prompty 0.1.10__py3-none-any.whl → 0.1.33__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,218 @@
1
+ import azure.identity
2
+ import importlib.metadata
3
+ from typing import AsyncIterator, Iterator
4
+ from openai import AzureOpenAI, AsyncAzureOpenAI
5
+
6
+ from prompty.tracer import Tracer
7
+ from ..core import AsyncPromptyStream, Prompty, PromptyStream
8
+ from ..invoker import Invoker, InvokerFactory
9
+
10
+ VERSION = importlib.metadata.version("prompty")
11
+
12
+
13
+ @InvokerFactory.register_executor("azure")
14
+ @InvokerFactory.register_executor("azure_openai")
15
+ class AzureOpenAIExecutor(Invoker):
16
+ """Azure OpenAI Executor"""
17
+
18
+ def __init__(self, prompty: Prompty) -> None:
19
+ super().__init__(prompty)
20
+ self.kwargs = {
21
+ key: value
22
+ for key, value in self.prompty.model.configuration.items()
23
+ if key != "type"
24
+ }
25
+
26
+ # no key, use default credentials
27
+ if "api_key" not in self.kwargs:
28
+ # managed identity if client id
29
+ if "client_id" in self.kwargs:
30
+ default_credential = azure.identity.ManagedIdentityCredential(
31
+ client_id=self.kwargs.pop("client_id"),
32
+ )
33
+ # default credential
34
+ else:
35
+ default_credential = azure.identity.DefaultAzureCredential(
36
+ exclude_shared_token_cache_credential=True
37
+ )
38
+
39
+ self.kwargs["azure_ad_token_provider"] = (
40
+ azure.identity.get_bearer_token_provider(
41
+ default_credential, "https://cognitiveservices.azure.com/.default"
42
+ )
43
+ )
44
+
45
+ self.api = self.prompty.model.api
46
+ self.deployment = self.prompty.model.configuration["azure_deployment"]
47
+ self.parameters = self.prompty.model.parameters
48
+
49
+ def invoke(self, data: any) -> any:
50
+ """Invoke the Azure OpenAI API
51
+
52
+ Parameters
53
+ ----------
54
+ data : any
55
+ The data to send to the Azure OpenAI API
56
+
57
+ Returns
58
+ -------
59
+ any
60
+ The response from the Azure OpenAI API
61
+ """
62
+
63
+ with Tracer.start("AzureOpenAI") as trace:
64
+ trace("type", "LLM")
65
+ trace("signature", "AzureOpenAI.ctor")
66
+ trace("description", "Azure OpenAI Constructor")
67
+ trace("inputs", self.kwargs)
68
+ client = AzureOpenAI(
69
+ default_headers={
70
+ "User-Agent": f"prompty/{VERSION}",
71
+ "x-ms-useragent": f"prompty/{VERSION}",
72
+ },
73
+ **self.kwargs,
74
+ )
75
+ trace("result", client)
76
+
77
+ with Tracer.start("create") as trace:
78
+ trace("type", "LLM")
79
+ trace("description", "Azure OpenAI Client")
80
+
81
+ if self.api == "chat":
82
+ trace("signature", "AzureOpenAI.chat.completions.create")
83
+ args = {
84
+ "model": self.deployment,
85
+ "messages": data if isinstance(data, list) else [data],
86
+ **self.parameters,
87
+ }
88
+ trace("inputs", args)
89
+ response = client.chat.completions.create(**args)
90
+ trace("result", response)
91
+
92
+ elif self.api == "completion":
93
+ trace("signature", "AzureOpenAI.completions.create")
94
+ args = {
95
+ "prompt": data,
96
+ "model": self.deployment,
97
+ **self.parameters,
98
+ }
99
+ trace("inputs", args)
100
+ response = client.completions.create(**args)
101
+ trace("result", response)
102
+
103
+ elif self.api == "embedding":
104
+ trace("signature", "AzureOpenAI.embeddings.create")
105
+ args = {
106
+ "input": data if isinstance(data, list) else [data],
107
+ "model": self.deployment,
108
+ **self.parameters,
109
+ }
110
+ trace("inputs", args)
111
+ response = client.embeddings.create(**args)
112
+ trace("result", response)
113
+
114
+ elif self.api == "image":
115
+ trace("signature", "AzureOpenAI.images.generate")
116
+ args = {
117
+ "prompt": data,
118
+ "model": self.deployment,
119
+ **self.parameters,
120
+ }
121
+ trace("inputs", args)
122
+ response = client.images.generate.create(**args)
123
+ trace("result", response)
124
+
125
+ # stream response
126
+ if isinstance(response, Iterator):
127
+ if self.api == "chat":
128
+ # TODO: handle the case where there might be no usage in the stream
129
+ return PromptyStream("AzureOpenAIExecutor", response)
130
+ else:
131
+ return PromptyStream("AzureOpenAIExecutor", response)
132
+ else:
133
+ return response
134
+
135
+ async def invoke_async(self, data: str) -> str:
136
+ """Invoke the Prompty Chat Parser (Async)
137
+
138
+ Parameters
139
+ ----------
140
+ data : str
141
+ The data to parse
142
+
143
+ Returns
144
+ -------
145
+ str
146
+ The parsed data
147
+ """
148
+ with Tracer.start("AzureOpenAIAsync") as trace:
149
+ trace("type", "LLM")
150
+ trace("signature", "AzureOpenAIAsync.ctor")
151
+ trace("description", "Async Azure OpenAI Constructor")
152
+ trace("inputs", self.kwargs)
153
+ client = AsyncAzureOpenAI(
154
+ default_headers={
155
+ "User-Agent": f"prompty/{VERSION}",
156
+ "x-ms-useragent": f"prompty/{VERSION}",
157
+ },
158
+ **self.kwargs,
159
+ )
160
+ trace("result", client)
161
+
162
+ with Tracer.start("create") as trace:
163
+ trace("type", "LLM")
164
+ trace("description", "Azure OpenAI Client")
165
+
166
+ if self.api == "chat":
167
+ trace("signature", "AzureOpenAIAsync.chat.completions.create")
168
+ args = {
169
+ "model": self.deployment,
170
+ "messages": data if isinstance(data, list) else [data],
171
+ **self.parameters,
172
+ }
173
+ trace("inputs", args)
174
+ response = await client.chat.completions.create(**args)
175
+ trace("result", response)
176
+
177
+ elif self.api == "completion":
178
+ trace("signature", "AzureOpenAIAsync.completions.create")
179
+ args = {
180
+ "prompt": data,
181
+ "model": self.deployment,
182
+ **self.parameters,
183
+ }
184
+ trace("inputs", args)
185
+ response = await client.completions.create(**args)
186
+ trace("result", response)
187
+
188
+ elif self.api == "embedding":
189
+ trace("signature", "AzureOpenAIAsync.embeddings.create")
190
+ args = {
191
+ "input": data if isinstance(data, list) else [data],
192
+ "model": self.deployment,
193
+ **self.parameters,
194
+ }
195
+ trace("inputs", args)
196
+ response = await client.embeddings.create(**args)
197
+ trace("result", response)
198
+
199
+ elif self.api == "image":
200
+ trace("signature", "AzureOpenAIAsync.images.generate")
201
+ args = {
202
+ "prompt": data,
203
+ "model": self.deployment,
204
+ **self.parameters,
205
+ }
206
+ trace("inputs", args)
207
+ response = await client.images.generate.create(**args)
208
+ trace("result", response)
209
+
210
+ # stream response
211
+ if isinstance(response, AsyncIterator):
212
+ if self.api == "chat":
213
+ # TODO: handle the case where there might be no usage in the stream
214
+ return AsyncPromptyStream("AzureOpenAIExecutorAsync", response)
215
+ else:
216
+ return AsyncPromptyStream("AzureOpenAIExecutorAsync", response)
217
+ else:
218
+ return response
@@ -0,0 +1,142 @@
1
+ from typing import AsyncIterator, Iterator
2
+ from openai.types.completion import Completion
3
+ from openai.types.images_response import ImagesResponse
4
+ from openai.types.chat.chat_completion import ChatCompletion
5
+ from ..core import AsyncPromptyStream, Prompty, PromptyStream, ToolCall
6
+ from ..invoker import Invoker, InvokerFactory
7
+ from openai.types.create_embedding_response import CreateEmbeddingResponse
8
+
9
+
10
+ @InvokerFactory.register_processor("azure")
11
+ @InvokerFactory.register_processor("azure_openai")
12
+ class AzureOpenAIProcessor(Invoker):
13
+ """Azure OpenAI Processor"""
14
+
15
+ def __init__(self, prompty: Prompty) -> None:
16
+ super().__init__(prompty)
17
+
18
+ def invoke(self, data: any) -> any:
19
+ """Invoke the OpenAI/Azure API
20
+
21
+ Parameters
22
+ ----------
23
+ data : any
24
+ The data to send to the OpenAI/Azure API
25
+
26
+ Returns
27
+ -------
28
+ any
29
+ The response from the OpenAI/Azure API
30
+ """
31
+ if isinstance(data, ChatCompletion):
32
+ response = data.choices[0].message
33
+ # tool calls available in response
34
+ if response.tool_calls:
35
+ return [
36
+ ToolCall(
37
+ id=tool_call.id,
38
+ name=tool_call.function.name,
39
+ arguments=tool_call.function.arguments,
40
+ )
41
+ for tool_call in response.tool_calls
42
+ ]
43
+ else:
44
+ return response.content
45
+
46
+ elif isinstance(data, Completion):
47
+ return data.choices[0].text
48
+ elif isinstance(data, CreateEmbeddingResponse):
49
+ if len(data.data) == 0:
50
+ raise ValueError("Invalid data")
51
+ elif len(data.data) == 1:
52
+ return data.data[0].embedding
53
+ else:
54
+ return [item.embedding for item in data.data]
55
+ elif isinstance(data, ImagesResponse):
56
+ self.prompty.model.parameters
57
+ item: ImagesResponse = data
58
+
59
+ if len(data.data) == 0:
60
+ raise ValueError("Invalid data")
61
+ elif len(data.data) == 1:
62
+ return data.data[0].url if item.data[0].url else item.data[0].b64_json
63
+ else:
64
+ return [item.url if item.url else item.b64_json for item in data.data]
65
+
66
+ elif isinstance(data, Iterator):
67
+
68
+ def generator():
69
+ for chunk in data:
70
+ if (
71
+ len(chunk.choices) == 1
72
+ and chunk.choices[0].delta.content != None
73
+ ):
74
+ content = chunk.choices[0].delta.content
75
+ yield content
76
+
77
+ return PromptyStream("AzureOpenAIProcessor", generator())
78
+ else:
79
+ return data
80
+
81
+ async def invoke_async(self, data: str) -> str:
82
+ """Invoke the Prompty Chat Parser (Async)
83
+
84
+ Parameters
85
+ ----------
86
+ data : str
87
+ The data to parse
88
+
89
+ Returns
90
+ -------
91
+ str
92
+ The parsed data
93
+ """
94
+ if isinstance(data, ChatCompletion):
95
+ response = data.choices[0].message
96
+ # tool calls available in response
97
+ if response.tool_calls:
98
+ return [
99
+ ToolCall(
100
+ id=tool_call.id,
101
+ name=tool_call.function.name,
102
+ arguments=tool_call.function.arguments,
103
+ )
104
+ for tool_call in response.tool_calls
105
+ ]
106
+ else:
107
+ return response.content
108
+
109
+ elif isinstance(data, Completion):
110
+ return data.choices[0].text
111
+ elif isinstance(data, CreateEmbeddingResponse):
112
+ if len(data.data) == 0:
113
+ raise ValueError("Invalid data")
114
+ elif len(data.data) == 1:
115
+ return data.data[0].embedding
116
+ else:
117
+ return [item.embedding for item in data.data]
118
+ elif isinstance(data, ImagesResponse):
119
+ self.prompty.model.parameters
120
+ item: ImagesResponse = data
121
+
122
+ if len(data.data) == 0:
123
+ raise ValueError("Invalid data")
124
+ elif len(data.data) == 1:
125
+ return data.data[0].url if item.data[0].url else item.data[0].b64_json
126
+ else:
127
+ return [item.url if item.url else item.b64_json for item in data.data]
128
+
129
+ elif isinstance(data, AsyncIterator):
130
+
131
+ async def generator():
132
+ async for chunk in data:
133
+ if (
134
+ len(chunk.choices) == 1
135
+ and chunk.choices[0].delta.content != None
136
+ ):
137
+ content = chunk.choices[0].delta.content
138
+ yield content
139
+
140
+ return AsyncPromptyStream("AsyncAzureOpenAIProcessor", generator())
141
+ else:
142
+ return data
prompty/cli.py CHANGED
@@ -1,17 +1,15 @@
1
1
  import os
2
2
  import json
3
3
  import click
4
-
4
+ import importlib
5
5
 
6
6
  from pathlib import Path
7
7
  from pydantic import BaseModel
8
8
 
9
- from . import load, execute
10
- from .tracer import trace, Trace, PromptyTracer
9
+ import prompty
10
+ from prompty.tracer import trace, PromptyTracer, console_tracer, Tracer
11
11
  from dotenv import load_dotenv
12
12
 
13
- load_dotenv()
14
- Trace.add_tracer("prompty", PromptyTracer())
15
13
 
16
14
  def normalize_path(p, create_dir=False) -> Path:
17
15
  path = Path(p)
@@ -28,57 +26,105 @@ def normalize_path(p, create_dir=False) -> Path:
28
26
  return path
29
27
 
30
28
 
29
+ def dynamic_import(module: str):
30
+ # built in modules
31
+ if module == "azure" or module == "azure_openai":
32
+ t = "prompty.azure"
33
+ elif module == "serverless":
34
+ t = "prompty.serverless"
35
+ else:
36
+ t = module
37
+
38
+ print(f"Loading invokers from {t}")
39
+ importlib.import_module(t)
40
+
41
+
31
42
  @trace
32
43
  def chat_mode(prompt_path: str):
33
- W = "\033[0m" # white (normal)
44
+ W = "\033[0m" # white (normal)
34
45
  R = "\033[31m" # red
35
46
  G = "\033[32m" # green
36
47
  O = "\033[33m" # orange
37
48
  B = "\033[34m" # blue
38
49
  P = "\033[35m" # purple
39
50
  print(f"Executing {str(prompt_path)} in chat mode...")
40
- prompty = load(str(prompt_path))
41
- if "chat_history" not in prompty.sample:
51
+ p = prompty.load(str(prompt_path))
52
+ if "chat_history" not in p.sample:
42
53
  print(
43
54
  f"{R}{str(prompt_path)} needs to have a chat_history input to work in chat mode{W}"
44
55
  )
45
56
  return
46
57
  else:
47
- chat_history = prompty.sample["chat_history"]
48
- while True:
49
- user_input = input(f"{B}User:{W} ")
50
- if user_input == "exit":
51
- break
52
- chat_history.append({"role": "user", "content": user_input})
53
- # reloadable prompty file
54
- result = execute(prompt_path, inputs={"chat_history": chat_history})
55
- print(f"\n{G}Assistant:{W} {result}\n")
56
- chat_history.append({"role": "assistant", "content": result})
57
- print("Goodbye!")
58
+
59
+ try:
60
+ # load executor / processor types
61
+ dynamic_import(p.model.configuration["type"])
62
+ chat_history = p.sample["chat_history"]
63
+ while True:
64
+ user_input = input(f"\n{B}User:{W} ")
65
+ if user_input == "exit":
66
+ break
67
+ # reloadable prompty file
68
+ chat_history.append({"role": "user", "content": user_input})
69
+ result = prompty.execute(
70
+ prompt_path, inputs={"chat_history": chat_history}
71
+ )
72
+ print(f"\n{G}Assistant:{W} {result}")
73
+ chat_history.append({"role": "assistant", "content": result})
74
+ except Exception as e:
75
+ print(f"{type(e).__qualname__}: {e}")
76
+
77
+ print(f"\n{R}Goodbye!{W}\n")
78
+
79
+
80
+ @trace
81
+ def execute(prompt_path: str, raw=False):
82
+ p = prompty.load(prompt_path)
83
+
84
+ try:
85
+ # load executor / processor types
86
+ dynamic_import(p.model.configuration["type"])
87
+
88
+ result = prompty.execute(p, raw=raw)
89
+ if issubclass(type(result), BaseModel):
90
+ print("\n", json.dumps(result.model_dump(), indent=4), "\n")
91
+ elif isinstance(result, list):
92
+ print(
93
+ "\n", json.dumps([item.model_dump() for item in result], indent=4), "\n"
94
+ )
95
+ else:
96
+ print("\n", result, "\n")
97
+ except Exception as e:
98
+ print(f"{type(e).__qualname__}: {e}", "\n")
58
99
 
59
100
 
60
101
  @click.command()
61
102
  @click.option("--source", "-s", required=True)
103
+ @click.option("--env", "-e", required=False)
62
104
  @click.option("--verbose", "-v", is_flag=True)
63
105
  @click.option("--chat", "-c", is_flag=True)
64
106
  @click.version_option()
65
- @trace
66
- def run(source, verbose, chat):
107
+ def run(source, env, verbose, chat):
108
+ # load external env file
109
+ if env:
110
+ print(f"Loading environment variables from {env}")
111
+ load_dotenv(env)
112
+
67
113
  prompt_path = normalize_path(source)
68
114
  if not prompt_path.exists():
69
115
  print(f"{str(prompt_path)} does not exist")
70
116
  return
71
117
 
118
+ if verbose:
119
+ Tracer.add("console", console_tracer)
120
+
121
+ ptrace = PromptyTracer()
122
+ Tracer.add("prompty", ptrace.tracer)
123
+
72
124
  if chat:
73
125
  chat_mode(str(prompt_path))
74
126
  else:
75
- result = execute(str(prompt_path), raw=verbose)
76
- if issubclass(type(result), BaseModel):
77
- print(json.dumps(result.model_dump(), indent=4))
78
- elif isinstance(result, list):
79
- print(json.dumps([item.model_dump() for item in result], indent=4))
80
- else:
81
- print(result)
127
+ execute(str(prompt_path), raw=verbose)
82
128
 
83
129
 
84
130
  if __name__ == "__main__":