prompture 0.0.29.dev8__py3-none-any.whl → 0.0.38.dev2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. prompture/__init__.py +264 -23
  2. prompture/_version.py +34 -0
  3. prompture/agent.py +924 -0
  4. prompture/agent_types.py +156 -0
  5. prompture/aio/__init__.py +74 -0
  6. prompture/async_agent.py +880 -0
  7. prompture/async_conversation.py +789 -0
  8. prompture/async_core.py +803 -0
  9. prompture/async_driver.py +193 -0
  10. prompture/async_groups.py +551 -0
  11. prompture/cache.py +469 -0
  12. prompture/callbacks.py +55 -0
  13. prompture/cli.py +63 -4
  14. prompture/conversation.py +826 -0
  15. prompture/core.py +894 -263
  16. prompture/cost_mixin.py +51 -0
  17. prompture/discovery.py +187 -0
  18. prompture/driver.py +206 -5
  19. prompture/drivers/__init__.py +175 -67
  20. prompture/drivers/airllm_driver.py +109 -0
  21. prompture/drivers/async_airllm_driver.py +26 -0
  22. prompture/drivers/async_azure_driver.py +123 -0
  23. prompture/drivers/async_claude_driver.py +113 -0
  24. prompture/drivers/async_google_driver.py +316 -0
  25. prompture/drivers/async_grok_driver.py +97 -0
  26. prompture/drivers/async_groq_driver.py +90 -0
  27. prompture/drivers/async_hugging_driver.py +61 -0
  28. prompture/drivers/async_lmstudio_driver.py +148 -0
  29. prompture/drivers/async_local_http_driver.py +44 -0
  30. prompture/drivers/async_ollama_driver.py +135 -0
  31. prompture/drivers/async_openai_driver.py +102 -0
  32. prompture/drivers/async_openrouter_driver.py +102 -0
  33. prompture/drivers/async_registry.py +133 -0
  34. prompture/drivers/azure_driver.py +42 -9
  35. prompture/drivers/claude_driver.py +257 -34
  36. prompture/drivers/google_driver.py +295 -42
  37. prompture/drivers/grok_driver.py +35 -32
  38. prompture/drivers/groq_driver.py +33 -26
  39. prompture/drivers/hugging_driver.py +6 -6
  40. prompture/drivers/lmstudio_driver.py +97 -19
  41. prompture/drivers/local_http_driver.py +6 -6
  42. prompture/drivers/ollama_driver.py +168 -23
  43. prompture/drivers/openai_driver.py +184 -9
  44. prompture/drivers/openrouter_driver.py +37 -25
  45. prompture/drivers/registry.py +306 -0
  46. prompture/drivers/vision_helpers.py +153 -0
  47. prompture/field_definitions.py +106 -96
  48. prompture/group_types.py +147 -0
  49. prompture/groups.py +530 -0
  50. prompture/image.py +180 -0
  51. prompture/logging.py +80 -0
  52. prompture/model_rates.py +217 -0
  53. prompture/persistence.py +254 -0
  54. prompture/persona.py +482 -0
  55. prompture/runner.py +49 -47
  56. prompture/scaffold/__init__.py +1 -0
  57. prompture/scaffold/generator.py +84 -0
  58. prompture/scaffold/templates/Dockerfile.j2 +12 -0
  59. prompture/scaffold/templates/README.md.j2 +41 -0
  60. prompture/scaffold/templates/config.py.j2 +21 -0
  61. prompture/scaffold/templates/env.example.j2 +8 -0
  62. prompture/scaffold/templates/main.py.j2 +86 -0
  63. prompture/scaffold/templates/models.py.j2 +40 -0
  64. prompture/scaffold/templates/requirements.txt.j2 +5 -0
  65. prompture/serialization.py +218 -0
  66. prompture/server.py +183 -0
  67. prompture/session.py +117 -0
  68. prompture/settings.py +19 -1
  69. prompture/tools.py +219 -267
  70. prompture/tools_schema.py +254 -0
  71. prompture/validator.py +3 -3
  72. prompture-0.0.38.dev2.dist-info/METADATA +369 -0
  73. prompture-0.0.38.dev2.dist-info/RECORD +77 -0
  74. {prompture-0.0.29.dev8.dist-info → prompture-0.0.38.dev2.dist-info}/WHEEL +1 -1
  75. prompture-0.0.29.dev8.dist-info/METADATA +0 -368
  76. prompture-0.0.29.dev8.dist-info/RECORD +0 -27
  77. {prompture-0.0.29.dev8.dist-info → prompture-0.0.38.dev2.dist-info}/entry_points.txt +0 -0
  78. {prompture-0.0.29.dev8.dist-info → prompture-0.0.38.dev2.dist-info}/licenses/LICENSE +0 -0
  79. {prompture-0.0.29.dev8.dist-info → prompture-0.0.38.dev2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,826 @@
1
+ """Stateful multi-turn conversation support for Prompture."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ import logging
7
+ import uuid
8
+ from collections.abc import Iterator
9
+ from datetime import date, datetime, timezone
10
+ from decimal import Decimal
11
+ from pathlib import Path
12
+ from typing import Any, Callable, Literal, Union
13
+
14
+ from pydantic import BaseModel
15
+
16
+ from .callbacks import DriverCallbacks
17
+ from .driver import Driver
18
+ from .drivers import get_driver_for_model
19
+ from .field_definitions import get_registry_snapshot
20
+ from .image import ImageInput, make_image
21
+ from .persistence import load_from_file, save_to_file
22
+ from .persona import Persona, get_persona
23
+ from .serialization import export_conversation, import_conversation
24
+ from .session import UsageSession
25
+ from .tools import (
26
+ clean_json_text,
27
+ convert_value,
28
+ get_field_default,
29
+ )
30
+ from .tools_schema import ToolRegistry
31
+
32
+ logger = logging.getLogger("prompture.conversation")
33
+
34
+
35
+ class Conversation:
36
+ """Stateful multi-turn conversation with an LLM.
37
+
38
+ Maintains a message history across calls so the model can reference
39
+ previous turns. Works with any Prompture driver.
40
+
41
+ Example::
42
+
43
+ conv = Conversation("openai/gpt-4", system_prompt="You are a data extractor")
44
+ r1 = conv.ask_for_json("Extract names from: John, age 30", name_schema)
45
+ r2 = conv.ask_for_json("Now extract ages", age_schema) # sees turn 1
46
+ """
47
+
48
+ def __init__(
49
+ self,
50
+ model_name: str | None = None,
51
+ *,
52
+ driver: Driver | None = None,
53
+ system_prompt: str | None = None,
54
+ persona: str | Persona | None = None,
55
+ options: dict[str, Any] | None = None,
56
+ callbacks: DriverCallbacks | None = None,
57
+ tools: ToolRegistry | None = None,
58
+ max_tool_rounds: int = 10,
59
+ conversation_id: str | None = None,
60
+ auto_save: str | Path | None = None,
61
+ tags: list[str] | None = None,
62
+ ) -> None:
63
+ if system_prompt is not None and persona is not None:
64
+ raise ValueError("Cannot provide both 'system_prompt' and 'persona'. Use one or the other.")
65
+
66
+ # Resolve persona
67
+ resolved_persona: Persona | None = None
68
+ if persona is not None:
69
+ if isinstance(persona, str):
70
+ resolved_persona = get_persona(persona)
71
+ if resolved_persona is None:
72
+ raise ValueError(f"Persona '{persona}' not found in registry.")
73
+ else:
74
+ resolved_persona = persona
75
+
76
+ if model_name is None and driver is None:
77
+ # Check persona for model_hint
78
+ if resolved_persona is not None and resolved_persona.model_hint:
79
+ model_name = resolved_persona.model_hint
80
+ else:
81
+ raise ValueError("Either model_name or driver must be provided")
82
+
83
+ if driver is not None:
84
+ self._driver = driver
85
+ else:
86
+ self._driver = get_driver_for_model(model_name)
87
+
88
+ if callbacks is not None:
89
+ self._driver.callbacks = callbacks
90
+
91
+ self._model_name = model_name or ""
92
+
93
+ # Apply persona: render system_prompt and merge settings
94
+ if resolved_persona is not None:
95
+ self._system_prompt = resolved_persona.render()
96
+ # Persona settings as defaults, explicit options override
97
+ self._options = {**resolved_persona.settings, **(dict(options) if options else {})}
98
+ else:
99
+ self._system_prompt = system_prompt
100
+ self._options = dict(options) if options else {}
101
+
102
+ self._messages: list[dict[str, Any]] = []
103
+ self._usage = {
104
+ "prompt_tokens": 0,
105
+ "completion_tokens": 0,
106
+ "total_tokens": 0,
107
+ "cost": 0.0,
108
+ "turns": 0,
109
+ }
110
+ self._tools = tools or ToolRegistry()
111
+ self._max_tool_rounds = max_tool_rounds
112
+
113
+ # Persistence
114
+ self._conversation_id = conversation_id or str(uuid.uuid4())
115
+ self._auto_save = Path(auto_save) if auto_save else None
116
+ self._metadata: dict[str, Any] = {
117
+ "created_at": datetime.now(timezone.utc).isoformat(),
118
+ "tags": list(tags) if tags else [],
119
+ }
120
+
121
+ # ------------------------------------------------------------------
122
+ # Public helpers
123
+ # ------------------------------------------------------------------
124
+
125
+ @property
126
+ def messages(self) -> list[dict[str, Any]]:
127
+ """Read-only view of the conversation history."""
128
+ return list(self._messages)
129
+
130
+ @property
131
+ def usage(self) -> dict[str, Any]:
132
+ """Accumulated token/cost totals across all turns."""
133
+ return dict(self._usage)
134
+
135
+ def clear(self) -> None:
136
+ """Reset message history (keeps system_prompt and driver)."""
137
+ self._messages.clear()
138
+
139
+ def add_context(self, role: str, content: str, images: list[ImageInput] | None = None) -> None:
140
+ """Seed the history with a user or assistant message."""
141
+ if role not in ("user", "assistant"):
142
+ raise ValueError("role must be 'user' or 'assistant'")
143
+ msg_content = self._build_content_with_images(content, images)
144
+ self._messages.append({"role": role, "content": msg_content})
145
+
146
+ def register_tool(
147
+ self,
148
+ fn: Callable[..., Any],
149
+ *,
150
+ name: str | None = None,
151
+ description: str | None = None,
152
+ ) -> None:
153
+ """Register a Python function as a tool the LLM can call."""
154
+ self._tools.register(fn, name=name, description=description)
155
+
156
+ def usage_summary(self) -> str:
157
+ """Human-readable summary of accumulated usage."""
158
+ u = self._usage
159
+ return f"Conversation: {u['total_tokens']:,} tokens across {u['turns']} turn(s) costing ${u['cost']:.4f}"
160
+
161
+ # ------------------------------------------------------------------
162
+ # Persistence properties
163
+ # ------------------------------------------------------------------
164
+
165
+ @property
166
+ def conversation_id(self) -> str:
167
+ """Unique identifier for this conversation."""
168
+ return self._conversation_id
169
+
170
+ @property
171
+ def tags(self) -> list[str]:
172
+ """Tags attached to this conversation."""
173
+ return self._metadata.get("tags", [])
174
+
175
+ @tags.setter
176
+ def tags(self, value: list[str]) -> None:
177
+ self._metadata["tags"] = list(value)
178
+
179
+ # ------------------------------------------------------------------
180
+ # Export / Import
181
+ # ------------------------------------------------------------------
182
+
183
+ def export(self, *, usage_session: UsageSession | None = None, strip_images: bool = False) -> dict[str, Any]:
184
+ """Export conversation state to a JSON-serializable dict."""
185
+ tools_metadata = (
186
+ [
187
+ {"name": td.name, "description": td.description, "parameters": td.parameters}
188
+ for td in self._tools.definitions
189
+ ]
190
+ if self._tools and self._tools.definitions
191
+ else None
192
+ )
193
+ return export_conversation(
194
+ model_name=self._model_name,
195
+ system_prompt=self._system_prompt,
196
+ options=self._options,
197
+ messages=self._messages,
198
+ usage=self._usage,
199
+ max_tool_rounds=self._max_tool_rounds,
200
+ tools_metadata=tools_metadata,
201
+ usage_session=usage_session,
202
+ metadata=self._metadata,
203
+ conversation_id=self._conversation_id,
204
+ strip_images=strip_images,
205
+ )
206
+
207
+ @classmethod
208
+ def from_export(
209
+ cls,
210
+ data: dict[str, Any],
211
+ *,
212
+ callbacks: DriverCallbacks | None = None,
213
+ tools: ToolRegistry | None = None,
214
+ ) -> Conversation:
215
+ """Reconstruct a :class:`Conversation` from an export dict.
216
+
217
+ The driver is reconstructed from the stored ``model_name``.
218
+ Callbacks and tool *functions* must be re-attached by the caller
219
+ (tool metadata — name/description/parameters — is preserved in
220
+ the export but executable functions cannot be serialized).
221
+ """
222
+ imported = import_conversation(data)
223
+
224
+ model_name = imported.get("model_name") or ""
225
+ if not model_name:
226
+ raise ValueError("Cannot restore conversation: export has no model_name")
227
+ conv = cls(
228
+ model_name=model_name,
229
+ system_prompt=imported.get("system_prompt"),
230
+ options=imported.get("options", {}),
231
+ callbacks=callbacks,
232
+ tools=tools,
233
+ max_tool_rounds=imported.get("max_tool_rounds", 10),
234
+ conversation_id=imported.get("conversation_id"),
235
+ tags=imported.get("metadata", {}).get("tags", []),
236
+ )
237
+ conv._messages = imported.get("messages", [])
238
+ conv._usage = imported.get(
239
+ "usage",
240
+ {
241
+ "prompt_tokens": 0,
242
+ "completion_tokens": 0,
243
+ "total_tokens": 0,
244
+ "cost": 0.0,
245
+ "turns": 0,
246
+ },
247
+ )
248
+ meta = imported.get("metadata", {})
249
+ if "created_at" in meta:
250
+ conv._metadata["created_at"] = meta["created_at"]
251
+ return conv
252
+
253
+ def save(self, path: str | Path, **kwargs: Any) -> None:
254
+ """Export and write to a JSON file.
255
+
256
+ Keyword arguments are forwarded to :meth:`export`.
257
+ """
258
+ save_to_file(self.export(**kwargs), path)
259
+
260
+ @classmethod
261
+ def load(
262
+ cls,
263
+ path: str | Path,
264
+ *,
265
+ callbacks: DriverCallbacks | None = None,
266
+ tools: ToolRegistry | None = None,
267
+ ) -> Conversation:
268
+ """Load a conversation from a JSON file."""
269
+ data = load_from_file(path)
270
+ return cls.from_export(data, callbacks=callbacks, tools=tools)
271
+
272
+ def _maybe_auto_save(self) -> None:
273
+ """Auto-save after each turn if configured. Errors are silently logged."""
274
+ if self._auto_save is None:
275
+ return
276
+ try:
277
+ self.save(self._auto_save)
278
+ except Exception:
279
+ logger.debug("Auto-save failed for conversation %s", self._conversation_id, exc_info=True)
280
+
281
+ # ------------------------------------------------------------------
282
+ # Core methods
283
+ # ------------------------------------------------------------------
284
+
285
+ @staticmethod
286
+ def _build_content_with_images(text: str, images: list[ImageInput] | None = None) -> str | list[dict[str, Any]]:
287
+ """Return plain string when no images, or a list of content blocks."""
288
+ if not images:
289
+ return text
290
+ blocks: list[dict[str, Any]] = [{"type": "text", "text": text}]
291
+ for img in images:
292
+ ic = make_image(img)
293
+ blocks.append({"type": "image", "source": ic})
294
+ return blocks
295
+
296
+ def _build_messages(self, user_content: str, images: list[ImageInput] | None = None) -> list[dict[str, Any]]:
297
+ """Build the full messages array for an API call."""
298
+ msgs: list[dict[str, Any]] = []
299
+ if self._system_prompt:
300
+ msgs.append({"role": "system", "content": self._system_prompt})
301
+ msgs.extend(self._messages)
302
+ content = self._build_content_with_images(user_content, images)
303
+ msgs.append({"role": "user", "content": content})
304
+ return msgs
305
+
306
+ def _accumulate_usage(self, meta: dict[str, Any]) -> None:
307
+ self._usage["prompt_tokens"] += meta.get("prompt_tokens", 0)
308
+ self._usage["completion_tokens"] += meta.get("completion_tokens", 0)
309
+ self._usage["total_tokens"] += meta.get("total_tokens", 0)
310
+ self._usage["cost"] += meta.get("cost", 0.0)
311
+ self._usage["turns"] += 1
312
+ self._maybe_auto_save()
313
+
314
+ def ask(
315
+ self,
316
+ content: str,
317
+ options: dict[str, Any] | None = None,
318
+ images: list[ImageInput] | None = None,
319
+ ) -> str:
320
+ """Send a message and get a raw text response.
321
+
322
+ Appends the user message and assistant response to history.
323
+ If tools are registered and the driver supports tool use,
324
+ dispatches to the tool execution loop.
325
+
326
+ Args:
327
+ content: The text message to send.
328
+ options: Additional options for the driver.
329
+ images: Optional list of images to include (bytes, path, URL,
330
+ base64 string, or :class:`ImageContent`).
331
+ """
332
+ if self._tools and getattr(self._driver, "supports_tool_use", False):
333
+ return self._ask_with_tools(content, options, images=images)
334
+
335
+ merged = {**self._options, **(options or {})}
336
+ messages = self._build_messages(content, images=images)
337
+ resp = self._driver.generate_messages_with_hooks(messages, merged)
338
+
339
+ text = resp.get("text", "")
340
+ meta = resp.get("meta", {})
341
+
342
+ # Record in history — store content with images for context
343
+ user_content = self._build_content_with_images(content, images)
344
+ self._messages.append({"role": "user", "content": user_content})
345
+ self._messages.append({"role": "assistant", "content": text})
346
+ self._accumulate_usage(meta)
347
+
348
+ return text
349
+
350
+ def _ask_with_tools(
351
+ self,
352
+ content: str,
353
+ options: dict[str, Any] | None = None,
354
+ images: list[ImageInput] | None = None,
355
+ ) -> str:
356
+ """Execute the tool-use loop: send -> check tool_calls -> execute -> re-send."""
357
+ merged = {**self._options, **(options or {})}
358
+ tool_defs = self._tools.to_openai_format()
359
+
360
+ # Build messages including user content
361
+ user_content = self._build_content_with_images(content, images)
362
+ self._messages.append({"role": "user", "content": user_content})
363
+ msgs = self._build_messages_raw()
364
+
365
+ for _round in range(self._max_tool_rounds):
366
+ resp = self._driver.generate_messages_with_tools(msgs, tool_defs, merged)
367
+
368
+ meta = resp.get("meta", {})
369
+ self._accumulate_usage(meta)
370
+
371
+ tool_calls = resp.get("tool_calls", [])
372
+ text = resp.get("text", "")
373
+
374
+ if not tool_calls:
375
+ # No tool calls -> final response
376
+ self._messages.append({"role": "assistant", "content": text})
377
+ return text
378
+
379
+ # Record assistant message with tool_calls
380
+ assistant_msg: dict[str, Any] = {"role": "assistant", "content": text}
381
+ assistant_msg["tool_calls"] = [
382
+ {
383
+ "id": tc["id"],
384
+ "type": "function",
385
+ "function": {"name": tc["name"], "arguments": json.dumps(tc["arguments"])},
386
+ }
387
+ for tc in tool_calls
388
+ ]
389
+ self._messages.append(assistant_msg)
390
+ msgs.append(assistant_msg)
391
+
392
+ # Execute each tool call and append results
393
+ for tc in tool_calls:
394
+ try:
395
+ result = self._tools.execute(tc["name"], tc["arguments"])
396
+ result_str = json.dumps(result) if not isinstance(result, str) else result
397
+ except Exception as exc:
398
+ result_str = f"Error: {exc}"
399
+
400
+ tool_result_msg: dict[str, Any] = {
401
+ "role": "tool",
402
+ "tool_call_id": tc["id"],
403
+ "content": result_str,
404
+ }
405
+ self._messages.append(tool_result_msg)
406
+ msgs.append(tool_result_msg)
407
+
408
+ raise RuntimeError(f"Tool execution loop exceeded {self._max_tool_rounds} rounds")
409
+
410
+ def _build_messages_raw(self) -> list[dict[str, Any]]:
411
+ """Build messages array from system prompt + full history (including tool messages)."""
412
+ msgs: list[dict[str, Any]] = []
413
+ if self._system_prompt:
414
+ msgs.append({"role": "system", "content": self._system_prompt})
415
+ msgs.extend(self._messages)
416
+ return msgs
417
+
418
+ # ------------------------------------------------------------------
419
+ # Streaming
420
+ # ------------------------------------------------------------------
421
+
422
+ def ask_stream(
423
+ self,
424
+ content: str,
425
+ options: dict[str, Any] | None = None,
426
+ images: list[ImageInput] | None = None,
427
+ ) -> Iterator[str]:
428
+ """Send a message and yield text chunks as they arrive.
429
+
430
+ Falls back to non-streaming :meth:`ask` if the driver doesn't
431
+ support streaming. After iteration completes, the full response
432
+ is recorded in history.
433
+ """
434
+ if not getattr(self._driver, "supports_streaming", False):
435
+ yield self.ask(content, options, images=images)
436
+ return
437
+
438
+ merged = {**self._options, **(options or {})}
439
+ messages = self._build_messages(content, images=images)
440
+
441
+ user_content = self._build_content_with_images(content, images)
442
+ self._messages.append({"role": "user", "content": user_content})
443
+
444
+ full_text = ""
445
+ for chunk in self._driver.generate_messages_stream(messages, merged):
446
+ if chunk["type"] == "delta":
447
+ full_text += chunk["text"]
448
+ # Fire stream delta callback
449
+ self._driver._fire_callback(
450
+ "on_stream_delta",
451
+ {"text": chunk["text"], "driver": getattr(self._driver, "model", self._driver.__class__.__name__)},
452
+ )
453
+ yield chunk["text"]
454
+ elif chunk["type"] == "done":
455
+ meta = chunk.get("meta", {})
456
+ self._accumulate_usage(meta)
457
+
458
+ self._messages.append({"role": "assistant", "content": full_text})
459
+
460
+ def ask_for_json(
461
+ self,
462
+ content: str,
463
+ json_schema: dict[str, Any],
464
+ *,
465
+ ai_cleanup: bool = True,
466
+ options: dict[str, Any] | None = None,
467
+ output_format: Literal["json", "toon"] = "json",
468
+ json_mode: Literal["auto", "on", "off"] = "auto",
469
+ images: list[ImageInput] | None = None,
470
+ ) -> dict[str, Any]:
471
+ """Send a message with schema enforcement and get structured JSON back.
472
+
473
+ The schema instructions are appended to the prompt but only the
474
+ original *content* is stored in conversation history to keep
475
+ context clean for subsequent turns.
476
+ """
477
+
478
+ merged = {**self._options, **(options or {})}
479
+
480
+ # Build the full prompt with schema instructions inline (handled by ask_for_json)
481
+ # We use a special approach: call ask_for_json with the driver but pass messages context
482
+ schema_string = json.dumps(json_schema, indent=2)
483
+
484
+ # Determine JSON mode
485
+ use_json_mode = False
486
+ if json_mode == "on":
487
+ use_json_mode = True
488
+ elif json_mode == "auto":
489
+ use_json_mode = getattr(self._driver, "supports_json_mode", False)
490
+
491
+ if use_json_mode:
492
+ merged = {**merged, "json_mode": True}
493
+ if getattr(self._driver, "supports_json_schema", False):
494
+ merged["json_schema"] = json_schema
495
+
496
+ # Build instruction based on JSON mode
497
+ if use_json_mode and getattr(self._driver, "supports_json_schema", False):
498
+ instruct = "Extract data matching the requested schema.\nIf a value is unknown use null."
499
+ elif use_json_mode:
500
+ instruct = (
501
+ "Return a JSON object that validates against this schema:\n"
502
+ f"{schema_string}\n\n"
503
+ "If a value is unknown use null."
504
+ )
505
+ else:
506
+ instruct = (
507
+ "Return only a single JSON object (no markdown, no extra text) that validates against this JSON schema:\n"
508
+ f"{schema_string}\n\n"
509
+ "If a value is unknown use null. Use double quotes for keys and strings."
510
+ )
511
+
512
+ full_user_content = f"{content}\n\n{instruct}"
513
+
514
+ messages = self._build_messages(full_user_content, images=images)
515
+ resp = self._driver.generate_messages_with_hooks(messages, merged)
516
+
517
+ text = resp.get("text", "")
518
+ meta = resp.get("meta", {})
519
+
520
+ # Store original content (without schema boilerplate) for cleaner context
521
+ # Include images in history so subsequent turns can reference them
522
+ user_content = self._build_content_with_images(content, images)
523
+ self._messages.append({"role": "user", "content": user_content})
524
+
525
+ # Parse JSON
526
+ cleaned = clean_json_text(text)
527
+ try:
528
+ json_obj = json.loads(cleaned)
529
+ except json.JSONDecodeError:
530
+ if ai_cleanup:
531
+ from .core import clean_json_text_with_ai
532
+
533
+ cleaned = clean_json_text_with_ai(self._driver, cleaned, self._model_name, merged)
534
+ json_obj = json.loads(cleaned)
535
+ else:
536
+ raise
537
+
538
+ # Store assistant response in history
539
+ self._messages.append({"role": "assistant", "content": cleaned})
540
+ self._accumulate_usage(meta)
541
+
542
+ model_name = self._model_name
543
+ if "/" in model_name:
544
+ model_name = model_name.split("/", 1)[1]
545
+
546
+ usage = {
547
+ **meta,
548
+ "raw_response": resp,
549
+ "model_name": model_name or getattr(self._driver, "model", ""),
550
+ }
551
+
552
+ result: dict[str, Any] = {
553
+ "json_string": cleaned,
554
+ "json_object": json_obj,
555
+ "usage": usage,
556
+ "output_format": output_format,
557
+ }
558
+
559
+ if output_format == "toon":
560
+ try:
561
+ import toon
562
+
563
+ result["toon_string"] = toon.encode(json_obj)
564
+ except ImportError:
565
+ raise RuntimeError("TOON requested but 'python-toon' is not installed.") from None
566
+
567
+ return result
568
+
569
+ def extract_with_model(
570
+ self,
571
+ model_cls: type[BaseModel],
572
+ text: str,
573
+ *,
574
+ instruction_template: str = "Extract information from the following text:",
575
+ ai_cleanup: bool = True,
576
+ output_format: Literal["json", "toon"] = "json",
577
+ options: dict[str, Any] | None = None,
578
+ json_mode: Literal["auto", "on", "off"] = "auto",
579
+ images: list[ImageInput] | None = None,
580
+ ) -> dict[str, Any]:
581
+ """Extract structured information into a Pydantic model with conversation context."""
582
+ from .core import normalize_field_value
583
+
584
+ schema = model_cls.model_json_schema()
585
+ content_prompt = f"{instruction_template} {text}"
586
+
587
+ result = self.ask_for_json(
588
+ content=content_prompt,
589
+ json_schema=schema,
590
+ ai_cleanup=ai_cleanup,
591
+ options=options,
592
+ output_format=output_format,
593
+ json_mode=json_mode,
594
+ images=images,
595
+ )
596
+
597
+ # Normalize field values
598
+ json_object = result["json_object"]
599
+ schema_properties = schema.get("properties", {})
600
+
601
+ for field_name, field_info in model_cls.model_fields.items():
602
+ if field_name in json_object and field_name in schema_properties:
603
+ field_def = {
604
+ "nullable": not schema_properties[field_name].get("type")
605
+ or "null"
606
+ in (
607
+ schema_properties[field_name].get("anyOf", [])
608
+ if isinstance(schema_properties[field_name].get("anyOf"), list)
609
+ else []
610
+ ),
611
+ "default": field_info.default
612
+ if hasattr(field_info, "default") and field_info.default is not ...
613
+ else None,
614
+ }
615
+ json_object[field_name] = normalize_field_value(
616
+ json_object[field_name], field_info.annotation, field_def
617
+ )
618
+
619
+ model_instance = model_cls(**json_object)
620
+
621
+ result_dict = {
622
+ "json_string": result["json_string"],
623
+ "json_object": result["json_object"],
624
+ "usage": result["usage"],
625
+ }
626
+ result_dict["model"] = model_instance
627
+
628
+ return type(
629
+ "ExtractResult",
630
+ (dict,),
631
+ {
632
+ "__getattr__": lambda self, key: self.get(key),
633
+ "__call__": lambda self: self["model"],
634
+ },
635
+ )(result_dict)
636
+
637
+ # ------------------------------------------------------------------
638
+ # Internal: stepwise with shared context
639
+ # ------------------------------------------------------------------
640
+
641
+ def _stepwise_extract(
642
+ self,
643
+ model_cls: type[BaseModel],
644
+ text: str,
645
+ instruction_template: str,
646
+ ai_cleanup: bool,
647
+ fields: list[str] | None,
648
+ field_definitions: dict[str, Any] | None,
649
+ json_mode: Literal["auto", "on", "off"],
650
+ ) -> dict[str, Union[str, dict[str, Any]]]:
651
+ """Stepwise extraction using conversation context between fields."""
652
+ if field_definitions is None:
653
+ field_definitions = get_registry_snapshot()
654
+
655
+ data: dict[str, Any] = {}
656
+ validation_errors: list[str] = []
657
+ field_results: dict[str, Any] = {}
658
+
659
+ accumulated_usage = {
660
+ "prompt_tokens": 0,
661
+ "completion_tokens": 0,
662
+ "total_tokens": 0,
663
+ "cost": 0.0,
664
+ "model_name": self._model_name,
665
+ "field_usages": {},
666
+ }
667
+
668
+ valid_fields = set(model_cls.model_fields.keys())
669
+ if fields is not None:
670
+ invalid_fields = set(fields) - valid_fields
671
+ if invalid_fields:
672
+ raise KeyError(f"Fields not found in model: {', '.join(invalid_fields)}")
673
+ field_items = [(name, model_cls.model_fields[name]) for name in fields]
674
+ else:
675
+ field_items = list(model_cls.model_fields.items())
676
+
677
+ # Seed conversation with the source text
678
+ self.add_context("user", f"I need to extract information from this text:\n\n{text}")
679
+ self.add_context(
680
+ "assistant", "I'll help you extract the information from that text. What would you like to extract?"
681
+ )
682
+
683
+ for field_name, field_info in field_items:
684
+ logger.debug("[stepwise-conv] Extracting field: %s", field_name)
685
+
686
+ field_schema = {
687
+ "value": {
688
+ "type": "integer" if field_info.annotation is int else "string",
689
+ "description": field_info.description or f"Value for {field_name}",
690
+ }
691
+ }
692
+
693
+ try:
694
+ prompt = instruction_template.format(field_name=field_name)
695
+ result = self.ask_for_json(
696
+ content=f"{prompt} {text}",
697
+ json_schema=field_schema,
698
+ ai_cleanup=ai_cleanup,
699
+ json_mode=json_mode,
700
+ )
701
+
702
+ field_usage = result.get("usage", {})
703
+ accumulated_usage["prompt_tokens"] += field_usage.get("prompt_tokens", 0)
704
+ accumulated_usage["completion_tokens"] += field_usage.get("completion_tokens", 0)
705
+ accumulated_usage["total_tokens"] += field_usage.get("total_tokens", 0)
706
+ accumulated_usage["cost"] += field_usage.get("cost", 0.0)
707
+ accumulated_usage["field_usages"][field_name] = field_usage
708
+
709
+ extracted_value = result["json_object"]["value"]
710
+ if isinstance(extracted_value, dict) and "value" in extracted_value:
711
+ raw_value = extracted_value["value"]
712
+ else:
713
+ raw_value = extracted_value
714
+
715
+ # Normalize
716
+ from .core import normalize_field_value
717
+
718
+ field_def = {}
719
+ if field_definitions and field_name in field_definitions:
720
+ field_def = field_definitions[field_name] if isinstance(field_definitions[field_name], dict) else {}
721
+
722
+ nullable = field_def.get("nullable", True)
723
+ default_value = field_def.get("default")
724
+ if (
725
+ default_value is None
726
+ and hasattr(field_info, "default")
727
+ and field_info.default is not ...
728
+ and str(field_info.default) != "PydanticUndefined"
729
+ ):
730
+ default_value = field_info.default
731
+
732
+ normalize_def = {"nullable": nullable, "default": default_value}
733
+ raw_value = normalize_field_value(raw_value, field_info.annotation, normalize_def)
734
+
735
+ try:
736
+ converted_value = convert_value(raw_value, field_info.annotation, allow_shorthand=True)
737
+ data[field_name] = converted_value
738
+ field_results[field_name] = {"status": "success", "used_default": False}
739
+ except ValueError as e:
740
+ error_msg = f"Type conversion failed for {field_name}: {e!s}"
741
+ has_default = _has_default(field_name, field_info, field_definitions)
742
+ if not has_default:
743
+ validation_errors.append(error_msg)
744
+ default_value = get_field_default(field_name, field_info, field_definitions)
745
+ data[field_name] = default_value
746
+ field_results[field_name] = {
747
+ "status": "conversion_failed",
748
+ "error": error_msg,
749
+ "used_default": True,
750
+ }
751
+
752
+ except Exception as e:
753
+ error_msg = f"Extraction failed for {field_name}: {e!s}"
754
+ has_default = _has_default(field_name, field_info, field_definitions)
755
+ if not has_default:
756
+ validation_errors.append(error_msg)
757
+ default_value = get_field_default(field_name, field_info, field_definitions)
758
+ data[field_name] = default_value
759
+ field_results[field_name] = {"status": "extraction_failed", "error": error_msg, "used_default": True}
760
+ accumulated_usage["field_usages"][field_name] = {
761
+ "error": str(e),
762
+ "status": "failed",
763
+ "used_default": True,
764
+ "default_value": default_value,
765
+ }
766
+
767
+ if validation_errors:
768
+ accumulated_usage["validation_errors"] = validation_errors
769
+
770
+ try:
771
+ model_instance = model_cls(**data)
772
+ model_dict = model_instance.model_dump()
773
+
774
+ class ExtendedJSONEncoder(json.JSONEncoder):
775
+ def default(self, obj):
776
+ if isinstance(obj, (datetime, date)):
777
+ return obj.isoformat()
778
+ if isinstance(obj, Decimal):
779
+ return str(obj)
780
+ return super().default(obj)
781
+
782
+ json_string = json.dumps(model_dict, cls=ExtendedJSONEncoder)
783
+
784
+ result = {
785
+ "json_string": json_string,
786
+ "json_object": json.loads(json_string),
787
+ "usage": accumulated_usage,
788
+ "field_results": field_results,
789
+ }
790
+ result["model"] = model_instance
791
+ return type(
792
+ "ExtractResult",
793
+ (dict,),
794
+ {"__getattr__": lambda self, key: self.get(key), "__call__": lambda self: self["model"]},
795
+ )(result)
796
+ except Exception as e:
797
+ error_msg = f"Model validation error: {e!s}"
798
+ if "validation_errors" not in accumulated_usage:
799
+ accumulated_usage["validation_errors"] = []
800
+ accumulated_usage["validation_errors"].append(error_msg)
801
+
802
+ error_result = {
803
+ "json_string": "{}",
804
+ "json_object": {},
805
+ "usage": accumulated_usage,
806
+ "field_results": field_results,
807
+ "error": error_msg,
808
+ }
809
+ return type(
810
+ "ExtractResult",
811
+ (dict,),
812
+ {"__getattr__": lambda self, key: self.get(key), "__call__": lambda self: None},
813
+ )(error_result)
814
+
815
+
816
+ def _has_default(field_name: str, field_info: Any, field_definitions: dict[str, Any] | None) -> bool:
817
+ """Check whether a Pydantic field has a usable default value."""
818
+ if field_definitions and field_name in field_definitions:
819
+ fd = field_definitions[field_name]
820
+ if isinstance(fd, dict) and "default" in fd:
821
+ return True
822
+ if hasattr(field_info, "default"):
823
+ val = field_info.default
824
+ if val is not ... and str(val) != "PydanticUndefined":
825
+ return True
826
+ return False