prompture 0.0.38.dev2__py3-none-any.whl → 0.0.42__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- prompture/__init__.py +12 -1
- prompture/_version.py +2 -2
- prompture/agent.py +11 -11
- prompture/async_agent.py +11 -11
- prompture/async_conversation.py +9 -0
- prompture/async_core.py +16 -0
- prompture/async_driver.py +39 -0
- prompture/async_groups.py +63 -0
- prompture/conversation.py +9 -0
- prompture/core.py +16 -0
- prompture/cost_mixin.py +62 -0
- prompture/discovery.py +108 -43
- prompture/driver.py +39 -0
- prompture/drivers/__init__.py +39 -0
- prompture/drivers/async_azure_driver.py +7 -6
- prompture/drivers/async_claude_driver.py +177 -8
- prompture/drivers/async_google_driver.py +10 -0
- prompture/drivers/async_grok_driver.py +4 -4
- prompture/drivers/async_groq_driver.py +4 -4
- prompture/drivers/async_modelscope_driver.py +286 -0
- prompture/drivers/async_moonshot_driver.py +312 -0
- prompture/drivers/async_openai_driver.py +158 -6
- prompture/drivers/async_openrouter_driver.py +196 -7
- prompture/drivers/async_registry.py +30 -0
- prompture/drivers/async_zai_driver.py +303 -0
- prompture/drivers/azure_driver.py +6 -5
- prompture/drivers/claude_driver.py +10 -0
- prompture/drivers/google_driver.py +10 -0
- prompture/drivers/grok_driver.py +4 -4
- prompture/drivers/groq_driver.py +4 -4
- prompture/drivers/modelscope_driver.py +303 -0
- prompture/drivers/moonshot_driver.py +342 -0
- prompture/drivers/openai_driver.py +22 -12
- prompture/drivers/openrouter_driver.py +248 -44
- prompture/drivers/zai_driver.py +318 -0
- prompture/groups.py +42 -0
- prompture/ledger.py +252 -0
- prompture/model_rates.py +114 -2
- prompture/settings.py +16 -1
- {prompture-0.0.38.dev2.dist-info → prompture-0.0.42.dist-info}/METADATA +1 -1
- prompture-0.0.42.dist-info/RECORD +84 -0
- prompture-0.0.38.dev2.dist-info/RECORD +0 -77
- {prompture-0.0.38.dev2.dist-info → prompture-0.0.42.dist-info}/WHEEL +0 -0
- {prompture-0.0.38.dev2.dist-info → prompture-0.0.42.dist-info}/entry_points.txt +0 -0
- {prompture-0.0.38.dev2.dist-info → prompture-0.0.42.dist-info}/licenses/LICENSE +0 -0
- {prompture-0.0.38.dev2.dist-info → prompture-0.0.42.dist-info}/top_level.txt +0 -0
prompture/discovery.py
CHANGED
|
@@ -1,7 +1,11 @@
|
|
|
1
1
|
"""Discovery module for auto-detecting available models."""
|
|
2
2
|
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import dataclasses
|
|
3
6
|
import logging
|
|
4
7
|
import os
|
|
8
|
+
from typing import Any, overload
|
|
5
9
|
|
|
6
10
|
import requests
|
|
7
11
|
|
|
@@ -22,23 +26,40 @@ from .settings import settings
|
|
|
22
26
|
logger = logging.getLogger(__name__)
|
|
23
27
|
|
|
24
28
|
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
29
|
+
@overload
|
|
30
|
+
def get_available_models(*, include_capabilities: bool = False, verified_only: bool = False) -> list[str]: ...
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@overload
|
|
34
|
+
def get_available_models(*, include_capabilities: bool = True, verified_only: bool = False) -> list[dict[str, Any]]: ...
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def get_available_models(
|
|
38
|
+
*,
|
|
39
|
+
include_capabilities: bool = False,
|
|
40
|
+
verified_only: bool = False,
|
|
41
|
+
) -> list[str] | list[dict[str, Any]]:
|
|
42
|
+
"""Auto-detect available models based on configured drivers and environment variables.
|
|
43
|
+
|
|
44
|
+
Iterates through supported providers and checks if they are configured
|
|
45
|
+
(e.g. API key present). For static drivers, returns models from their
|
|
46
|
+
``MODEL_PRICING`` keys. For dynamic drivers (like Ollama), attempts to
|
|
47
|
+
fetch available models from the endpoint.
|
|
28
48
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
49
|
+
Args:
|
|
50
|
+
include_capabilities: When ``True``, return enriched dicts with
|
|
51
|
+
``model``, ``provider``, ``model_id``, and ``capabilities``
|
|
52
|
+
fields instead of plain ``"provider/model_id"`` strings.
|
|
53
|
+
verified_only: When ``True``, only return models that have been
|
|
54
|
+
successfully used (as recorded by the usage ledger).
|
|
32
55
|
|
|
33
56
|
Returns:
|
|
34
|
-
A list of unique model strings
|
|
57
|
+
A sorted list of unique model strings (default) or enriched dicts.
|
|
35
58
|
"""
|
|
36
59
|
available_models: set[str] = set()
|
|
37
60
|
configured_providers: set[str] = set()
|
|
38
61
|
|
|
39
62
|
# Map of provider name to driver class
|
|
40
|
-
# We need to map the registry keys to the actual classes to check MODEL_PRICING
|
|
41
|
-
# and instantiate for dynamic checks if needed.
|
|
42
63
|
provider_classes = {
|
|
43
64
|
"openai": OpenAIDriver,
|
|
44
65
|
"azure": AzureDriver,
|
|
@@ -54,11 +75,6 @@ def get_available_models() -> list[str]:
|
|
|
54
75
|
|
|
55
76
|
for provider, driver_cls in provider_classes.items():
|
|
56
77
|
try:
|
|
57
|
-
# 1. Check if the provider is configured (has API key or endpoint)
|
|
58
|
-
# We can check this by looking at the settings or env vars that the driver uses.
|
|
59
|
-
# A simple way is to try to instantiate it with defaults, but that might fail if keys are missing.
|
|
60
|
-
# Instead, let's check the specific requirements for each known provider.
|
|
61
|
-
|
|
62
78
|
is_configured = False
|
|
63
79
|
|
|
64
80
|
if provider == "openai":
|
|
@@ -86,14 +102,11 @@ def get_available_models() -> list[str]:
|
|
|
86
102
|
elif provider == "grok":
|
|
87
103
|
if settings.grok_api_key or os.getenv("GROK_API_KEY"):
|
|
88
104
|
is_configured = True
|
|
89
|
-
elif
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
# LM Studio is similar to Ollama, defaults to localhost
|
|
95
|
-
is_configured = True
|
|
96
|
-
elif provider == "local_http" and (settings.local_http_endpoint or os.getenv("LOCAL_HTTP_ENDPOINT")):
|
|
105
|
+
elif (
|
|
106
|
+
provider == "ollama"
|
|
107
|
+
or provider == "lmstudio"
|
|
108
|
+
or (provider == "local_http" and os.getenv("LOCAL_HTTP_ENDPOINT"))
|
|
109
|
+
):
|
|
97
110
|
is_configured = True
|
|
98
111
|
|
|
99
112
|
if not is_configured:
|
|
@@ -101,36 +114,20 @@ def get_available_models() -> list[str]:
|
|
|
101
114
|
|
|
102
115
|
configured_providers.add(provider)
|
|
103
116
|
|
|
104
|
-
#
|
|
117
|
+
# Static Detection: Get models from MODEL_PRICING
|
|
105
118
|
if hasattr(driver_cls, "MODEL_PRICING"):
|
|
106
119
|
pricing = driver_cls.MODEL_PRICING
|
|
107
120
|
for model_id in pricing:
|
|
108
|
-
# Skip "default" or generic keys if they exist
|
|
109
121
|
if model_id == "default":
|
|
110
122
|
continue
|
|
111
|
-
|
|
112
|
-
# For Azure, the model_id in pricing is usually the base model name,
|
|
113
|
-
# but the user needs to use the deployment ID.
|
|
114
|
-
# However, our Azure driver implementation uses the deployment_id from init
|
|
115
|
-
# as the "model" for the request, but expects the user to pass a model name
|
|
116
|
-
# that maps to pricing?
|
|
117
|
-
# Looking at AzureDriver:
|
|
118
|
-
# kwargs = {"model": self.deployment_id, ...}
|
|
119
|
-
# model = options.get("model", self.model) -> used for pricing lookup
|
|
120
|
-
# So we should list the keys in MODEL_PRICING as available "models"
|
|
121
|
-
# even though for Azure specifically it's a bit weird because of deployment IDs.
|
|
122
|
-
# But for general discovery, listing supported models is correct.
|
|
123
|
-
|
|
124
123
|
available_models.add(f"{provider}/{model_id}")
|
|
125
124
|
|
|
126
|
-
#
|
|
125
|
+
# Dynamic Detection: Specific logic for Ollama
|
|
127
126
|
if provider == "ollama":
|
|
128
127
|
try:
|
|
129
128
|
endpoint = settings.ollama_endpoint or os.getenv(
|
|
130
129
|
"OLLAMA_ENDPOINT", "http://localhost:11434/api/generate"
|
|
131
130
|
)
|
|
132
|
-
# We need the base URL for tags, usually http://localhost:11434/api/tags
|
|
133
|
-
# The configured endpoint might be .../api/generate or .../api/chat
|
|
134
131
|
base_url = endpoint.split("/api/")[0]
|
|
135
132
|
tags_url = f"{base_url}/api/tags"
|
|
136
133
|
|
|
@@ -141,8 +138,6 @@ def get_available_models() -> list[str]:
|
|
|
141
138
|
for model in models:
|
|
142
139
|
name = model.get("name")
|
|
143
140
|
if name:
|
|
144
|
-
# Ollama model names often include tags like "llama3:latest"
|
|
145
|
-
# We can keep them as is.
|
|
146
141
|
available_models.add(f"ollama/{name}")
|
|
147
142
|
except Exception as e:
|
|
148
143
|
logger.debug(f"Failed to fetch Ollama models: {e}")
|
|
@@ -184,4 +179,74 @@ def get_available_models() -> list[str]:
|
|
|
184
179
|
for model_id in get_all_provider_models(api_name):
|
|
185
180
|
available_models.add(f"{prompture_name}/{model_id}")
|
|
186
181
|
|
|
187
|
-
|
|
182
|
+
sorted_models = sorted(available_models)
|
|
183
|
+
|
|
184
|
+
# --- verified_only filtering ---
|
|
185
|
+
verified_set: set[str] | None = None
|
|
186
|
+
if verified_only or include_capabilities:
|
|
187
|
+
try:
|
|
188
|
+
from .ledger import _get_ledger
|
|
189
|
+
|
|
190
|
+
ledger = _get_ledger()
|
|
191
|
+
verified_set = ledger.get_verified_models()
|
|
192
|
+
except Exception:
|
|
193
|
+
logger.debug("Could not load ledger for verified models", exc_info=True)
|
|
194
|
+
verified_set = set()
|
|
195
|
+
|
|
196
|
+
if verified_only and verified_set is not None:
|
|
197
|
+
sorted_models = [m for m in sorted_models if m in verified_set]
|
|
198
|
+
|
|
199
|
+
if not include_capabilities:
|
|
200
|
+
return sorted_models
|
|
201
|
+
|
|
202
|
+
# Build enriched dicts with capabilities from models.dev
|
|
203
|
+
from .model_rates import get_model_capabilities
|
|
204
|
+
|
|
205
|
+
# Fetch all ledger stats for annotation (keyed by model_name)
|
|
206
|
+
ledger_stats: dict[str, dict[str, Any]] = {}
|
|
207
|
+
try:
|
|
208
|
+
from .ledger import _get_ledger
|
|
209
|
+
|
|
210
|
+
for row in _get_ledger().get_all_stats():
|
|
211
|
+
name = row["model_name"]
|
|
212
|
+
if name not in ledger_stats:
|
|
213
|
+
ledger_stats[name] = row
|
|
214
|
+
else:
|
|
215
|
+
# Aggregate across API key hashes
|
|
216
|
+
existing = ledger_stats[name]
|
|
217
|
+
existing["use_count"] += row["use_count"]
|
|
218
|
+
existing["total_tokens"] += row["total_tokens"]
|
|
219
|
+
existing["total_cost"] += row["total_cost"]
|
|
220
|
+
if row["last_used"] > existing["last_used"]:
|
|
221
|
+
existing["last_used"] = row["last_used"]
|
|
222
|
+
except Exception:
|
|
223
|
+
logger.debug("Could not load ledger stats for enrichment", exc_info=True)
|
|
224
|
+
|
|
225
|
+
enriched: list[dict[str, Any]] = []
|
|
226
|
+
for model_str in sorted_models:
|
|
227
|
+
parts = model_str.split("/", 1)
|
|
228
|
+
provider = parts[0]
|
|
229
|
+
model_id = parts[1] if len(parts) > 1 else parts[0]
|
|
230
|
+
|
|
231
|
+
caps = get_model_capabilities(provider, model_id)
|
|
232
|
+
caps_dict = dataclasses.asdict(caps) if caps is not None else None
|
|
233
|
+
|
|
234
|
+
entry: dict[str, Any] = {
|
|
235
|
+
"model": model_str,
|
|
236
|
+
"provider": provider,
|
|
237
|
+
"model_id": model_id,
|
|
238
|
+
"capabilities": caps_dict,
|
|
239
|
+
"verified": verified_set is not None and model_str in verified_set,
|
|
240
|
+
}
|
|
241
|
+
|
|
242
|
+
stats = ledger_stats.get(model_str)
|
|
243
|
+
if stats:
|
|
244
|
+
entry["last_used"] = stats["last_used"]
|
|
245
|
+
entry["use_count"] = stats["use_count"]
|
|
246
|
+
else:
|
|
247
|
+
entry["last_used"] = None
|
|
248
|
+
entry["use_count"] = 0
|
|
249
|
+
|
|
250
|
+
enriched.append(entry)
|
|
251
|
+
|
|
252
|
+
return enriched
|
prompture/driver.py
CHANGED
|
@@ -173,6 +173,45 @@ class Driver:
|
|
|
173
173
|
except Exception:
|
|
174
174
|
logger.exception("Callback %s raised an exception", event)
|
|
175
175
|
|
|
176
|
+
def _validate_model_capabilities(
|
|
177
|
+
self,
|
|
178
|
+
provider: str,
|
|
179
|
+
model: str,
|
|
180
|
+
*,
|
|
181
|
+
using_tool_use: bool = False,
|
|
182
|
+
using_json_schema: bool = False,
|
|
183
|
+
using_vision: bool = False,
|
|
184
|
+
) -> None:
|
|
185
|
+
"""Log warnings when the model may not support a requested feature.
|
|
186
|
+
|
|
187
|
+
Uses models.dev metadata as a secondary signal. Warnings only — the
|
|
188
|
+
API is the final authority and models.dev data may be stale.
|
|
189
|
+
"""
|
|
190
|
+
from .model_rates import get_model_capabilities
|
|
191
|
+
|
|
192
|
+
caps = get_model_capabilities(provider, model)
|
|
193
|
+
if caps is None:
|
|
194
|
+
return
|
|
195
|
+
|
|
196
|
+
if using_tool_use and caps.supports_tool_use is False:
|
|
197
|
+
logger.warning(
|
|
198
|
+
"Model %s/%s may not support tool use according to models.dev metadata",
|
|
199
|
+
provider,
|
|
200
|
+
model,
|
|
201
|
+
)
|
|
202
|
+
if using_json_schema and caps.supports_structured_output is False:
|
|
203
|
+
logger.warning(
|
|
204
|
+
"Model %s/%s may not support structured output / JSON schema according to models.dev metadata",
|
|
205
|
+
provider,
|
|
206
|
+
model,
|
|
207
|
+
)
|
|
208
|
+
if using_vision and caps.supports_vision is False:
|
|
209
|
+
logger.warning(
|
|
210
|
+
"Model %s/%s may not support vision/image inputs according to models.dev metadata",
|
|
211
|
+
provider,
|
|
212
|
+
model,
|
|
213
|
+
)
|
|
214
|
+
|
|
176
215
|
def _check_vision_support(self, messages: list[dict[str, Any]]) -> None:
|
|
177
216
|
"""Raise if messages contain image blocks and the driver lacks vision support."""
|
|
178
217
|
if self.supports_vision:
|
prompture/drivers/__init__.py
CHANGED
|
@@ -37,10 +37,13 @@ from .async_groq_driver import AsyncGroqDriver
|
|
|
37
37
|
from .async_hugging_driver import AsyncHuggingFaceDriver
|
|
38
38
|
from .async_lmstudio_driver import AsyncLMStudioDriver
|
|
39
39
|
from .async_local_http_driver import AsyncLocalHTTPDriver
|
|
40
|
+
from .async_modelscope_driver import AsyncModelScopeDriver
|
|
41
|
+
from .async_moonshot_driver import AsyncMoonshotDriver
|
|
40
42
|
from .async_ollama_driver import AsyncOllamaDriver
|
|
41
43
|
from .async_openai_driver import AsyncOpenAIDriver
|
|
42
44
|
from .async_openrouter_driver import AsyncOpenRouterDriver
|
|
43
45
|
from .async_registry import ASYNC_DRIVER_REGISTRY, get_async_driver, get_async_driver_for_model
|
|
46
|
+
from .async_zai_driver import AsyncZaiDriver
|
|
44
47
|
from .azure_driver import AzureDriver
|
|
45
48
|
from .claude_driver import ClaudeDriver
|
|
46
49
|
from .google_driver import GoogleDriver
|
|
@@ -48,6 +51,8 @@ from .grok_driver import GrokDriver
|
|
|
48
51
|
from .groq_driver import GroqDriver
|
|
49
52
|
from .lmstudio_driver import LMStudioDriver
|
|
50
53
|
from .local_http_driver import LocalHTTPDriver
|
|
54
|
+
from .modelscope_driver import ModelScopeDriver
|
|
55
|
+
from .moonshot_driver import MoonshotDriver
|
|
51
56
|
from .ollama_driver import OllamaDriver
|
|
52
57
|
from .openai_driver import OpenAIDriver
|
|
53
58
|
from .openrouter_driver import OpenRouterDriver
|
|
@@ -65,6 +70,7 @@ from .registry import (
|
|
|
65
70
|
unregister_async_driver,
|
|
66
71
|
unregister_driver,
|
|
67
72
|
)
|
|
73
|
+
from .zai_driver import ZaiDriver
|
|
68
74
|
|
|
69
75
|
# Register built-in sync drivers
|
|
70
76
|
register_driver(
|
|
@@ -123,6 +129,33 @@ register_driver(
|
|
|
123
129
|
lambda model=None: GrokDriver(api_key=settings.grok_api_key, model=model or settings.grok_model),
|
|
124
130
|
overwrite=True,
|
|
125
131
|
)
|
|
132
|
+
register_driver(
|
|
133
|
+
"moonshot",
|
|
134
|
+
lambda model=None: MoonshotDriver(
|
|
135
|
+
api_key=settings.moonshot_api_key,
|
|
136
|
+
model=model or settings.moonshot_model,
|
|
137
|
+
endpoint=settings.moonshot_endpoint,
|
|
138
|
+
),
|
|
139
|
+
overwrite=True,
|
|
140
|
+
)
|
|
141
|
+
register_driver(
|
|
142
|
+
"modelscope",
|
|
143
|
+
lambda model=None: ModelScopeDriver(
|
|
144
|
+
api_key=settings.modelscope_api_key,
|
|
145
|
+
model=model or settings.modelscope_model,
|
|
146
|
+
endpoint=settings.modelscope_endpoint,
|
|
147
|
+
),
|
|
148
|
+
overwrite=True,
|
|
149
|
+
)
|
|
150
|
+
register_driver(
|
|
151
|
+
"zai",
|
|
152
|
+
lambda model=None: ZaiDriver(
|
|
153
|
+
api_key=settings.zhipu_api_key,
|
|
154
|
+
model=model or settings.zhipu_model,
|
|
155
|
+
endpoint=settings.zhipu_endpoint,
|
|
156
|
+
),
|
|
157
|
+
overwrite=True,
|
|
158
|
+
)
|
|
126
159
|
register_driver(
|
|
127
160
|
"airllm",
|
|
128
161
|
lambda model=None: AirLLMDriver(
|
|
@@ -197,9 +230,12 @@ __all__ = [
|
|
|
197
230
|
"AsyncHuggingFaceDriver",
|
|
198
231
|
"AsyncLMStudioDriver",
|
|
199
232
|
"AsyncLocalHTTPDriver",
|
|
233
|
+
"AsyncModelScopeDriver",
|
|
234
|
+
"AsyncMoonshotDriver",
|
|
200
235
|
"AsyncOllamaDriver",
|
|
201
236
|
"AsyncOpenAIDriver",
|
|
202
237
|
"AsyncOpenRouterDriver",
|
|
238
|
+
"AsyncZaiDriver",
|
|
203
239
|
"AzureDriver",
|
|
204
240
|
"ClaudeDriver",
|
|
205
241
|
"GoogleDriver",
|
|
@@ -207,9 +243,12 @@ __all__ = [
|
|
|
207
243
|
"GroqDriver",
|
|
208
244
|
"LMStudioDriver",
|
|
209
245
|
"LocalHTTPDriver",
|
|
246
|
+
"ModelScopeDriver",
|
|
247
|
+
"MoonshotDriver",
|
|
210
248
|
"OllamaDriver",
|
|
211
249
|
"OpenAIDriver",
|
|
212
250
|
"OpenRouterDriver",
|
|
251
|
+
"ZaiDriver",
|
|
213
252
|
"get_async_driver",
|
|
214
253
|
"get_async_driver_for_model",
|
|
215
254
|
# Factory functions
|
|
@@ -11,7 +11,7 @@ except Exception:
|
|
|
11
11
|
AsyncAzureOpenAI = None
|
|
12
12
|
|
|
13
13
|
from ..async_driver import AsyncDriver
|
|
14
|
-
from ..cost_mixin import CostMixin
|
|
14
|
+
from ..cost_mixin import CostMixin, prepare_strict_schema
|
|
15
15
|
from .azure_driver import AzureDriver
|
|
16
16
|
|
|
17
17
|
|
|
@@ -70,9 +70,9 @@ class AsyncAzureDriver(CostMixin, AsyncDriver):
|
|
|
70
70
|
raise RuntimeError("openai package (>=1.0.0) with AsyncAzureOpenAI not installed")
|
|
71
71
|
|
|
72
72
|
model = options.get("model", self.model)
|
|
73
|
-
|
|
74
|
-
tokens_param =
|
|
75
|
-
supports_temperature =
|
|
73
|
+
model_config = self._get_model_config("azure", model)
|
|
74
|
+
tokens_param = model_config["tokens_param"]
|
|
75
|
+
supports_temperature = model_config["supports_temperature"]
|
|
76
76
|
|
|
77
77
|
opts = {"temperature": 1.0, "max_tokens": 512, **options}
|
|
78
78
|
|
|
@@ -89,12 +89,13 @@ class AsyncAzureDriver(CostMixin, AsyncDriver):
|
|
|
89
89
|
if options.get("json_mode"):
|
|
90
90
|
json_schema = options.get("json_schema")
|
|
91
91
|
if json_schema:
|
|
92
|
+
schema_copy = prepare_strict_schema(json_schema)
|
|
92
93
|
kwargs["response_format"] = {
|
|
93
94
|
"type": "json_schema",
|
|
94
95
|
"json_schema": {
|
|
95
96
|
"name": "extraction",
|
|
96
97
|
"strict": True,
|
|
97
|
-
"schema":
|
|
98
|
+
"schema": schema_copy,
|
|
98
99
|
},
|
|
99
100
|
}
|
|
100
101
|
else:
|
|
@@ -113,7 +114,7 @@ class AsyncAzureDriver(CostMixin, AsyncDriver):
|
|
|
113
114
|
"prompt_tokens": prompt_tokens,
|
|
114
115
|
"completion_tokens": completion_tokens,
|
|
115
116
|
"total_tokens": total_tokens,
|
|
116
|
-
"cost": total_cost,
|
|
117
|
+
"cost": round(total_cost, 6),
|
|
117
118
|
"raw_response": resp.model_dump(),
|
|
118
119
|
"model_name": model,
|
|
119
120
|
"deployment_id": self.deployment_id,
|
|
@@ -4,6 +4,7 @@ from __future__ import annotations
|
|
|
4
4
|
|
|
5
5
|
import json
|
|
6
6
|
import os
|
|
7
|
+
from collections.abc import AsyncIterator
|
|
7
8
|
from typing import Any
|
|
8
9
|
|
|
9
10
|
try:
|
|
@@ -19,6 +20,8 @@ from .claude_driver import ClaudeDriver
|
|
|
19
20
|
class AsyncClaudeDriver(CostMixin, AsyncDriver):
|
|
20
21
|
supports_json_mode = True
|
|
21
22
|
supports_json_schema = True
|
|
23
|
+
supports_tool_use = True
|
|
24
|
+
supports_streaming = True
|
|
22
25
|
supports_vision = True
|
|
23
26
|
|
|
24
27
|
MODEL_PRICING = ClaudeDriver.MODEL_PRICING
|
|
@@ -48,16 +51,17 @@ class AsyncClaudeDriver(CostMixin, AsyncDriver):
|
|
|
48
51
|
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
49
52
|
model = options.get("model", self.model)
|
|
50
53
|
|
|
54
|
+
# Validate capabilities against models.dev metadata
|
|
55
|
+
self._validate_model_capabilities(
|
|
56
|
+
"claude",
|
|
57
|
+
model,
|
|
58
|
+
using_json_schema=bool(options.get("json_schema")),
|
|
59
|
+
)
|
|
60
|
+
|
|
51
61
|
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
52
62
|
|
|
53
63
|
# Anthropic requires system messages as a top-level parameter
|
|
54
|
-
system_content =
|
|
55
|
-
api_messages = []
|
|
56
|
-
for msg in messages:
|
|
57
|
-
if msg.get("role") == "system":
|
|
58
|
-
system_content = msg.get("content", "")
|
|
59
|
-
else:
|
|
60
|
-
api_messages.append(msg)
|
|
64
|
+
system_content, api_messages = self._extract_system_and_messages(messages)
|
|
61
65
|
|
|
62
66
|
# Build common kwargs
|
|
63
67
|
common_kwargs: dict[str, Any] = {
|
|
@@ -105,9 +109,174 @@ class AsyncClaudeDriver(CostMixin, AsyncDriver):
|
|
|
105
109
|
"prompt_tokens": prompt_tokens,
|
|
106
110
|
"completion_tokens": completion_tokens,
|
|
107
111
|
"total_tokens": total_tokens,
|
|
108
|
-
"cost": total_cost,
|
|
112
|
+
"cost": round(total_cost, 6),
|
|
109
113
|
"raw_response": dict(resp),
|
|
110
114
|
"model_name": model,
|
|
111
115
|
}
|
|
112
116
|
|
|
113
117
|
return {"text": text, "meta": meta}
|
|
118
|
+
|
|
119
|
+
# ------------------------------------------------------------------
|
|
120
|
+
# Helpers
|
|
121
|
+
# ------------------------------------------------------------------
|
|
122
|
+
|
|
123
|
+
def _extract_system_and_messages(
|
|
124
|
+
self, messages: list[dict[str, Any]]
|
|
125
|
+
) -> tuple[str | None, list[dict[str, Any]]]:
|
|
126
|
+
"""Separate system message from conversation messages for Anthropic API."""
|
|
127
|
+
system_content = None
|
|
128
|
+
api_messages: list[dict[str, Any]] = []
|
|
129
|
+
for msg in messages:
|
|
130
|
+
if msg.get("role") == "system":
|
|
131
|
+
system_content = msg.get("content", "")
|
|
132
|
+
else:
|
|
133
|
+
api_messages.append(msg)
|
|
134
|
+
return system_content, api_messages
|
|
135
|
+
|
|
136
|
+
# ------------------------------------------------------------------
|
|
137
|
+
# Tool use
|
|
138
|
+
# ------------------------------------------------------------------
|
|
139
|
+
|
|
140
|
+
async def generate_messages_with_tools(
|
|
141
|
+
self,
|
|
142
|
+
messages: list[dict[str, Any]],
|
|
143
|
+
tools: list[dict[str, Any]],
|
|
144
|
+
options: dict[str, Any],
|
|
145
|
+
) -> dict[str, Any]:
|
|
146
|
+
"""Generate a response that may include tool calls (Anthropic)."""
|
|
147
|
+
if anthropic is None:
|
|
148
|
+
raise RuntimeError("anthropic package not installed")
|
|
149
|
+
|
|
150
|
+
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
151
|
+
model = options.get("model", self.model)
|
|
152
|
+
|
|
153
|
+
self._validate_model_capabilities("claude", model, using_tool_use=True)
|
|
154
|
+
|
|
155
|
+
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
156
|
+
|
|
157
|
+
system_content, api_messages = self._extract_system_and_messages(messages)
|
|
158
|
+
|
|
159
|
+
# Convert tools from OpenAI format to Anthropic format if needed
|
|
160
|
+
anthropic_tools = []
|
|
161
|
+
for t in tools:
|
|
162
|
+
if "type" in t and t["type"] == "function":
|
|
163
|
+
# OpenAI format -> Anthropic format
|
|
164
|
+
fn = t["function"]
|
|
165
|
+
anthropic_tools.append({
|
|
166
|
+
"name": fn["name"],
|
|
167
|
+
"description": fn.get("description", ""),
|
|
168
|
+
"input_schema": fn.get("parameters", {"type": "object", "properties": {}}),
|
|
169
|
+
})
|
|
170
|
+
elif "input_schema" in t:
|
|
171
|
+
# Already Anthropic format
|
|
172
|
+
anthropic_tools.append(t)
|
|
173
|
+
else:
|
|
174
|
+
anthropic_tools.append(t)
|
|
175
|
+
|
|
176
|
+
kwargs: dict[str, Any] = {
|
|
177
|
+
"model": model,
|
|
178
|
+
"messages": api_messages,
|
|
179
|
+
"temperature": opts["temperature"],
|
|
180
|
+
"max_tokens": opts["max_tokens"],
|
|
181
|
+
"tools": anthropic_tools,
|
|
182
|
+
}
|
|
183
|
+
if system_content:
|
|
184
|
+
kwargs["system"] = system_content
|
|
185
|
+
|
|
186
|
+
resp = await client.messages.create(**kwargs)
|
|
187
|
+
|
|
188
|
+
prompt_tokens = resp.usage.input_tokens
|
|
189
|
+
completion_tokens = resp.usage.output_tokens
|
|
190
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
191
|
+
total_cost = self._calculate_cost("claude", model, prompt_tokens, completion_tokens)
|
|
192
|
+
|
|
193
|
+
meta = {
|
|
194
|
+
"prompt_tokens": prompt_tokens,
|
|
195
|
+
"completion_tokens": completion_tokens,
|
|
196
|
+
"total_tokens": total_tokens,
|
|
197
|
+
"cost": round(total_cost, 6),
|
|
198
|
+
"raw_response": dict(resp),
|
|
199
|
+
"model_name": model,
|
|
200
|
+
}
|
|
201
|
+
|
|
202
|
+
text = ""
|
|
203
|
+
tool_calls_out: list[dict[str, Any]] = []
|
|
204
|
+
for block in resp.content:
|
|
205
|
+
if block.type == "text":
|
|
206
|
+
text += block.text
|
|
207
|
+
elif block.type == "tool_use":
|
|
208
|
+
tool_calls_out.append({
|
|
209
|
+
"id": block.id,
|
|
210
|
+
"name": block.name,
|
|
211
|
+
"arguments": block.input,
|
|
212
|
+
})
|
|
213
|
+
|
|
214
|
+
return {
|
|
215
|
+
"text": text,
|
|
216
|
+
"meta": meta,
|
|
217
|
+
"tool_calls": tool_calls_out,
|
|
218
|
+
"stop_reason": resp.stop_reason,
|
|
219
|
+
}
|
|
220
|
+
|
|
221
|
+
# ------------------------------------------------------------------
|
|
222
|
+
# Streaming
|
|
223
|
+
# ------------------------------------------------------------------
|
|
224
|
+
|
|
225
|
+
async def generate_messages_stream(
|
|
226
|
+
self,
|
|
227
|
+
messages: list[dict[str, Any]],
|
|
228
|
+
options: dict[str, Any],
|
|
229
|
+
) -> AsyncIterator[dict[str, Any]]:
|
|
230
|
+
"""Yield response chunks via Anthropic streaming API."""
|
|
231
|
+
if anthropic is None:
|
|
232
|
+
raise RuntimeError("anthropic package not installed")
|
|
233
|
+
|
|
234
|
+
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
235
|
+
model = options.get("model", self.model)
|
|
236
|
+
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
237
|
+
|
|
238
|
+
system_content, api_messages = self._extract_system_and_messages(messages)
|
|
239
|
+
|
|
240
|
+
kwargs: dict[str, Any] = {
|
|
241
|
+
"model": model,
|
|
242
|
+
"messages": api_messages,
|
|
243
|
+
"temperature": opts["temperature"],
|
|
244
|
+
"max_tokens": opts["max_tokens"],
|
|
245
|
+
}
|
|
246
|
+
if system_content:
|
|
247
|
+
kwargs["system"] = system_content
|
|
248
|
+
|
|
249
|
+
full_text = ""
|
|
250
|
+
prompt_tokens = 0
|
|
251
|
+
completion_tokens = 0
|
|
252
|
+
|
|
253
|
+
async with client.messages.stream(**kwargs) as stream:
|
|
254
|
+
async for event in stream:
|
|
255
|
+
if hasattr(event, "type"):
|
|
256
|
+
if event.type == "content_block_delta" and hasattr(event, "delta"):
|
|
257
|
+
delta_text = getattr(event.delta, "text", "")
|
|
258
|
+
if delta_text:
|
|
259
|
+
full_text += delta_text
|
|
260
|
+
yield {"type": "delta", "text": delta_text}
|
|
261
|
+
elif event.type == "message_delta" and hasattr(event, "usage"):
|
|
262
|
+
completion_tokens = getattr(event.usage, "output_tokens", 0)
|
|
263
|
+
elif event.type == "message_start" and hasattr(event, "message"):
|
|
264
|
+
usage = getattr(event.message, "usage", None)
|
|
265
|
+
if usage:
|
|
266
|
+
prompt_tokens = getattr(usage, "input_tokens", 0)
|
|
267
|
+
|
|
268
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
269
|
+
total_cost = self._calculate_cost("claude", model, prompt_tokens, completion_tokens)
|
|
270
|
+
|
|
271
|
+
yield {
|
|
272
|
+
"type": "done",
|
|
273
|
+
"text": full_text,
|
|
274
|
+
"meta": {
|
|
275
|
+
"prompt_tokens": prompt_tokens,
|
|
276
|
+
"completion_tokens": completion_tokens,
|
|
277
|
+
"total_tokens": total_tokens,
|
|
278
|
+
"cost": round(total_cost, 6),
|
|
279
|
+
"raw_response": {},
|
|
280
|
+
"model_name": model,
|
|
281
|
+
},
|
|
282
|
+
}
|
|
@@ -169,6 +169,13 @@ class AsyncGoogleDriver(CostMixin, AsyncDriver):
|
|
|
169
169
|
) -> dict[str, Any]:
|
|
170
170
|
gen_input, gen_kwargs, model_kwargs = self._build_generation_args(messages, options)
|
|
171
171
|
|
|
172
|
+
# Validate capabilities against models.dev metadata
|
|
173
|
+
self._validate_model_capabilities(
|
|
174
|
+
"google",
|
|
175
|
+
self.model,
|
|
176
|
+
using_json_schema=bool((options or {}).get("json_schema")),
|
|
177
|
+
)
|
|
178
|
+
|
|
172
179
|
try:
|
|
173
180
|
model = genai.GenerativeModel(self.model, **model_kwargs)
|
|
174
181
|
response = await model.generate_content_async(gen_input, **gen_kwargs)
|
|
@@ -201,6 +208,9 @@ class AsyncGoogleDriver(CostMixin, AsyncDriver):
|
|
|
201
208
|
options: dict[str, Any],
|
|
202
209
|
) -> dict[str, Any]:
|
|
203
210
|
"""Generate a response that may include tool/function calls (async)."""
|
|
211
|
+
model = options.get("model", self.model)
|
|
212
|
+
self._validate_model_capabilities("google", model, using_tool_use=True)
|
|
213
|
+
|
|
204
214
|
gen_input, gen_kwargs, model_kwargs = self._build_generation_args(
|
|
205
215
|
self._prepare_messages(messages), options
|
|
206
216
|
)
|
|
@@ -44,9 +44,9 @@ class AsyncGrokDriver(CostMixin, AsyncDriver):
|
|
|
44
44
|
|
|
45
45
|
model = options.get("model", self.model)
|
|
46
46
|
|
|
47
|
-
|
|
48
|
-
tokens_param =
|
|
49
|
-
supports_temperature =
|
|
47
|
+
model_config = self._get_model_config("grok", model)
|
|
48
|
+
tokens_param = model_config["tokens_param"]
|
|
49
|
+
supports_temperature = model_config["supports_temperature"]
|
|
50
50
|
|
|
51
51
|
opts = {"temperature": 1.0, "max_tokens": 512, **options}
|
|
52
52
|
|
|
@@ -88,7 +88,7 @@ class AsyncGrokDriver(CostMixin, AsyncDriver):
|
|
|
88
88
|
"prompt_tokens": prompt_tokens,
|
|
89
89
|
"completion_tokens": completion_tokens,
|
|
90
90
|
"total_tokens": total_tokens,
|
|
91
|
-
"cost": total_cost,
|
|
91
|
+
"cost": round(total_cost, 6),
|
|
92
92
|
"raw_response": resp,
|
|
93
93
|
"model_name": model,
|
|
94
94
|
}
|