prompture 0.0.33.dev2__py3-none-any.whl → 0.0.34.dev1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- prompture/__init__.py +112 -54
- prompture/_version.py +34 -0
- prompture/aio/__init__.py +74 -0
- prompture/async_conversation.py +484 -0
- prompture/async_core.py +803 -0
- prompture/async_driver.py +131 -0
- prompture/cache.py +469 -0
- prompture/callbacks.py +50 -0
- prompture/cli.py +7 -3
- prompture/conversation.py +504 -0
- prompture/core.py +475 -352
- prompture/cost_mixin.py +51 -0
- prompture/discovery.py +41 -36
- prompture/driver.py +125 -5
- prompture/drivers/__init__.py +63 -57
- prompture/drivers/airllm_driver.py +13 -20
- prompture/drivers/async_airllm_driver.py +26 -0
- prompture/drivers/async_azure_driver.py +117 -0
- prompture/drivers/async_claude_driver.py +107 -0
- prompture/drivers/async_google_driver.py +132 -0
- prompture/drivers/async_grok_driver.py +91 -0
- prompture/drivers/async_groq_driver.py +84 -0
- prompture/drivers/async_hugging_driver.py +61 -0
- prompture/drivers/async_lmstudio_driver.py +79 -0
- prompture/drivers/async_local_http_driver.py +44 -0
- prompture/drivers/async_ollama_driver.py +125 -0
- prompture/drivers/async_openai_driver.py +96 -0
- prompture/drivers/async_openrouter_driver.py +96 -0
- prompture/drivers/async_registry.py +80 -0
- prompture/drivers/azure_driver.py +36 -15
- prompture/drivers/claude_driver.py +86 -40
- prompture/drivers/google_driver.py +86 -58
- prompture/drivers/grok_driver.py +29 -38
- prompture/drivers/groq_driver.py +27 -32
- prompture/drivers/hugging_driver.py +6 -6
- prompture/drivers/lmstudio_driver.py +26 -13
- prompture/drivers/local_http_driver.py +6 -6
- prompture/drivers/ollama_driver.py +90 -23
- prompture/drivers/openai_driver.py +36 -15
- prompture/drivers/openrouter_driver.py +31 -31
- prompture/field_definitions.py +106 -96
- prompture/logging.py +80 -0
- prompture/model_rates.py +16 -15
- prompture/runner.py +49 -47
- prompture/session.py +117 -0
- prompture/settings.py +11 -1
- prompture/tools.py +172 -265
- prompture/validator.py +3 -3
- {prompture-0.0.33.dev2.dist-info → prompture-0.0.34.dev1.dist-info}/METADATA +18 -20
- prompture-0.0.34.dev1.dist-info/RECORD +54 -0
- prompture-0.0.33.dev2.dist-info/RECORD +0 -30
- {prompture-0.0.33.dev2.dist-info → prompture-0.0.34.dev1.dist-info}/WHEEL +0 -0
- {prompture-0.0.33.dev2.dist-info → prompture-0.0.34.dev1.dist-info}/entry_points.txt +0 -0
- {prompture-0.0.33.dev2.dist-info → prompture-0.0.34.dev1.dist-info}/licenses/LICENSE +0 -0
- {prompture-0.0.33.dev2.dist-info → prompture-0.0.34.dev1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
"""Async Azure OpenAI driver. Requires the ``openai`` package (>=1.0.0)."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
from openai import AsyncAzureOpenAI
|
|
10
|
+
except Exception:
|
|
11
|
+
AsyncAzureOpenAI = None
|
|
12
|
+
|
|
13
|
+
from ..async_driver import AsyncDriver
|
|
14
|
+
from ..cost_mixin import CostMixin
|
|
15
|
+
from .azure_driver import AzureDriver
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AsyncAzureDriver(CostMixin, AsyncDriver):
|
|
19
|
+
supports_json_mode = True
|
|
20
|
+
supports_json_schema = True
|
|
21
|
+
|
|
22
|
+
MODEL_PRICING = AzureDriver.MODEL_PRICING
|
|
23
|
+
|
|
24
|
+
def __init__(
|
|
25
|
+
self,
|
|
26
|
+
api_key: str | None = None,
|
|
27
|
+
endpoint: str | None = None,
|
|
28
|
+
deployment_id: str | None = None,
|
|
29
|
+
model: str = "gpt-4o-mini",
|
|
30
|
+
):
|
|
31
|
+
self.api_key = api_key or os.getenv("AZURE_API_KEY")
|
|
32
|
+
self.endpoint = endpoint or os.getenv("AZURE_API_ENDPOINT")
|
|
33
|
+
self.deployment_id = deployment_id or os.getenv("AZURE_DEPLOYMENT_ID")
|
|
34
|
+
self.api_version = os.getenv("AZURE_API_VERSION", "2023-07-01-preview")
|
|
35
|
+
self.model = model
|
|
36
|
+
|
|
37
|
+
if not self.api_key:
|
|
38
|
+
raise ValueError("Missing Azure API key (AZURE_API_KEY).")
|
|
39
|
+
if not self.endpoint:
|
|
40
|
+
raise ValueError("Missing Azure API endpoint (AZURE_API_ENDPOINT).")
|
|
41
|
+
if not self.deployment_id:
|
|
42
|
+
raise ValueError("Missing Azure deployment ID (AZURE_DEPLOYMENT_ID).")
|
|
43
|
+
|
|
44
|
+
if AsyncAzureOpenAI:
|
|
45
|
+
self.client = AsyncAzureOpenAI(
|
|
46
|
+
api_key=self.api_key,
|
|
47
|
+
api_version=self.api_version,
|
|
48
|
+
azure_endpoint=self.endpoint,
|
|
49
|
+
)
|
|
50
|
+
else:
|
|
51
|
+
self.client = None
|
|
52
|
+
|
|
53
|
+
supports_messages = True
|
|
54
|
+
|
|
55
|
+
async def generate(self, prompt: str, options: dict[str, Any]) -> dict[str, Any]:
|
|
56
|
+
messages = [{"role": "user", "content": prompt}]
|
|
57
|
+
return await self._do_generate(messages, options)
|
|
58
|
+
|
|
59
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
60
|
+
return await self._do_generate(messages, options)
|
|
61
|
+
|
|
62
|
+
async def _do_generate(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
63
|
+
if self.client is None:
|
|
64
|
+
raise RuntimeError("openai package (>=1.0.0) with AsyncAzureOpenAI not installed")
|
|
65
|
+
|
|
66
|
+
model = options.get("model", self.model)
|
|
67
|
+
model_info = self.MODEL_PRICING.get(model, {})
|
|
68
|
+
tokens_param = model_info.get("tokens_param", "max_tokens")
|
|
69
|
+
supports_temperature = model_info.get("supports_temperature", True)
|
|
70
|
+
|
|
71
|
+
opts = {"temperature": 1.0, "max_tokens": 512, **options}
|
|
72
|
+
|
|
73
|
+
kwargs = {
|
|
74
|
+
"model": self.deployment_id,
|
|
75
|
+
"messages": messages,
|
|
76
|
+
}
|
|
77
|
+
kwargs[tokens_param] = opts.get("max_tokens", 512)
|
|
78
|
+
|
|
79
|
+
if supports_temperature and "temperature" in opts:
|
|
80
|
+
kwargs["temperature"] = opts["temperature"]
|
|
81
|
+
|
|
82
|
+
# Native JSON mode support
|
|
83
|
+
if options.get("json_mode"):
|
|
84
|
+
json_schema = options.get("json_schema")
|
|
85
|
+
if json_schema:
|
|
86
|
+
kwargs["response_format"] = {
|
|
87
|
+
"type": "json_schema",
|
|
88
|
+
"json_schema": {
|
|
89
|
+
"name": "extraction",
|
|
90
|
+
"strict": True,
|
|
91
|
+
"schema": json_schema,
|
|
92
|
+
},
|
|
93
|
+
}
|
|
94
|
+
else:
|
|
95
|
+
kwargs["response_format"] = {"type": "json_object"}
|
|
96
|
+
|
|
97
|
+
resp = await self.client.chat.completions.create(**kwargs)
|
|
98
|
+
|
|
99
|
+
usage = getattr(resp, "usage", None)
|
|
100
|
+
prompt_tokens = getattr(usage, "prompt_tokens", 0)
|
|
101
|
+
completion_tokens = getattr(usage, "completion_tokens", 0)
|
|
102
|
+
total_tokens = getattr(usage, "total_tokens", 0)
|
|
103
|
+
|
|
104
|
+
total_cost = self._calculate_cost("azure", model, prompt_tokens, completion_tokens)
|
|
105
|
+
|
|
106
|
+
meta = {
|
|
107
|
+
"prompt_tokens": prompt_tokens,
|
|
108
|
+
"completion_tokens": completion_tokens,
|
|
109
|
+
"total_tokens": total_tokens,
|
|
110
|
+
"cost": total_cost,
|
|
111
|
+
"raw_response": resp.model_dump(),
|
|
112
|
+
"model_name": model,
|
|
113
|
+
"deployment_id": self.deployment_id,
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
text = resp.choices[0].message.content
|
|
117
|
+
return {"text": text, "meta": meta}
|
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
"""Async Anthropic Claude driver. Requires the ``anthropic`` package."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
import os
|
|
7
|
+
from typing import Any
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import anthropic
|
|
11
|
+
except Exception:
|
|
12
|
+
anthropic = None
|
|
13
|
+
|
|
14
|
+
from ..async_driver import AsyncDriver
|
|
15
|
+
from ..cost_mixin import CostMixin
|
|
16
|
+
from .claude_driver import ClaudeDriver
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class AsyncClaudeDriver(CostMixin, AsyncDriver):
|
|
20
|
+
supports_json_mode = True
|
|
21
|
+
supports_json_schema = True
|
|
22
|
+
|
|
23
|
+
MODEL_PRICING = ClaudeDriver.MODEL_PRICING
|
|
24
|
+
|
|
25
|
+
def __init__(self, api_key: str | None = None, model: str = "claude-3-5-haiku-20241022"):
|
|
26
|
+
self.api_key = api_key or os.getenv("CLAUDE_API_KEY")
|
|
27
|
+
self.model = model or os.getenv("CLAUDE_MODEL_NAME", "claude-3-5-haiku-20241022")
|
|
28
|
+
|
|
29
|
+
supports_messages = True
|
|
30
|
+
|
|
31
|
+
async def generate(self, prompt: str, options: dict[str, Any]) -> dict[str, Any]:
|
|
32
|
+
messages = [{"role": "user", "content": prompt}]
|
|
33
|
+
return await self._do_generate(messages, options)
|
|
34
|
+
|
|
35
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
36
|
+
return await self._do_generate(messages, options)
|
|
37
|
+
|
|
38
|
+
async def _do_generate(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
39
|
+
if anthropic is None:
|
|
40
|
+
raise RuntimeError("anthropic package not installed")
|
|
41
|
+
|
|
42
|
+
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
43
|
+
model = options.get("model", self.model)
|
|
44
|
+
|
|
45
|
+
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
46
|
+
|
|
47
|
+
# Anthropic requires system messages as a top-level parameter
|
|
48
|
+
system_content = None
|
|
49
|
+
api_messages = []
|
|
50
|
+
for msg in messages:
|
|
51
|
+
if msg.get("role") == "system":
|
|
52
|
+
system_content = msg.get("content", "")
|
|
53
|
+
else:
|
|
54
|
+
api_messages.append(msg)
|
|
55
|
+
|
|
56
|
+
# Build common kwargs
|
|
57
|
+
common_kwargs: dict[str, Any] = {
|
|
58
|
+
"model": model,
|
|
59
|
+
"messages": api_messages,
|
|
60
|
+
"temperature": opts["temperature"],
|
|
61
|
+
"max_tokens": opts["max_tokens"],
|
|
62
|
+
}
|
|
63
|
+
if system_content:
|
|
64
|
+
common_kwargs["system"] = system_content
|
|
65
|
+
|
|
66
|
+
# Native JSON mode: use tool-use for schema enforcement
|
|
67
|
+
if options.get("json_mode"):
|
|
68
|
+
json_schema = options.get("json_schema")
|
|
69
|
+
if json_schema:
|
|
70
|
+
tool_def = {
|
|
71
|
+
"name": "extract_json",
|
|
72
|
+
"description": "Extract structured data matching the schema",
|
|
73
|
+
"input_schema": json_schema,
|
|
74
|
+
}
|
|
75
|
+
resp = await client.messages.create(
|
|
76
|
+
**common_kwargs,
|
|
77
|
+
tools=[tool_def],
|
|
78
|
+
tool_choice={"type": "tool", "name": "extract_json"},
|
|
79
|
+
)
|
|
80
|
+
text = ""
|
|
81
|
+
for block in resp.content:
|
|
82
|
+
if block.type == "tool_use":
|
|
83
|
+
text = json.dumps(block.input)
|
|
84
|
+
break
|
|
85
|
+
else:
|
|
86
|
+
resp = await client.messages.create(**common_kwargs)
|
|
87
|
+
text = resp.content[0].text
|
|
88
|
+
else:
|
|
89
|
+
resp = await client.messages.create(**common_kwargs)
|
|
90
|
+
text = resp.content[0].text
|
|
91
|
+
|
|
92
|
+
prompt_tokens = resp.usage.input_tokens
|
|
93
|
+
completion_tokens = resp.usage.output_tokens
|
|
94
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
95
|
+
|
|
96
|
+
total_cost = self._calculate_cost("claude", model, prompt_tokens, completion_tokens)
|
|
97
|
+
|
|
98
|
+
meta = {
|
|
99
|
+
"prompt_tokens": prompt_tokens,
|
|
100
|
+
"completion_tokens": completion_tokens,
|
|
101
|
+
"total_tokens": total_tokens,
|
|
102
|
+
"cost": total_cost,
|
|
103
|
+
"raw_response": dict(resp),
|
|
104
|
+
"model_name": model,
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
return {"text": text, "meta": meta}
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
"""Async Google Generative AI (Gemini) driver."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import logging
|
|
6
|
+
import os
|
|
7
|
+
from typing import Any
|
|
8
|
+
|
|
9
|
+
import google.generativeai as genai
|
|
10
|
+
|
|
11
|
+
from ..async_driver import AsyncDriver
|
|
12
|
+
from ..cost_mixin import CostMixin
|
|
13
|
+
from .google_driver import GoogleDriver
|
|
14
|
+
|
|
15
|
+
logger = logging.getLogger(__name__)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AsyncGoogleDriver(CostMixin, AsyncDriver):
|
|
19
|
+
"""Async driver for Google's Generative AI API (Gemini)."""
|
|
20
|
+
|
|
21
|
+
supports_json_mode = True
|
|
22
|
+
supports_json_schema = True
|
|
23
|
+
|
|
24
|
+
MODEL_PRICING = GoogleDriver.MODEL_PRICING
|
|
25
|
+
_PRICING_UNIT = 1_000_000
|
|
26
|
+
|
|
27
|
+
def __init__(self, api_key: str | None = None, model: str = "gemini-1.5-pro"):
|
|
28
|
+
self.api_key = api_key or os.getenv("GOOGLE_API_KEY")
|
|
29
|
+
if not self.api_key:
|
|
30
|
+
raise ValueError("Google API key not found. Set GOOGLE_API_KEY env var or pass api_key to constructor")
|
|
31
|
+
self.model = model
|
|
32
|
+
genai.configure(api_key=self.api_key)
|
|
33
|
+
self.options: dict[str, Any] = {}
|
|
34
|
+
|
|
35
|
+
def _calculate_cost_chars(self, prompt_chars: int, completion_chars: int) -> float:
|
|
36
|
+
"""Calculate cost from character counts (same logic as sync GoogleDriver)."""
|
|
37
|
+
from ..model_rates import get_model_rates
|
|
38
|
+
|
|
39
|
+
live_rates = get_model_rates("google", self.model)
|
|
40
|
+
if live_rates:
|
|
41
|
+
est_prompt_tokens = prompt_chars / 4
|
|
42
|
+
est_completion_tokens = completion_chars / 4
|
|
43
|
+
prompt_cost = (est_prompt_tokens / 1_000_000) * live_rates["input"]
|
|
44
|
+
completion_cost = (est_completion_tokens / 1_000_000) * live_rates["output"]
|
|
45
|
+
else:
|
|
46
|
+
model_pricing = self.MODEL_PRICING.get(self.model, {"prompt": 0, "completion": 0})
|
|
47
|
+
prompt_cost = (prompt_chars / 1_000_000) * model_pricing["prompt"]
|
|
48
|
+
completion_cost = (completion_chars / 1_000_000) * model_pricing["completion"]
|
|
49
|
+
return round(prompt_cost + completion_cost, 6)
|
|
50
|
+
|
|
51
|
+
supports_messages = True
|
|
52
|
+
|
|
53
|
+
async def generate(self, prompt: str, options: dict[str, Any] | None = None) -> dict[str, Any]:
|
|
54
|
+
messages = [{"role": "user", "content": prompt}]
|
|
55
|
+
return await self._do_generate(messages, options)
|
|
56
|
+
|
|
57
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
58
|
+
return await self._do_generate(messages, options)
|
|
59
|
+
|
|
60
|
+
async def _do_generate(
|
|
61
|
+
self, messages: list[dict[str, str]], options: dict[str, Any] | None = None
|
|
62
|
+
) -> dict[str, Any]:
|
|
63
|
+
merged_options = self.options.copy()
|
|
64
|
+
if options:
|
|
65
|
+
merged_options.update(options)
|
|
66
|
+
|
|
67
|
+
generation_config = merged_options.get("generation_config", {})
|
|
68
|
+
safety_settings = merged_options.get("safety_settings", {})
|
|
69
|
+
|
|
70
|
+
if "temperature" in merged_options and "temperature" not in generation_config:
|
|
71
|
+
generation_config["temperature"] = merged_options["temperature"]
|
|
72
|
+
if "max_tokens" in merged_options and "max_output_tokens" not in generation_config:
|
|
73
|
+
generation_config["max_output_tokens"] = merged_options["max_tokens"]
|
|
74
|
+
if "top_p" in merged_options and "top_p" not in generation_config:
|
|
75
|
+
generation_config["top_p"] = merged_options["top_p"]
|
|
76
|
+
if "top_k" in merged_options and "top_k" not in generation_config:
|
|
77
|
+
generation_config["top_k"] = merged_options["top_k"]
|
|
78
|
+
|
|
79
|
+
# Native JSON mode support
|
|
80
|
+
if merged_options.get("json_mode"):
|
|
81
|
+
generation_config["response_mime_type"] = "application/json"
|
|
82
|
+
json_schema = merged_options.get("json_schema")
|
|
83
|
+
if json_schema:
|
|
84
|
+
generation_config["response_schema"] = json_schema
|
|
85
|
+
|
|
86
|
+
# Convert messages to Gemini format
|
|
87
|
+
system_instruction = None
|
|
88
|
+
contents: list[dict[str, Any]] = []
|
|
89
|
+
for msg in messages:
|
|
90
|
+
role = msg.get("role", "user")
|
|
91
|
+
content = msg.get("content", "")
|
|
92
|
+
if role == "system":
|
|
93
|
+
system_instruction = content
|
|
94
|
+
else:
|
|
95
|
+
gemini_role = "model" if role == "assistant" else "user"
|
|
96
|
+
contents.append({"role": gemini_role, "parts": [content]})
|
|
97
|
+
|
|
98
|
+
try:
|
|
99
|
+
model_kwargs: dict[str, Any] = {}
|
|
100
|
+
if system_instruction:
|
|
101
|
+
model_kwargs["system_instruction"] = system_instruction
|
|
102
|
+
model = genai.GenerativeModel(self.model, **model_kwargs)
|
|
103
|
+
|
|
104
|
+
gen_input: Any = contents if len(contents) != 1 else contents[0]["parts"][0]
|
|
105
|
+
response = await model.generate_content_async(
|
|
106
|
+
gen_input,
|
|
107
|
+
generation_config=generation_config if generation_config else None,
|
|
108
|
+
safety_settings=safety_settings if safety_settings else None,
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
if not response.text:
|
|
112
|
+
raise ValueError("Empty response from model")
|
|
113
|
+
|
|
114
|
+
total_prompt_chars = sum(len(msg.get("content", "")) for msg in messages)
|
|
115
|
+
completion_chars = len(response.text)
|
|
116
|
+
|
|
117
|
+
total_cost = self._calculate_cost_chars(total_prompt_chars, completion_chars)
|
|
118
|
+
|
|
119
|
+
meta = {
|
|
120
|
+
"prompt_chars": total_prompt_chars,
|
|
121
|
+
"completion_chars": completion_chars,
|
|
122
|
+
"total_chars": total_prompt_chars + completion_chars,
|
|
123
|
+
"cost": total_cost,
|
|
124
|
+
"raw_response": response.prompt_feedback if hasattr(response, "prompt_feedback") else None,
|
|
125
|
+
"model_name": self.model,
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
return {"text": response.text, "meta": meta}
|
|
129
|
+
|
|
130
|
+
except Exception as e:
|
|
131
|
+
logger.error(f"Google API request failed: {e}")
|
|
132
|
+
raise RuntimeError(f"Google API request failed: {e}") from e
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
"""Async xAI Grok driver using httpx."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any
|
|
7
|
+
|
|
8
|
+
import httpx
|
|
9
|
+
|
|
10
|
+
from ..async_driver import AsyncDriver
|
|
11
|
+
from ..cost_mixin import CostMixin
|
|
12
|
+
from .grok_driver import GrokDriver
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class AsyncGrokDriver(CostMixin, AsyncDriver):
|
|
16
|
+
supports_json_mode = True
|
|
17
|
+
|
|
18
|
+
MODEL_PRICING = GrokDriver.MODEL_PRICING
|
|
19
|
+
_PRICING_UNIT = 1_000_000
|
|
20
|
+
|
|
21
|
+
def __init__(self, api_key: str | None = None, model: str = "grok-4-fast-reasoning"):
|
|
22
|
+
self.api_key = api_key or os.getenv("GROK_API_KEY")
|
|
23
|
+
self.model = model
|
|
24
|
+
self.api_base = "https://api.x.ai/v1"
|
|
25
|
+
|
|
26
|
+
supports_messages = True
|
|
27
|
+
|
|
28
|
+
async def generate(self, prompt: str, options: dict[str, Any]) -> dict[str, Any]:
|
|
29
|
+
messages = [{"role": "user", "content": prompt}]
|
|
30
|
+
return await self._do_generate(messages, options)
|
|
31
|
+
|
|
32
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
33
|
+
return await self._do_generate(messages, options)
|
|
34
|
+
|
|
35
|
+
async def _do_generate(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
36
|
+
if not self.api_key:
|
|
37
|
+
raise RuntimeError("GROK_API_KEY environment variable is required")
|
|
38
|
+
|
|
39
|
+
model = options.get("model", self.model)
|
|
40
|
+
|
|
41
|
+
model_info = self.MODEL_PRICING.get(model, {})
|
|
42
|
+
tokens_param = model_info.get("tokens_param", "max_tokens")
|
|
43
|
+
supports_temperature = model_info.get("supports_temperature", True)
|
|
44
|
+
|
|
45
|
+
opts = {"temperature": 1.0, "max_tokens": 512, **options}
|
|
46
|
+
|
|
47
|
+
payload = {
|
|
48
|
+
"model": model,
|
|
49
|
+
"messages": messages,
|
|
50
|
+
}
|
|
51
|
+
payload[tokens_param] = opts.get("max_tokens", 512)
|
|
52
|
+
|
|
53
|
+
if supports_temperature and "temperature" in opts:
|
|
54
|
+
payload["temperature"] = opts["temperature"]
|
|
55
|
+
|
|
56
|
+
# Native JSON mode support
|
|
57
|
+
if options.get("json_mode"):
|
|
58
|
+
payload["response_format"] = {"type": "json_object"}
|
|
59
|
+
|
|
60
|
+
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
|
|
61
|
+
|
|
62
|
+
async with httpx.AsyncClient() as client:
|
|
63
|
+
try:
|
|
64
|
+
response = await client.post(
|
|
65
|
+
f"{self.api_base}/chat/completions", headers=headers, json=payload, timeout=120
|
|
66
|
+
)
|
|
67
|
+
response.raise_for_status()
|
|
68
|
+
resp = response.json()
|
|
69
|
+
except httpx.HTTPStatusError as e:
|
|
70
|
+
raise RuntimeError(f"Grok API request failed: {e!s}") from e
|
|
71
|
+
except Exception as e:
|
|
72
|
+
raise RuntimeError(f"Grok API request failed: {e!s}") from e
|
|
73
|
+
|
|
74
|
+
usage = resp.get("usage", {})
|
|
75
|
+
prompt_tokens = usage.get("prompt_tokens", 0)
|
|
76
|
+
completion_tokens = usage.get("completion_tokens", 0)
|
|
77
|
+
total_tokens = usage.get("total_tokens", 0)
|
|
78
|
+
|
|
79
|
+
total_cost = self._calculate_cost("grok", model, prompt_tokens, completion_tokens)
|
|
80
|
+
|
|
81
|
+
meta = {
|
|
82
|
+
"prompt_tokens": prompt_tokens,
|
|
83
|
+
"completion_tokens": completion_tokens,
|
|
84
|
+
"total_tokens": total_tokens,
|
|
85
|
+
"cost": total_cost,
|
|
86
|
+
"raw_response": resp,
|
|
87
|
+
"model_name": model,
|
|
88
|
+
}
|
|
89
|
+
|
|
90
|
+
text = resp["choices"][0]["message"]["content"]
|
|
91
|
+
return {"text": text, "meta": meta}
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
"""Async Groq driver. Requires the ``groq`` package."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import groq
|
|
10
|
+
except Exception:
|
|
11
|
+
groq = None
|
|
12
|
+
|
|
13
|
+
from ..async_driver import AsyncDriver
|
|
14
|
+
from ..cost_mixin import CostMixin
|
|
15
|
+
from .groq_driver import GroqDriver
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AsyncGroqDriver(CostMixin, AsyncDriver):
|
|
19
|
+
supports_json_mode = True
|
|
20
|
+
|
|
21
|
+
MODEL_PRICING = GroqDriver.MODEL_PRICING
|
|
22
|
+
|
|
23
|
+
def __init__(self, api_key: str | None = None, model: str = "llama2-70b-4096"):
|
|
24
|
+
self.api_key = api_key or os.getenv("GROQ_API_KEY")
|
|
25
|
+
self.model = model
|
|
26
|
+
if groq:
|
|
27
|
+
self.client = groq.AsyncClient(api_key=self.api_key)
|
|
28
|
+
else:
|
|
29
|
+
self.client = None
|
|
30
|
+
|
|
31
|
+
supports_messages = True
|
|
32
|
+
|
|
33
|
+
async def generate(self, prompt: str, options: dict[str, Any]) -> dict[str, Any]:
|
|
34
|
+
messages = [{"role": "user", "content": prompt}]
|
|
35
|
+
return await self._do_generate(messages, options)
|
|
36
|
+
|
|
37
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
38
|
+
return await self._do_generate(messages, options)
|
|
39
|
+
|
|
40
|
+
async def _do_generate(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
41
|
+
if self.client is None:
|
|
42
|
+
raise RuntimeError("groq package is not installed")
|
|
43
|
+
|
|
44
|
+
model = options.get("model", self.model)
|
|
45
|
+
|
|
46
|
+
model_info = self.MODEL_PRICING.get(model, {})
|
|
47
|
+
tokens_param = model_info.get("tokens_param", "max_tokens")
|
|
48
|
+
supports_temperature = model_info.get("supports_temperature", True)
|
|
49
|
+
|
|
50
|
+
opts = {"temperature": 0.7, "max_tokens": 512, **options}
|
|
51
|
+
|
|
52
|
+
kwargs = {
|
|
53
|
+
"model": model,
|
|
54
|
+
"messages": messages,
|
|
55
|
+
}
|
|
56
|
+
kwargs[tokens_param] = opts.get("max_tokens", 512)
|
|
57
|
+
|
|
58
|
+
if supports_temperature and "temperature" in opts:
|
|
59
|
+
kwargs["temperature"] = opts["temperature"]
|
|
60
|
+
|
|
61
|
+
# Native JSON mode support
|
|
62
|
+
if options.get("json_mode"):
|
|
63
|
+
kwargs["response_format"] = {"type": "json_object"}
|
|
64
|
+
|
|
65
|
+
resp = await self.client.chat.completions.create(**kwargs)
|
|
66
|
+
|
|
67
|
+
usage = getattr(resp, "usage", None)
|
|
68
|
+
prompt_tokens = getattr(usage, "prompt_tokens", 0)
|
|
69
|
+
completion_tokens = getattr(usage, "completion_tokens", 0)
|
|
70
|
+
total_tokens = getattr(usage, "total_tokens", 0)
|
|
71
|
+
|
|
72
|
+
total_cost = self._calculate_cost("groq", model, prompt_tokens, completion_tokens)
|
|
73
|
+
|
|
74
|
+
meta = {
|
|
75
|
+
"prompt_tokens": prompt_tokens,
|
|
76
|
+
"completion_tokens": completion_tokens,
|
|
77
|
+
"total_tokens": total_tokens,
|
|
78
|
+
"cost": total_cost,
|
|
79
|
+
"raw_response": resp.model_dump(),
|
|
80
|
+
"model_name": model,
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
text = resp.choices[0].message.content
|
|
84
|
+
return {"text": text, "meta": meta}
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
"""Async Hugging Face driver using httpx."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any
|
|
7
|
+
|
|
8
|
+
import httpx
|
|
9
|
+
|
|
10
|
+
from ..async_driver import AsyncDriver
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class AsyncHuggingFaceDriver(AsyncDriver):
|
|
14
|
+
MODEL_PRICING = {"default": {"prompt": 0.0, "completion": 0.0}}
|
|
15
|
+
|
|
16
|
+
def __init__(self, endpoint: str | None = None, token: str | None = None, model: str = "bert-base-uncased"):
|
|
17
|
+
self.endpoint = endpoint or os.getenv("HF_ENDPOINT")
|
|
18
|
+
self.token = token or os.getenv("HF_TOKEN")
|
|
19
|
+
self.model = model
|
|
20
|
+
|
|
21
|
+
if not self.endpoint:
|
|
22
|
+
raise ValueError("Hugging Face endpoint is not configured. Set HF_ENDPOINT or pass explicitly.")
|
|
23
|
+
if not self.token:
|
|
24
|
+
raise ValueError("Hugging Face token is not configured. Set HF_TOKEN or pass explicitly.")
|
|
25
|
+
|
|
26
|
+
self.headers = {"Authorization": f"Bearer {self.token}"}
|
|
27
|
+
|
|
28
|
+
async def generate(self, prompt: str, options: dict[str, Any]) -> dict[str, Any]:
|
|
29
|
+
payload = {
|
|
30
|
+
"inputs": prompt,
|
|
31
|
+
"parameters": options,
|
|
32
|
+
}
|
|
33
|
+
|
|
34
|
+
async with httpx.AsyncClient() as client:
|
|
35
|
+
try:
|
|
36
|
+
r = await client.post(
|
|
37
|
+
self.endpoint, headers=self.headers, json=payload, timeout=options.get("timeout", 60)
|
|
38
|
+
)
|
|
39
|
+
r.raise_for_status()
|
|
40
|
+
response_data = r.json()
|
|
41
|
+
except Exception as e:
|
|
42
|
+
raise RuntimeError(f"AsyncHuggingFaceDriver request failed: {e}") from e
|
|
43
|
+
|
|
44
|
+
text = None
|
|
45
|
+
if isinstance(response_data, list) and response_data and "generated_text" in response_data[0]:
|
|
46
|
+
text = response_data[0]["generated_text"]
|
|
47
|
+
elif isinstance(response_data, dict) and "generated_text" in response_data:
|
|
48
|
+
text = response_data["generated_text"]
|
|
49
|
+
else:
|
|
50
|
+
text = str(response_data)
|
|
51
|
+
|
|
52
|
+
meta = {
|
|
53
|
+
"prompt_tokens": 0,
|
|
54
|
+
"completion_tokens": 0,
|
|
55
|
+
"total_tokens": 0,
|
|
56
|
+
"cost": 0.0,
|
|
57
|
+
"raw_response": response_data,
|
|
58
|
+
"model_name": options.get("model", self.model),
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
return {"text": text, "meta": meta}
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
"""Async LM Studio driver using httpx."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import logging
|
|
6
|
+
import os
|
|
7
|
+
from typing import Any
|
|
8
|
+
|
|
9
|
+
import httpx
|
|
10
|
+
|
|
11
|
+
from ..async_driver import AsyncDriver
|
|
12
|
+
|
|
13
|
+
logger = logging.getLogger(__name__)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class AsyncLMStudioDriver(AsyncDriver):
|
|
17
|
+
supports_json_mode = True
|
|
18
|
+
|
|
19
|
+
MODEL_PRICING = {"default": {"prompt": 0.0, "completion": 0.0}}
|
|
20
|
+
|
|
21
|
+
def __init__(self, endpoint: str | None = None, model: str = "deepseek/deepseek-r1-0528-qwen3-8b"):
|
|
22
|
+
self.endpoint = endpoint or os.getenv("LMSTUDIO_ENDPOINT", "http://127.0.0.1:1234/v1/chat/completions")
|
|
23
|
+
self.model = model
|
|
24
|
+
self.options: dict[str, Any] = {}
|
|
25
|
+
|
|
26
|
+
supports_messages = True
|
|
27
|
+
|
|
28
|
+
async def generate(self, prompt: str, options: dict[str, Any] | None = None) -> dict[str, Any]:
|
|
29
|
+
messages = [{"role": "user", "content": prompt}]
|
|
30
|
+
return await self._do_generate(messages, options)
|
|
31
|
+
|
|
32
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
33
|
+
return await self._do_generate(messages, options)
|
|
34
|
+
|
|
35
|
+
async def _do_generate(
|
|
36
|
+
self, messages: list[dict[str, str]], options: dict[str, Any] | None = None
|
|
37
|
+
) -> dict[str, Any]:
|
|
38
|
+
merged_options = self.options.copy()
|
|
39
|
+
if options:
|
|
40
|
+
merged_options.update(options)
|
|
41
|
+
|
|
42
|
+
payload = {
|
|
43
|
+
"model": merged_options.get("model", self.model),
|
|
44
|
+
"messages": messages,
|
|
45
|
+
"temperature": merged_options.get("temperature", 0.7),
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
# Native JSON mode support
|
|
49
|
+
if merged_options.get("json_mode"):
|
|
50
|
+
payload["response_format"] = {"type": "json_object"}
|
|
51
|
+
|
|
52
|
+
async with httpx.AsyncClient() as client:
|
|
53
|
+
try:
|
|
54
|
+
r = await client.post(self.endpoint, json=payload, timeout=120)
|
|
55
|
+
r.raise_for_status()
|
|
56
|
+
response_data = r.json()
|
|
57
|
+
except Exception as e:
|
|
58
|
+
raise RuntimeError(f"AsyncLMStudioDriver request failed: {e}") from e
|
|
59
|
+
|
|
60
|
+
if "choices" not in response_data or not response_data["choices"]:
|
|
61
|
+
raise ValueError(f"Unexpected response format: {response_data}")
|
|
62
|
+
|
|
63
|
+
text = response_data["choices"][0]["message"]["content"]
|
|
64
|
+
|
|
65
|
+
usage = response_data.get("usage", {})
|
|
66
|
+
prompt_tokens = usage.get("prompt_tokens", 0)
|
|
67
|
+
completion_tokens = usage.get("completion_tokens", 0)
|
|
68
|
+
total_tokens = usage.get("total_tokens", prompt_tokens + completion_tokens)
|
|
69
|
+
|
|
70
|
+
meta = {
|
|
71
|
+
"prompt_tokens": prompt_tokens,
|
|
72
|
+
"completion_tokens": completion_tokens,
|
|
73
|
+
"total_tokens": total_tokens,
|
|
74
|
+
"cost": 0.0,
|
|
75
|
+
"raw_response": response_data,
|
|
76
|
+
"model_name": merged_options.get("model", self.model),
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
return {"text": text, "meta": meta}
|