.py +539 -0
- prompty/openai/__init__.py +3 -0
- prompty/openai/executor.py +74 -0
- prompty/openai/processor.py +65 -0
- prompty/parsers.py +139 -0
- prompty/renderers.py +23 -0
- prompty/serverless/__init__.py +3 -0
- prompty/serverless/executor.py +82 -0
- prompty/serverless/processor.py +62 -0
- prompty/tracer.py +260 -0
- prompty-0.1.12.dist-info/METADATA +17 -0
- prompty-0.1.12.dist-info/RECORD +19 -0
- prompty-0.1.12.dist-info/WHEEL +4 -0
- prompty-0.1.12.dist-info/licenses/LICENSE +7 -0
prompty/__init__.py
ADDED
@@ -0,0 +1,391 @@
|
|
1
|
+
import json
|
2
|
+
import traceback
|
3
|
+
from pathlib import Path
|
4
|
+
from typing import Dict, List, Union
|
5
|
+
|
6
|
+
from prompty.tracer import trace
|
7
|
+
from prompty.core import (
|
8
|
+
Frontmatter,
|
9
|
+
InvokerFactory,
|
10
|
+
ModelSettings,
|
11
|
+
Prompty,
|
12
|
+
PropertySettings,
|
13
|
+
TemplateSettings,
|
14
|
+
param_hoisting,
|
15
|
+
)
|
16
|
+
|
17
|
+
from .renderers import *
|
18
|
+
from .parsers import *
|
19
|
+
|
20
|
+
|
21
|
+
def load_global_config(
|
22
|
+
prompty_path: Path = Path.cwd(), configuration: str = "default"
|
23
|
+
) -> Dict[str, any]:
|
24
|
+
# prompty.config laying around?
|
25
|
+
prompty_config = list(Path.cwd().glob("**/prompty.json"))
|
26
|
+
|
27
|
+
# if there is one load it
|
28
|
+
if len(prompty_config) > 0:
|
29
|
+
# pick the nearest prompty.json
|
30
|
+
config = sorted(
|
31
|
+
[
|
32
|
+
c
|
33
|
+
for c in prompty_config
|
34
|
+
if len(c.parent.parts) <= len(prompty_path.parts)
|
35
|
+
],
|
36
|
+
key=lambda p: len(p.parts),
|
37
|
+
)[-1]
|
38
|
+
|
39
|
+
with open(config, "r") as f:
|
40
|
+
c = json.load(f)
|
41
|
+
if configuration in c:
|
42
|
+
return c[configuration]
|
43
|
+
else:
|
44
|
+
raise ValueError(f'Item "{configuration}" not found in "{config}"')
|
45
|
+
|
46
|
+
return {}
|
47
|
+
|
48
|
+
|
49
|
+
@trace(description="Create a headless prompty object for programmatic use.")
|
50
|
+
def headless(
|
51
|
+
api: str,
|
52
|
+
content: str | List[str] | dict,
|
53
|
+
configuration: Dict[str, any] = {},
|
54
|
+
parameters: Dict[str, any] = {},
|
55
|
+
connection: str = "default",
|
56
|
+
) -> Prompty:
|
57
|
+
"""Create a headless prompty object for programmatic use.
|
58
|
+
|
59
|
+
Parameters
|
60
|
+
----------
|
61
|
+
api : str
|
62
|
+
The API to use for the model
|
63
|
+
content : str | List[str] | dict
|
64
|
+
The content to process
|
65
|
+
configuration : Dict[str, any], optional
|
66
|
+
The configuration to use, by default {}
|
67
|
+
parameters : Dict[str, any], optional
|
68
|
+
The parameters to use, by default {}
|
69
|
+
connection : str, optional
|
70
|
+
The connection to use, by default "default"
|
71
|
+
|
72
|
+
Returns
|
73
|
+
-------
|
74
|
+
Prompty
|
75
|
+
The headless prompty object
|
76
|
+
|
77
|
+
Example
|
78
|
+
-------
|
79
|
+
>>> import prompty
|
80
|
+
>>> p = prompty.headless(
|
81
|
+
api="embedding",
|
82
|
+
configuration={"type": "azure", "azure_deployment": "text-embedding-ada-002"},
|
83
|
+
content="hello world",
|
84
|
+
)
|
85
|
+
>>> emb = prompty.execute(p)
|
86
|
+
|
87
|
+
"""
|
88
|
+
|
89
|
+
# get caller's path (to get relative path for prompty.json)
|
90
|
+
caller = Path(traceback.extract_stack()[-2].filename)
|
91
|
+
templateSettings = TemplateSettings(type="NOOP", parser="NOOP")
|
92
|
+
modelSettings = ModelSettings(
|
93
|
+
api=api,
|
94
|
+
configuration=Prompty.normalize(
|
95
|
+
param_hoisting(
|
96
|
+
configuration, load_global_config(caller.parent, connection)
|
97
|
+
),
|
98
|
+
caller.parent,
|
99
|
+
),
|
100
|
+
parameters=parameters,
|
101
|
+
)
|
102
|
+
|
103
|
+
return Prompty(model=modelSettings, template=templateSettings, content=content)
|
104
|
+
|
105
|
+
|
106
|
+
@trace(description="Load a prompty file.")
|
107
|
+
def load(prompty_file: str, configuration: str = "default") -> Prompty:
|
108
|
+
"""Load a prompty file.
|
109
|
+
|
110
|
+
Parameters
|
111
|
+
----------
|
112
|
+
prompty_file : str
|
113
|
+
The path to the prompty file
|
114
|
+
configuration : str, optional
|
115
|
+
The configuration to use, by default "default"
|
116
|
+
|
117
|
+
Returns
|
118
|
+
-------
|
119
|
+
Prompty
|
120
|
+
The loaded prompty object
|
121
|
+
|
122
|
+
Example
|
123
|
+
-------
|
124
|
+
>>> import prompty
|
125
|
+
>>> p = prompty.load("prompts/basic.prompty")
|
126
|
+
>>> print(p)
|
127
|
+
"""
|
128
|
+
|
129
|
+
p = Path(prompty_file)
|
130
|
+
if not p.is_absolute():
|
131
|
+
# get caller's path (take into account trace frame)
|
132
|
+
caller = Path(traceback.extract_stack()[-3].filename)
|
133
|
+
p = Path(caller.parent / p).resolve().absolute()
|
134
|
+
|
135
|
+
# load dictionary from prompty file
|
136
|
+
matter = Frontmatter.read_file(p)
|
137
|
+
attributes = matter["attributes"]
|
138
|
+
content = matter["body"]
|
139
|
+
|
140
|
+
# normalize attribute dictionary resolve keys and files
|
141
|
+
attributes = Prompty.normalize(attributes, p.parent)
|
142
|
+
|
143
|
+
# load global configuration
|
144
|
+
global_config = Prompty.normalize(
|
145
|
+
load_global_config(p.parent, configuration), p.parent
|
146
|
+
)
|
147
|
+
if "model" not in attributes:
|
148
|
+
attributes["model"] = {}
|
149
|
+
|
150
|
+
if "configuration" not in attributes["model"]:
|
151
|
+
attributes["model"]["configuration"] = global_config
|
152
|
+
else:
|
153
|
+
attributes["model"]["configuration"] = param_hoisting(
|
154
|
+
attributes["model"]["configuration"],
|
155
|
+
global_config,
|
156
|
+
)
|
157
|
+
|
158
|
+
# pull model settings out of attributes
|
159
|
+
try:
|
160
|
+
model = ModelSettings(**attributes.pop("model"))
|
161
|
+
except Exception as e:
|
162
|
+
raise ValueError(f"Error in model settings: {e}")
|
163
|
+
|
164
|
+
# pull template settings
|
165
|
+
try:
|
166
|
+
if "template" in attributes:
|
167
|
+
t = attributes.pop("template")
|
168
|
+
if isinstance(t, dict):
|
169
|
+
template = TemplateSettings(**t)
|
170
|
+
# has to be a string denoting the type
|
171
|
+
else:
|
172
|
+
template = TemplateSettings(type=t, parser="prompty")
|
173
|
+
else:
|
174
|
+
template = TemplateSettings(type="jinja2", parser="prompty")
|
175
|
+
except Exception as e:
|
176
|
+
raise ValueError(f"Error in template loader: {e}")
|
177
|
+
|
178
|
+
# formalize inputs and outputs
|
179
|
+
if "inputs" in attributes:
|
180
|
+
try:
|
181
|
+
inputs = {
|
182
|
+
k: PropertySettings(**v) for (k, v) in attributes.pop("inputs").items()
|
183
|
+
}
|
184
|
+
except Exception as e:
|
185
|
+
raise ValueError(f"Error in inputs: {e}")
|
186
|
+
else:
|
187
|
+
inputs = {}
|
188
|
+
if "outputs" in attributes:
|
189
|
+
try:
|
190
|
+
outputs = {
|
191
|
+
k: PropertySettings(**v) for (k, v) in attributes.pop("outputs").items()
|
192
|
+
}
|
193
|
+
except Exception as e:
|
194
|
+
raise ValueError(f"Error in outputs: {e}")
|
195
|
+
else:
|
196
|
+
outputs = {}
|
197
|
+
|
198
|
+
# recursive loading of base prompty
|
199
|
+
if "base" in attributes:
|
200
|
+
# load the base prompty from the same directory as the current prompty
|
201
|
+
base = load(p.parent / attributes["base"])
|
202
|
+
# hoist the base prompty's attributes to the current prompty
|
203
|
+
model.api = base.model.api if model.api == "" else model.api
|
204
|
+
model.configuration = param_hoisting(
|
205
|
+
model.configuration, base.model.configuration
|
206
|
+
)
|
207
|
+
model.parameters = param_hoisting(model.parameters, base.model.parameters)
|
208
|
+
model.response = param_hoisting(model.response, base.model.response)
|
209
|
+
attributes["sample"] = param_hoisting(attributes, base.sample, "sample")
|
210
|
+
|
211
|
+
p = Prompty(
|
212
|
+
**attributes,
|
213
|
+
model=model,
|
214
|
+
inputs=inputs,
|
215
|
+
outputs=outputs,
|
216
|
+
template=template,
|
217
|
+
content=content,
|
218
|
+
file=p,
|
219
|
+
basePrompty=base,
|
220
|
+
)
|
221
|
+
else:
|
222
|
+
p = Prompty(
|
223
|
+
**attributes,
|
224
|
+
model=model,
|
225
|
+
inputs=inputs,
|
226
|
+
outputs=outputs,
|
227
|
+
template=template,
|
228
|
+
content=content,
|
229
|
+
file=p,
|
230
|
+
)
|
231
|
+
return p
|
232
|
+
|
233
|
+
@trace(description="Prepare the inputs for the prompt.")
|
234
|
+
def prepare(
|
235
|
+
prompt: Prompty,
|
236
|
+
inputs: Dict[str, any] = {},
|
237
|
+
):
|
238
|
+
""" Prepare the inputs for the prompt.
|
239
|
+
|
240
|
+
Parameters
|
241
|
+
----------
|
242
|
+
prompt : Prompty
|
243
|
+
The prompty object
|
244
|
+
inputs : Dict[str, any], optional
|
245
|
+
The inputs to the prompt, by default {}
|
246
|
+
|
247
|
+
Returns
|
248
|
+
-------
|
249
|
+
dict
|
250
|
+
The prepared and hidrated template shaped to the LLM model
|
251
|
+
|
252
|
+
Example
|
253
|
+
-------
|
254
|
+
>>> import prompty
|
255
|
+
>>> p = prompty.load("prompts/basic.prompty")
|
256
|
+
>>> inputs = {"name": "John Doe"}
|
257
|
+
>>> content = prompty.prepare(p, inputs)
|
258
|
+
"""
|
259
|
+
inputs = param_hoisting(inputs, prompt.sample)
|
260
|
+
|
261
|
+
if prompt.template.type == "NOOP":
|
262
|
+
render = prompt.content
|
263
|
+
else:
|
264
|
+
# render
|
265
|
+
renderer = InvokerFactory.create_renderer(prompt.template.type, prompt)
|
266
|
+
render = renderer(inputs)
|
267
|
+
|
268
|
+
if prompt.template.parser == "NOOP":
|
269
|
+
result = render
|
270
|
+
else:
|
271
|
+
# parse [parser].[api]
|
272
|
+
parser = InvokerFactory.create_parser(
|
273
|
+
f"{prompt.template.parser}.{prompt.model.api}", prompt
|
274
|
+
)
|
275
|
+
result = parser(render)
|
276
|
+
|
277
|
+
return result
|
278
|
+
|
279
|
+
@trace(description="Run the prepared Prompty content against the model.")
|
280
|
+
def run(
|
281
|
+
prompt: Prompty,
|
282
|
+
content: dict | list | str,
|
283
|
+
configuration: Dict[str, any] = {},
|
284
|
+
parameters: Dict[str, any] = {},
|
285
|
+
raw: bool = False,
|
286
|
+
):
|
287
|
+
"""Run the prepared Prompty content.
|
288
|
+
|
289
|
+
Parameters
|
290
|
+
----------
|
291
|
+
prompt : Prompty
|
292
|
+
The prompty object
|
293
|
+
content : dict | list | str
|
294
|
+
The content to process
|
295
|
+
configuration : Dict[str, any], optional
|
296
|
+
The configuration to use, by default {}
|
297
|
+
parameters : Dict[str, any], optional
|
298
|
+
The parameters to use, by default {}
|
299
|
+
raw : bool, optional
|
300
|
+
Whether to skip processing, by default False
|
301
|
+
|
302
|
+
Returns
|
303
|
+
-------
|
304
|
+
any
|
305
|
+
The result of the prompt
|
306
|
+
|
307
|
+
Example
|
308
|
+
-------
|
309
|
+
>>> import prompty
|
310
|
+
>>> p = prompty.load("prompts/basic.prompty")
|
311
|
+
>>> inputs = {"name": "John Doe"}
|
312
|
+
>>> content = prompty.prepare(p, inputs)
|
313
|
+
>>> result = prompty.run(p, content)
|
314
|
+
"""
|
315
|
+
|
316
|
+
if configuration != {}:
|
317
|
+
prompt.model.configuration = param_hoisting(
|
318
|
+
configuration, prompt.model.configuration
|
319
|
+
)
|
320
|
+
|
321
|
+
if parameters != {}:
|
322
|
+
prompt.model.parameters = param_hoisting(parameters, prompt.model.parameters)
|
323
|
+
|
324
|
+
# execute
|
325
|
+
executor = InvokerFactory.create_executor(
|
326
|
+
prompt.model.configuration["type"], prompt
|
327
|
+
)
|
328
|
+
result = executor(content)
|
329
|
+
|
330
|
+
# skip?
|
331
|
+
if not raw:
|
332
|
+
# process
|
333
|
+
processor = InvokerFactory.create_processor(
|
334
|
+
prompt.model.configuration["type"], prompt
|
335
|
+
)
|
336
|
+
result = processor(result)
|
337
|
+
|
338
|
+
return result
|
339
|
+
|
340
|
+
@trace(description="Execute a prompty")
|
341
|
+
def execute(
|
342
|
+
prompt: Union[str, Prompty],
|
343
|
+
configuration: Dict[str, any] = {},
|
344
|
+
parameters: Dict[str, any] = {},
|
345
|
+
inputs: Dict[str, any] = {},
|
346
|
+
raw: bool = False,
|
347
|
+
connection: str = "default",
|
348
|
+
):
|
349
|
+
"""Execute a prompty.
|
350
|
+
|
351
|
+
Parameters
|
352
|
+
----------
|
353
|
+
prompt : Union[str, Prompty]
|
354
|
+
The prompty object or path to the prompty file
|
355
|
+
configuration : Dict[str, any], optional
|
356
|
+
The configuration to use, by default {}
|
357
|
+
parameters : Dict[str, any], optional
|
358
|
+
The parameters to use, by default {}
|
359
|
+
inputs : Dict[str, any], optional
|
360
|
+
The inputs to the prompt, by default {}
|
361
|
+
raw : bool, optional
|
362
|
+
Whether to skip processing, by default False
|
363
|
+
connection : str, optional
|
364
|
+
The connection to use, by default "default"
|
365
|
+
|
366
|
+
Returns
|
367
|
+
-------
|
368
|
+
any
|
369
|
+
The result of the prompt
|
370
|
+
|
371
|
+
Example
|
372
|
+
-------
|
373
|
+
>>> import prompty
|
374
|
+
>>> inputs = {"name": "John Doe"}
|
375
|
+
>>> result = prompty.execute("prompts/basic.prompty", inputs=inputs)
|
376
|
+
"""
|
377
|
+
if isinstance(prompt, str):
|
378
|
+
path = Path(prompt)
|
379
|
+
if not path.is_absolute():
|
380
|
+
# get caller's path (take into account trace frame)
|
381
|
+
caller = Path(traceback.extract_stack()[-3].filename)
|
382
|
+
path = Path(caller.parent / path).resolve().absolute()
|
383
|
+
prompt = load(path, connection)
|
384
|
+
|
385
|
+
# prepare content
|
386
|
+
content = prepare(prompt, inputs)
|
387
|
+
|
388
|
+
# run LLM model
|
389
|
+
result = run(prompt, content, configuration, parameters, raw)
|
390
|
+
|
391
|
+
return result
|
@@ -0,0 +1,95 @@
|
|
1
|
+
import azure.identity
|
2
|
+
import importlib.metadata
|
3
|
+
from typing import Iterator
|
4
|
+
from openai import AzureOpenAI
|
5
|
+
from ..core import Invoker, InvokerFactory, Prompty, PromptyStream
|
6
|
+
|
7
|
+
VERSION = importlib.metadata.version("prompty")
|
8
|
+
|
9
|
+
|
10
|
+
@InvokerFactory.register_executor("azure")
|
11
|
+
@InvokerFactory.register_executor("azure_openai")
|
12
|
+
class AzureOpenAIExecutor(Invoker):
|
13
|
+
"""Azure OpenAI Executor"""
|
14
|
+
|
15
|
+
def __init__(self, prompty: Prompty) -> None:
|
16
|
+
super().__init__(prompty)
|
17
|
+
kwargs = {
|
18
|
+
key: value
|
19
|
+
for key, value in self.prompty.model.configuration.items()
|
20
|
+
if key != "type"
|
21
|
+
}
|
22
|
+
|
23
|
+
# no key, use default credentials
|
24
|
+
if "api_key" not in kwargs:
|
25
|
+
# managed identity if client id
|
26
|
+
if "client_id" in kwargs:
|
27
|
+
default_credential = azure.identity.ManagedIdentityCredential(
|
28
|
+
client_id=kwargs.pop("client_id"),
|
29
|
+
)
|
30
|
+
# default credential
|
31
|
+
else:
|
32
|
+
default_credential = azure.identity.DefaultAzureCredential(
|
33
|
+
exclude_shared_token_cache_credential=True
|
34
|
+
)
|
35
|
+
|
36
|
+
kwargs["azure_ad_token_provider"] = (
|
37
|
+
azure.identity.get_bearer_token_provider(
|
38
|
+
default_credential, "https://cognitiveservices.azure.com/.default"
|
39
|
+
)
|
40
|
+
)
|
41
|
+
|
42
|
+
self.client = AzureOpenAI(
|
43
|
+
default_headers={
|
44
|
+
"User-Agent": f"prompty/{VERSION}",
|
45
|
+
"x-ms-useragent": f"prompty/{VERSION}",
|
46
|
+
},
|
47
|
+
**kwargs,
|
48
|
+
)
|
49
|
+
|
50
|
+
self.api = self.prompty.model.api
|
51
|
+
self.deployment = self.prompty.model.configuration["azure_deployment"]
|
52
|
+
self.parameters = self.prompty.model.parameters
|
53
|
+
|
54
|
+
def invoke(self, data: any) -> any:
|
55
|
+
"""Invoke the Azure OpenAI API
|
56
|
+
|
57
|
+
Parameters
|
58
|
+
----------
|
59
|
+
data : any
|
60
|
+
The data to send to the Azure OpenAI API
|
61
|
+
|
62
|
+
Returns
|
63
|
+
-------
|
64
|
+
any
|
65
|
+
The response from the Azure OpenAI API
|
66
|
+
"""
|
67
|
+
if self.api == "chat":
|
68
|
+
response = self.client.chat.completions.create(
|
69
|
+
model=self.deployment,
|
70
|
+
messages=data if isinstance(data, list) else [data],
|
71
|
+
**self.parameters,
|
72
|
+
)
|
73
|
+
|
74
|
+
elif self.api == "completion":
|
75
|
+
response = self.client.completions.create(
|
76
|
+
prompt=data.item,
|
77
|
+
model=self.deployment,
|
78
|
+
**self.parameters,
|
79
|
+
)
|
80
|
+
|
81
|
+
elif self.api == "embedding":
|
82
|
+
response = self.client.embeddings.create(
|
83
|
+
input=data if isinstance(data, list) else [data],
|
84
|
+
model=self.deployment,
|
85
|
+
**self.parameters,
|
86
|
+
)
|
87
|
+
|
88
|
+
elif self.api == "image":
|
89
|
+
raise NotImplementedError("Azure OpenAI Image API is not implemented yet")
|
90
|
+
|
91
|
+
# stream response
|
92
|
+
if isinstance(response, Iterator):
|
93
|
+
return PromptyStream("AzureOpenAIExecutor", response)
|
94
|
+
else:
|
95
|
+
return response
|
@@ -0,0 +1,66 @@
|
|
1
|
+
from typing import Iterator
|
2
|
+
from openai.types.completion import Completion
|
3
|
+
from openai.types.chat.chat_completion import ChatCompletion
|
4
|
+
from ..core import Invoker, InvokerFactory, Prompty, PromptyStream, ToolCall
|
5
|
+
from openai.types.create_embedding_response import CreateEmbeddingResponse
|
6
|
+
|
7
|
+
|
8
|
+
@InvokerFactory.register_processor("azure")
|
9
|
+
@InvokerFactory.register_processor("azure_openai")
|
10
|
+
class AzureOpenAIProcessor(Invoker):
|
11
|
+
"""Azure OpenAI Processor"""
|
12
|
+
|
13
|
+
def __init__(self, prompty: Prompty) -> None:
|
14
|
+
super().__init__(prompty)
|
15
|
+
|
16
|
+
def invoke(self, data: any) -> any:
|
17
|
+
"""Invoke the OpenAI/Azure API
|
18
|
+
|
19
|
+
Parameters
|
20
|
+
----------
|
21
|
+
data : any
|
22
|
+
The data to send to the OpenAI/Azure API
|
23
|
+
|
24
|
+
Returns
|
25
|
+
-------
|
26
|
+
any
|
27
|
+
The response from the OpenAI/Azure API
|
28
|
+
"""
|
29
|
+
if isinstance(data, ChatCompletion):
|
30
|
+
response = data.choices[0].message
|
31
|
+
# tool calls available in response
|
32
|
+
if response.tool_calls:
|
33
|
+
return [
|
34
|
+
ToolCall(
|
35
|
+
id=tool_call.id,
|
36
|
+
name=tool_call.function.name,
|
37
|
+
arguments=tool_call.function.arguments,
|
38
|
+
)
|
39
|
+
for tool_call in response.tool_calls
|
40
|
+
]
|
41
|
+
else:
|
42
|
+
return response.content
|
43
|
+
|
44
|
+
elif isinstance(data, Completion):
|
45
|
+
return data.choices[0].text
|
46
|
+
elif isinstance(data, CreateEmbeddingResponse):
|
47
|
+
if len(data.data) == 0:
|
48
|
+
raise ValueError("Invalid data")
|
49
|
+
elif len(data.data) == 1:
|
50
|
+
return data.data[0].embedding
|
51
|
+
else:
|
52
|
+
return [item.embedding for item in data.data]
|
53
|
+
elif isinstance(data, Iterator):
|
54
|
+
|
55
|
+
def generator():
|
56
|
+
for chunk in data:
|
57
|
+
if (
|
58
|
+
len(chunk.choices) == 1
|
59
|
+
and chunk.choices[0].delta.content != None
|
60
|
+
):
|
61
|
+
content = chunk.choices[0].delta.content
|
62
|
+
yield content
|
63
|
+
|
64
|
+
return PromptyStream("AzureOpenAIProcessor", generator())
|
65
|
+
else:
|
66
|
+
return data
|
prompty/cli.py
ADDED
@@ -0,0 +1,117 @@
|
|
1
|
+
import os
|
2
|
+
import json
|
3
|
+
import click
|
4
|
+
import importlib
|
5
|
+
|
6
|
+
from pathlib import Path
|
7
|
+
from pydantic import BaseModel
|
8
|
+
|
9
|
+
import prompty
|
10
|
+
from prompty.tracer import trace, PromptyTracer, console_tracer, Tracer
|
11
|
+
from dotenv import load_dotenv
|
12
|
+
|
13
|
+
load_dotenv()
|
14
|
+
|
15
|
+
|
16
|
+
def normalize_path(p, create_dir=False) -> Path:
|
17
|
+
path = Path(p)
|
18
|
+
if not path.is_absolute():
|
19
|
+
path = Path(os.getcwd()).joinpath(path).absolute().resolve()
|
20
|
+
else:
|
21
|
+
path = path.absolute().resolve()
|
22
|
+
|
23
|
+
if create_dir:
|
24
|
+
if not path.exists():
|
25
|
+
print(f"Creating directory {str(path)}")
|
26
|
+
os.makedirs(str(path))
|
27
|
+
|
28
|
+
return path
|
29
|
+
|
30
|
+
def dynamic_import(module: str):
|
31
|
+
t = module if "." in module else f"prompty.{module}"
|
32
|
+
print(f"Loading invokers from {t}")
|
33
|
+
importlib.import_module(t)
|
34
|
+
|
35
|
+
|
36
|
+
@trace
|
37
|
+
def chat_mode(prompt_path: str):
|
38
|
+
W = "\033[0m" # white (normal)
|
39
|
+
R = "\033[31m" # red
|
40
|
+
G = "\033[32m" # green
|
41
|
+
O = "\033[33m" # orange
|
42
|
+
B = "\033[34m" # blue
|
43
|
+
P = "\033[35m" # purple
|
44
|
+
print(f"Executing {str(prompt_path)} in chat mode...")
|
45
|
+
p = prompty.load(str(prompt_path))
|
46
|
+
if "chat_history" not in p.sample:
|
47
|
+
print(
|
48
|
+
f"{R}{str(prompt_path)} needs to have a chat_history input to work in chat mode{W}"
|
49
|
+
)
|
50
|
+
return
|
51
|
+
else:
|
52
|
+
|
53
|
+
try:
|
54
|
+
# load executor / processor types
|
55
|
+
dynamic_import(p.model.configuration["type"])
|
56
|
+
chat_history = p.sample["chat_history"]
|
57
|
+
while True:
|
58
|
+
user_input = input(f"\n{B}User:{W} ")
|
59
|
+
if user_input == "exit":
|
60
|
+
break
|
61
|
+
# reloadable prompty file
|
62
|
+
chat_history.append({"role": "user", "content": user_input})
|
63
|
+
result = prompty.execute(prompt_path, inputs={"chat_history": chat_history})
|
64
|
+
print(f"\n{G}Assistant:{W} {result}")
|
65
|
+
chat_history.append({"role": "assistant", "content": result})
|
66
|
+
except Exception as e:
|
67
|
+
print(f"{type(e).__qualname__}: {e}")
|
68
|
+
|
69
|
+
print(f"\n{R}Goodbye!{W}\n")
|
70
|
+
|
71
|
+
|
72
|
+
@trace
|
73
|
+
def execute(prompt_path: str, raw=False):
|
74
|
+
p = prompty.load(prompt_path)
|
75
|
+
|
76
|
+
try:
|
77
|
+
# load executor / processor types
|
78
|
+
dynamic_import(p.model.configuration["type"])
|
79
|
+
|
80
|
+
result = prompty.execute(p, raw=raw)
|
81
|
+
if issubclass(type(result), BaseModel):
|
82
|
+
print("\n", json.dumps(result.model_dump(), indent=4), "\n")
|
83
|
+
elif isinstance(result, list):
|
84
|
+
print(
|
85
|
+
"\n", json.dumps([item.model_dump() for item in result], indent=4), "\n"
|
86
|
+
)
|
87
|
+
else:
|
88
|
+
print("\n", result, "\n")
|
89
|
+
except Exception as e:
|
90
|
+
print(f"{type(e).__qualname__}: {e}", "\n")
|
91
|
+
|
92
|
+
|
93
|
+
@click.command()
|
94
|
+
@click.option("--source", "-s", required=True)
|
95
|
+
@click.option("--verbose", "-v", is_flag=True)
|
96
|
+
@click.option("--chat", "-c", is_flag=True)
|
97
|
+
@click.version_option()
|
98
|
+
def run(source, verbose, chat):
|
99
|
+
prompt_path = normalize_path(source)
|
100
|
+
if not prompt_path.exists():
|
101
|
+
print(f"{str(prompt_path)} does not exist")
|
102
|
+
return
|
103
|
+
|
104
|
+
if verbose:
|
105
|
+
Tracer.add("console", console_tracer)
|
106
|
+
|
107
|
+
ptrace = PromptyTracer()
|
108
|
+
Tracer.add("prompty", ptrace.tracer)
|
109
|
+
|
110
|
+
if chat:
|
111
|
+
chat_mode(str(prompt_path))
|
112
|
+
else:
|
113
|
+
execute(str(prompt_path), raw=verbose)
|
114
|
+
|
115
|
+
|
116
|
+
if __name__ == "__main__":
|
117
|
+
chat_mode(source="./tests/prompts/basic.prompt")
|