prompture 0.0.33.dev1__py3-none-any.whl → 0.0.34__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. prompture/__init__.py +133 -49
  2. prompture/_version.py +34 -0
  3. prompture/aio/__init__.py +74 -0
  4. prompture/async_conversation.py +484 -0
  5. prompture/async_core.py +803 -0
  6. prompture/async_driver.py +131 -0
  7. prompture/cache.py +469 -0
  8. prompture/callbacks.py +50 -0
  9. prompture/cli.py +7 -3
  10. prompture/conversation.py +504 -0
  11. prompture/core.py +475 -352
  12. prompture/cost_mixin.py +51 -0
  13. prompture/discovery.py +50 -35
  14. prompture/driver.py +125 -5
  15. prompture/drivers/__init__.py +171 -73
  16. prompture/drivers/airllm_driver.py +13 -20
  17. prompture/drivers/async_airllm_driver.py +26 -0
  18. prompture/drivers/async_azure_driver.py +117 -0
  19. prompture/drivers/async_claude_driver.py +107 -0
  20. prompture/drivers/async_google_driver.py +132 -0
  21. prompture/drivers/async_grok_driver.py +91 -0
  22. prompture/drivers/async_groq_driver.py +84 -0
  23. prompture/drivers/async_hugging_driver.py +61 -0
  24. prompture/drivers/async_lmstudio_driver.py +79 -0
  25. prompture/drivers/async_local_http_driver.py +44 -0
  26. prompture/drivers/async_ollama_driver.py +125 -0
  27. prompture/drivers/async_openai_driver.py +96 -0
  28. prompture/drivers/async_openrouter_driver.py +96 -0
  29. prompture/drivers/async_registry.py +129 -0
  30. prompture/drivers/azure_driver.py +36 -9
  31. prompture/drivers/claude_driver.py +86 -34
  32. prompture/drivers/google_driver.py +87 -51
  33. prompture/drivers/grok_driver.py +29 -32
  34. prompture/drivers/groq_driver.py +27 -26
  35. prompture/drivers/hugging_driver.py +6 -6
  36. prompture/drivers/lmstudio_driver.py +26 -13
  37. prompture/drivers/local_http_driver.py +6 -6
  38. prompture/drivers/ollama_driver.py +90 -23
  39. prompture/drivers/openai_driver.py +36 -9
  40. prompture/drivers/openrouter_driver.py +31 -25
  41. prompture/drivers/registry.py +306 -0
  42. prompture/field_definitions.py +106 -96
  43. prompture/logging.py +80 -0
  44. prompture/model_rates.py +217 -0
  45. prompture/runner.py +49 -47
  46. prompture/session.py +117 -0
  47. prompture/settings.py +14 -1
  48. prompture/tools.py +172 -265
  49. prompture/validator.py +3 -3
  50. {prompture-0.0.33.dev1.dist-info → prompture-0.0.34.dist-info}/METADATA +18 -20
  51. prompture-0.0.34.dist-info/RECORD +55 -0
  52. prompture-0.0.33.dev1.dist-info/RECORD +0 -29
  53. {prompture-0.0.33.dev1.dist-info → prompture-0.0.34.dist-info}/WHEEL +0 -0
  54. {prompture-0.0.33.dev1.dist-info → prompture-0.0.34.dist-info}/entry_points.txt +0 -0
  55. {prompture-0.0.33.dev1.dist-info → prompture-0.0.34.dist-info}/licenses/LICENSE +0 -0
  56. {prompture-0.0.33.dev1.dist-info → prompture-0.0.34.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,484 @@
1
+ """Async stateful multi-turn conversation support for Prompture."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ import logging
7
+ from datetime import date, datetime
8
+ from decimal import Decimal
9
+ from typing import Any, Literal, Union
10
+
11
+ from pydantic import BaseModel
12
+
13
+ from .async_driver import AsyncDriver
14
+ from .callbacks import DriverCallbacks
15
+ from .drivers.async_registry import get_async_driver_for_model
16
+ from .field_definitions import get_registry_snapshot
17
+ from .tools import (
18
+ clean_json_text,
19
+ convert_value,
20
+ get_field_default,
21
+ )
22
+
23
+ logger = logging.getLogger("prompture.async_conversation")
24
+
25
+
26
+ class AsyncConversation:
27
+ """Async stateful multi-turn conversation with an LLM.
28
+
29
+ Mirrors :class:`Conversation` but all methods are ``async``.
30
+
31
+ Example::
32
+
33
+ conv = AsyncConversation("openai/gpt-4", system_prompt="You are a data extractor")
34
+ r1 = await conv.ask_for_json("Extract names from: John, age 30", name_schema)
35
+ r2 = await conv.ask_for_json("Now extract ages", age_schema)
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ model_name: str | None = None,
41
+ *,
42
+ driver: AsyncDriver | None = None,
43
+ system_prompt: str | None = None,
44
+ options: dict[str, Any] | None = None,
45
+ callbacks: DriverCallbacks | None = None,
46
+ ) -> None:
47
+ if model_name is None and driver is None:
48
+ raise ValueError("Either model_name or driver must be provided")
49
+
50
+ if driver is not None:
51
+ self._driver = driver
52
+ else:
53
+ self._driver = get_async_driver_for_model(model_name)
54
+
55
+ if callbacks is not None:
56
+ self._driver.callbacks = callbacks
57
+
58
+ self._model_name = model_name or ""
59
+ self._system_prompt = system_prompt
60
+ self._options = dict(options) if options else {}
61
+ self._messages: list[dict[str, str]] = []
62
+ self._usage = {
63
+ "prompt_tokens": 0,
64
+ "completion_tokens": 0,
65
+ "total_tokens": 0,
66
+ "cost": 0.0,
67
+ "turns": 0,
68
+ }
69
+
70
+ # ------------------------------------------------------------------
71
+ # Public helpers
72
+ # ------------------------------------------------------------------
73
+
74
+ @property
75
+ def messages(self) -> list[dict[str, str]]:
76
+ """Read-only view of the conversation history."""
77
+ return list(self._messages)
78
+
79
+ @property
80
+ def usage(self) -> dict[str, Any]:
81
+ """Accumulated token/cost totals across all turns."""
82
+ return dict(self._usage)
83
+
84
+ def clear(self) -> None:
85
+ """Reset message history (keeps system_prompt and driver)."""
86
+ self._messages.clear()
87
+
88
+ def add_context(self, role: str, content: str) -> None:
89
+ """Seed the history with a user or assistant message."""
90
+ if role not in ("user", "assistant"):
91
+ raise ValueError("role must be 'user' or 'assistant'")
92
+ self._messages.append({"role": role, "content": content})
93
+
94
+ def usage_summary(self) -> str:
95
+ """Human-readable summary of accumulated usage."""
96
+ u = self._usage
97
+ return f"Conversation: {u['total_tokens']:,} tokens across {u['turns']} turn(s) costing ${u['cost']:.4f}"
98
+
99
+ # ------------------------------------------------------------------
100
+ # Core methods
101
+ # ------------------------------------------------------------------
102
+
103
+ def _build_messages(self, user_content: str) -> list[dict[str, str]]:
104
+ """Build the full messages array for an API call."""
105
+ msgs: list[dict[str, str]] = []
106
+ if self._system_prompt:
107
+ msgs.append({"role": "system", "content": self._system_prompt})
108
+ msgs.extend(self._messages)
109
+ msgs.append({"role": "user", "content": user_content})
110
+ return msgs
111
+
112
+ def _accumulate_usage(self, meta: dict[str, Any]) -> None:
113
+ self._usage["prompt_tokens"] += meta.get("prompt_tokens", 0)
114
+ self._usage["completion_tokens"] += meta.get("completion_tokens", 0)
115
+ self._usage["total_tokens"] += meta.get("total_tokens", 0)
116
+ self._usage["cost"] += meta.get("cost", 0.0)
117
+ self._usage["turns"] += 1
118
+
119
+ async def ask(
120
+ self,
121
+ content: str,
122
+ options: dict[str, Any] | None = None,
123
+ ) -> str:
124
+ """Send a message and get a raw text response (async)."""
125
+ merged = {**self._options, **(options or {})}
126
+ messages = self._build_messages(content)
127
+ resp = await self._driver.generate_messages_with_hooks(messages, merged)
128
+
129
+ text = resp.get("text", "")
130
+ meta = resp.get("meta", {})
131
+
132
+ self._messages.append({"role": "user", "content": content})
133
+ self._messages.append({"role": "assistant", "content": text})
134
+ self._accumulate_usage(meta)
135
+
136
+ return text
137
+
138
+ async def ask_for_json(
139
+ self,
140
+ content: str,
141
+ json_schema: dict[str, Any],
142
+ *,
143
+ ai_cleanup: bool = True,
144
+ options: dict[str, Any] | None = None,
145
+ output_format: Literal["json", "toon"] = "json",
146
+ json_mode: Literal["auto", "on", "off"] = "auto",
147
+ ) -> dict[str, Any]:
148
+ """Send a message with schema enforcement and get structured JSON back (async)."""
149
+ merged = {**self._options, **(options or {})}
150
+
151
+ schema_string = json.dumps(json_schema, indent=2)
152
+
153
+ use_json_mode = False
154
+ if json_mode == "on":
155
+ use_json_mode = True
156
+ elif json_mode == "auto":
157
+ use_json_mode = getattr(self._driver, "supports_json_mode", False)
158
+
159
+ if use_json_mode:
160
+ merged = {**merged, "json_mode": True}
161
+ if getattr(self._driver, "supports_json_schema", False):
162
+ merged["json_schema"] = json_schema
163
+
164
+ if use_json_mode and getattr(self._driver, "supports_json_schema", False):
165
+ instruct = "Extract data matching the requested schema.\nIf a value is unknown use null."
166
+ elif use_json_mode:
167
+ instruct = (
168
+ "Return a JSON object that validates against this schema:\n"
169
+ f"{schema_string}\n\n"
170
+ "If a value is unknown use null."
171
+ )
172
+ else:
173
+ instruct = (
174
+ "Return only a single JSON object (no markdown, no extra text) that validates against this JSON schema:\n"
175
+ f"{schema_string}\n\n"
176
+ "If a value is unknown use null. Use double quotes for keys and strings."
177
+ )
178
+
179
+ full_user_content = f"{content}\n\n{instruct}"
180
+
181
+ messages = self._build_messages(full_user_content)
182
+ resp = await self._driver.generate_messages_with_hooks(messages, merged)
183
+
184
+ text = resp.get("text", "")
185
+ meta = resp.get("meta", {})
186
+
187
+ self._messages.append({"role": "user", "content": content})
188
+
189
+ cleaned = clean_json_text(text)
190
+ try:
191
+ json_obj = json.loads(cleaned)
192
+ except json.JSONDecodeError:
193
+ if ai_cleanup:
194
+ from .async_core import clean_json_text_with_ai
195
+
196
+ cleaned = await clean_json_text_with_ai(self._driver, cleaned, self._model_name, merged)
197
+ json_obj = json.loads(cleaned)
198
+ else:
199
+ raise
200
+
201
+ self._messages.append({"role": "assistant", "content": cleaned})
202
+ self._accumulate_usage(meta)
203
+
204
+ model_name = self._model_name
205
+ if "/" in model_name:
206
+ model_name = model_name.split("/", 1)[1]
207
+
208
+ usage = {
209
+ **meta,
210
+ "raw_response": resp,
211
+ "model_name": model_name or getattr(self._driver, "model", ""),
212
+ }
213
+
214
+ result: dict[str, Any] = {
215
+ "json_string": cleaned,
216
+ "json_object": json_obj,
217
+ "usage": usage,
218
+ "output_format": output_format,
219
+ }
220
+
221
+ if output_format == "toon":
222
+ try:
223
+ import toon
224
+
225
+ result["toon_string"] = toon.encode(json_obj)
226
+ except ImportError:
227
+ raise RuntimeError("TOON requested but 'python-toon' is not installed.") from None
228
+
229
+ return result
230
+
231
+ async def extract_with_model(
232
+ self,
233
+ model_cls: type[BaseModel],
234
+ text: str,
235
+ *,
236
+ instruction_template: str = "Extract information from the following text:",
237
+ ai_cleanup: bool = True,
238
+ output_format: Literal["json", "toon"] = "json",
239
+ options: dict[str, Any] | None = None,
240
+ json_mode: Literal["auto", "on", "off"] = "auto",
241
+ ) -> dict[str, Any]:
242
+ """Extract structured information into a Pydantic model with conversation context (async)."""
243
+ from .core import normalize_field_value
244
+
245
+ schema = model_cls.model_json_schema()
246
+ content_prompt = f"{instruction_template} {text}"
247
+
248
+ result = await self.ask_for_json(
249
+ content=content_prompt,
250
+ json_schema=schema,
251
+ ai_cleanup=ai_cleanup,
252
+ options=options,
253
+ output_format=output_format,
254
+ json_mode=json_mode,
255
+ )
256
+
257
+ json_object = result["json_object"]
258
+ schema_properties = schema.get("properties", {})
259
+
260
+ for field_name, field_info in model_cls.model_fields.items():
261
+ if field_name in json_object and field_name in schema_properties:
262
+ field_def = {
263
+ "nullable": not schema_properties[field_name].get("type")
264
+ or "null"
265
+ in (
266
+ schema_properties[field_name].get("anyOf", [])
267
+ if isinstance(schema_properties[field_name].get("anyOf"), list)
268
+ else []
269
+ ),
270
+ "default": field_info.default
271
+ if hasattr(field_info, "default") and field_info.default is not ...
272
+ else None,
273
+ }
274
+ json_object[field_name] = normalize_field_value(
275
+ json_object[field_name], field_info.annotation, field_def
276
+ )
277
+
278
+ model_instance = model_cls(**json_object)
279
+
280
+ result_dict = {
281
+ "json_string": result["json_string"],
282
+ "json_object": result["json_object"],
283
+ "usage": result["usage"],
284
+ }
285
+ result_dict["model"] = model_instance
286
+
287
+ return type(
288
+ "ExtractResult",
289
+ (dict,),
290
+ {
291
+ "__getattr__": lambda self, key: self.get(key),
292
+ "__call__": lambda self: self["model"],
293
+ },
294
+ )(result_dict)
295
+
296
+ # ------------------------------------------------------------------
297
+ # Internal: stepwise with shared context
298
+ # ------------------------------------------------------------------
299
+
300
+ async def _stepwise_extract(
301
+ self,
302
+ model_cls: type[BaseModel],
303
+ text: str,
304
+ instruction_template: str,
305
+ ai_cleanup: bool,
306
+ fields: list[str] | None,
307
+ field_definitions: dict[str, Any] | None,
308
+ json_mode: Literal["auto", "on", "off"],
309
+ ) -> dict[str, Union[str, dict[str, Any]]]:
310
+ """Stepwise extraction using async conversation context between fields."""
311
+ if field_definitions is None:
312
+ field_definitions = get_registry_snapshot()
313
+
314
+ data: dict[str, Any] = {}
315
+ validation_errors: list[str] = []
316
+ field_results: dict[str, Any] = {}
317
+
318
+ accumulated_usage = {
319
+ "prompt_tokens": 0,
320
+ "completion_tokens": 0,
321
+ "total_tokens": 0,
322
+ "cost": 0.0,
323
+ "model_name": self._model_name,
324
+ "field_usages": {},
325
+ }
326
+
327
+ valid_fields = set(model_cls.model_fields.keys())
328
+ if fields is not None:
329
+ invalid_fields = set(fields) - valid_fields
330
+ if invalid_fields:
331
+ raise KeyError(f"Fields not found in model: {', '.join(invalid_fields)}")
332
+ field_items = [(name, model_cls.model_fields[name]) for name in fields]
333
+ else:
334
+ field_items = list(model_cls.model_fields.items())
335
+
336
+ # Seed conversation with the source text
337
+ self.add_context("user", f"I need to extract information from this text:\n\n{text}")
338
+ self.add_context(
339
+ "assistant", "I'll help you extract the information from that text. What would you like to extract?"
340
+ )
341
+
342
+ for field_name, field_info in field_items:
343
+ logger.debug("[stepwise-conv] Extracting field: %s", field_name)
344
+
345
+ field_schema = {
346
+ "value": {
347
+ "type": "integer" if field_info.annotation is int else "string",
348
+ "description": field_info.description or f"Value for {field_name}",
349
+ }
350
+ }
351
+
352
+ try:
353
+ prompt = instruction_template.format(field_name=field_name)
354
+ result = await self.ask_for_json(
355
+ content=f"{prompt} {text}",
356
+ json_schema=field_schema,
357
+ ai_cleanup=ai_cleanup,
358
+ json_mode=json_mode,
359
+ )
360
+
361
+ field_usage = result.get("usage", {})
362
+ accumulated_usage["prompt_tokens"] += field_usage.get("prompt_tokens", 0)
363
+ accumulated_usage["completion_tokens"] += field_usage.get("completion_tokens", 0)
364
+ accumulated_usage["total_tokens"] += field_usage.get("total_tokens", 0)
365
+ accumulated_usage["cost"] += field_usage.get("cost", 0.0)
366
+ accumulated_usage["field_usages"][field_name] = field_usage
367
+
368
+ extracted_value = result["json_object"]["value"]
369
+ if isinstance(extracted_value, dict) and "value" in extracted_value:
370
+ raw_value = extracted_value["value"]
371
+ else:
372
+ raw_value = extracted_value
373
+
374
+ from .core import normalize_field_value
375
+
376
+ field_def = {}
377
+ if field_definitions and field_name in field_definitions:
378
+ field_def = field_definitions[field_name] if isinstance(field_definitions[field_name], dict) else {}
379
+
380
+ nullable = field_def.get("nullable", True)
381
+ default_value = field_def.get("default")
382
+ if (
383
+ default_value is None
384
+ and hasattr(field_info, "default")
385
+ and field_info.default is not ...
386
+ and str(field_info.default) != "PydanticUndefined"
387
+ ):
388
+ default_value = field_info.default
389
+
390
+ normalize_def = {"nullable": nullable, "default": default_value}
391
+ raw_value = normalize_field_value(raw_value, field_info.annotation, normalize_def)
392
+
393
+ try:
394
+ converted_value = convert_value(raw_value, field_info.annotation, allow_shorthand=True)
395
+ data[field_name] = converted_value
396
+ field_results[field_name] = {"status": "success", "used_default": False}
397
+ except ValueError as e:
398
+ error_msg = f"Type conversion failed for {field_name}: {e!s}"
399
+ has_default = _has_default(field_name, field_info, field_definitions)
400
+ if not has_default:
401
+ validation_errors.append(error_msg)
402
+ default_value = get_field_default(field_name, field_info, field_definitions)
403
+ data[field_name] = default_value
404
+ field_results[field_name] = {
405
+ "status": "conversion_failed",
406
+ "error": error_msg,
407
+ "used_default": True,
408
+ }
409
+
410
+ except Exception as e:
411
+ error_msg = f"Extraction failed for {field_name}: {e!s}"
412
+ has_default = _has_default(field_name, field_info, field_definitions)
413
+ if not has_default:
414
+ validation_errors.append(error_msg)
415
+ default_value = get_field_default(field_name, field_info, field_definitions)
416
+ data[field_name] = default_value
417
+ field_results[field_name] = {"status": "extraction_failed", "error": error_msg, "used_default": True}
418
+ accumulated_usage["field_usages"][field_name] = {
419
+ "error": str(e),
420
+ "status": "failed",
421
+ "used_default": True,
422
+ "default_value": default_value,
423
+ }
424
+
425
+ if validation_errors:
426
+ accumulated_usage["validation_errors"] = validation_errors
427
+
428
+ try:
429
+ model_instance = model_cls(**data)
430
+ model_dict = model_instance.model_dump()
431
+
432
+ class ExtendedJSONEncoder(json.JSONEncoder):
433
+ def default(self, obj):
434
+ if isinstance(obj, (datetime, date)):
435
+ return obj.isoformat()
436
+ if isinstance(obj, Decimal):
437
+ return str(obj)
438
+ return super().default(obj)
439
+
440
+ json_string = json.dumps(model_dict, cls=ExtendedJSONEncoder)
441
+
442
+ result = {
443
+ "json_string": json_string,
444
+ "json_object": json.loads(json_string),
445
+ "usage": accumulated_usage,
446
+ "field_results": field_results,
447
+ }
448
+ result["model"] = model_instance
449
+ return type(
450
+ "ExtractResult",
451
+ (dict,),
452
+ {"__getattr__": lambda self, key: self.get(key), "__call__": lambda self: self["model"]},
453
+ )(result)
454
+ except Exception as e:
455
+ error_msg = f"Model validation error: {e!s}"
456
+ if "validation_errors" not in accumulated_usage:
457
+ accumulated_usage["validation_errors"] = []
458
+ accumulated_usage["validation_errors"].append(error_msg)
459
+
460
+ error_result = {
461
+ "json_string": "{}",
462
+ "json_object": {},
463
+ "usage": accumulated_usage,
464
+ "field_results": field_results,
465
+ "error": error_msg,
466
+ }
467
+ return type(
468
+ "ExtractResult",
469
+ (dict,),
470
+ {"__getattr__": lambda self, key: self.get(key), "__call__": lambda self: None},
471
+ )(error_result)
472
+
473
+
474
+ def _has_default(field_name: str, field_info: Any, field_definitions: dict[str, Any] | None) -> bool:
475
+ """Check whether a Pydantic field has a usable default value."""
476
+ if field_definitions and field_name in field_definitions:
477
+ fd = field_definitions[field_name]
478
+ if isinstance(fd, dict) and "default" in fd:
479
+ return True
480
+ if hasattr(field_info, "default"):
481
+ val = field_info.default
482
+ if val is not ... and str(val) != "PydanticUndefined":
483
+ return True
484
+ return False