prompture 0.0.29.dev8__py3-none-any.whl → 0.0.35__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. prompture/__init__.py +146 -23
  2. prompture/_version.py +34 -0
  3. prompture/aio/__init__.py +74 -0
  4. prompture/async_conversation.py +607 -0
  5. prompture/async_core.py +803 -0
  6. prompture/async_driver.py +169 -0
  7. prompture/cache.py +469 -0
  8. prompture/callbacks.py +55 -0
  9. prompture/cli.py +63 -4
  10. prompture/conversation.py +631 -0
  11. prompture/core.py +876 -263
  12. prompture/cost_mixin.py +51 -0
  13. prompture/discovery.py +164 -0
  14. prompture/driver.py +168 -5
  15. prompture/drivers/__init__.py +173 -69
  16. prompture/drivers/airllm_driver.py +109 -0
  17. prompture/drivers/async_airllm_driver.py +26 -0
  18. prompture/drivers/async_azure_driver.py +117 -0
  19. prompture/drivers/async_claude_driver.py +107 -0
  20. prompture/drivers/async_google_driver.py +132 -0
  21. prompture/drivers/async_grok_driver.py +91 -0
  22. prompture/drivers/async_groq_driver.py +84 -0
  23. prompture/drivers/async_hugging_driver.py +61 -0
  24. prompture/drivers/async_lmstudio_driver.py +79 -0
  25. prompture/drivers/async_local_http_driver.py +44 -0
  26. prompture/drivers/async_ollama_driver.py +125 -0
  27. prompture/drivers/async_openai_driver.py +96 -0
  28. prompture/drivers/async_openrouter_driver.py +96 -0
  29. prompture/drivers/async_registry.py +129 -0
  30. prompture/drivers/azure_driver.py +36 -9
  31. prompture/drivers/claude_driver.py +251 -34
  32. prompture/drivers/google_driver.py +107 -38
  33. prompture/drivers/grok_driver.py +29 -32
  34. prompture/drivers/groq_driver.py +27 -26
  35. prompture/drivers/hugging_driver.py +6 -6
  36. prompture/drivers/lmstudio_driver.py +26 -13
  37. prompture/drivers/local_http_driver.py +6 -6
  38. prompture/drivers/ollama_driver.py +157 -23
  39. prompture/drivers/openai_driver.py +178 -9
  40. prompture/drivers/openrouter_driver.py +31 -25
  41. prompture/drivers/registry.py +306 -0
  42. prompture/field_definitions.py +106 -96
  43. prompture/logging.py +80 -0
  44. prompture/model_rates.py +217 -0
  45. prompture/runner.py +49 -47
  46. prompture/scaffold/__init__.py +1 -0
  47. prompture/scaffold/generator.py +84 -0
  48. prompture/scaffold/templates/Dockerfile.j2 +12 -0
  49. prompture/scaffold/templates/README.md.j2 +41 -0
  50. prompture/scaffold/templates/config.py.j2 +21 -0
  51. prompture/scaffold/templates/env.example.j2 +8 -0
  52. prompture/scaffold/templates/main.py.j2 +86 -0
  53. prompture/scaffold/templates/models.py.j2 +40 -0
  54. prompture/scaffold/templates/requirements.txt.j2 +5 -0
  55. prompture/server.py +183 -0
  56. prompture/session.py +117 -0
  57. prompture/settings.py +18 -1
  58. prompture/tools.py +219 -267
  59. prompture/tools_schema.py +254 -0
  60. prompture/validator.py +3 -3
  61. {prompture-0.0.29.dev8.dist-info → prompture-0.0.35.dist-info}/METADATA +117 -21
  62. prompture-0.0.35.dist-info/RECORD +66 -0
  63. {prompture-0.0.29.dev8.dist-info → prompture-0.0.35.dist-info}/WHEEL +1 -1
  64. prompture-0.0.29.dev8.dist-info/RECORD +0 -27
  65. {prompture-0.0.29.dev8.dist-info → prompture-0.0.35.dist-info}/entry_points.txt +0 -0
  66. {prompture-0.0.29.dev8.dist-info → prompture-0.0.35.dist-info}/licenses/LICENSE +0 -0
  67. {prompture-0.0.29.dev8.dist-info → prompture-0.0.35.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,607 @@
1
+ """Async stateful multi-turn conversation support for Prompture."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ import logging
7
+ from collections.abc import AsyncIterator
8
+ from datetime import date, datetime
9
+ from decimal import Decimal
10
+ from typing import Any, Callable, Literal, Union
11
+
12
+ from pydantic import BaseModel
13
+
14
+ from .async_driver import AsyncDriver
15
+ from .callbacks import DriverCallbacks
16
+ from .drivers.async_registry import get_async_driver_for_model
17
+ from .field_definitions import get_registry_snapshot
18
+ from .tools import (
19
+ clean_json_text,
20
+ convert_value,
21
+ get_field_default,
22
+ )
23
+ from .tools_schema import ToolRegistry
24
+
25
+ logger = logging.getLogger("prompture.async_conversation")
26
+
27
+
28
+ class AsyncConversation:
29
+ """Async stateful multi-turn conversation with an LLM.
30
+
31
+ Mirrors :class:`Conversation` but all methods are ``async``.
32
+
33
+ Example::
34
+
35
+ conv = AsyncConversation("openai/gpt-4", system_prompt="You are a data extractor")
36
+ r1 = await conv.ask_for_json("Extract names from: John, age 30", name_schema)
37
+ r2 = await conv.ask_for_json("Now extract ages", age_schema)
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ model_name: str | None = None,
43
+ *,
44
+ driver: AsyncDriver | None = None,
45
+ system_prompt: str | None = None,
46
+ options: dict[str, Any] | None = None,
47
+ callbacks: DriverCallbacks | None = None,
48
+ tools: ToolRegistry | None = None,
49
+ max_tool_rounds: int = 10,
50
+ ) -> None:
51
+ if model_name is None and driver is None:
52
+ raise ValueError("Either model_name or driver must be provided")
53
+
54
+ if driver is not None:
55
+ self._driver = driver
56
+ else:
57
+ self._driver = get_async_driver_for_model(model_name)
58
+
59
+ if callbacks is not None:
60
+ self._driver.callbacks = callbacks
61
+
62
+ self._model_name = model_name or ""
63
+ self._system_prompt = system_prompt
64
+ self._options = dict(options) if options else {}
65
+ self._messages: list[dict[str, Any]] = []
66
+ self._usage = {
67
+ "prompt_tokens": 0,
68
+ "completion_tokens": 0,
69
+ "total_tokens": 0,
70
+ "cost": 0.0,
71
+ "turns": 0,
72
+ }
73
+ self._tools = tools or ToolRegistry()
74
+ self._max_tool_rounds = max_tool_rounds
75
+
76
+ # ------------------------------------------------------------------
77
+ # Public helpers
78
+ # ------------------------------------------------------------------
79
+
80
+ @property
81
+ def messages(self) -> list[dict[str, Any]]:
82
+ """Read-only view of the conversation history."""
83
+ return list(self._messages)
84
+
85
+ @property
86
+ def usage(self) -> dict[str, Any]:
87
+ """Accumulated token/cost totals across all turns."""
88
+ return dict(self._usage)
89
+
90
+ def clear(self) -> None:
91
+ """Reset message history (keeps system_prompt and driver)."""
92
+ self._messages.clear()
93
+
94
+ def add_context(self, role: str, content: str) -> None:
95
+ """Seed the history with a user or assistant message."""
96
+ if role not in ("user", "assistant"):
97
+ raise ValueError("role must be 'user' or 'assistant'")
98
+ self._messages.append({"role": role, "content": content})
99
+
100
+ def register_tool(
101
+ self,
102
+ fn: Callable[..., Any],
103
+ *,
104
+ name: str | None = None,
105
+ description: str | None = None,
106
+ ) -> None:
107
+ """Register a Python function as a tool the LLM can call."""
108
+ self._tools.register(fn, name=name, description=description)
109
+
110
+ def usage_summary(self) -> str:
111
+ """Human-readable summary of accumulated usage."""
112
+ u = self._usage
113
+ return f"Conversation: {u['total_tokens']:,} tokens across {u['turns']} turn(s) costing ${u['cost']:.4f}"
114
+
115
+ # ------------------------------------------------------------------
116
+ # Core methods
117
+ # ------------------------------------------------------------------
118
+
119
+ def _build_messages(self, user_content: str) -> list[dict[str, Any]]:
120
+ """Build the full messages array for an API call."""
121
+ msgs: list[dict[str, Any]] = []
122
+ if self._system_prompt:
123
+ msgs.append({"role": "system", "content": self._system_prompt})
124
+ msgs.extend(self._messages)
125
+ msgs.append({"role": "user", "content": user_content})
126
+ return msgs
127
+
128
+ def _accumulate_usage(self, meta: dict[str, Any]) -> None:
129
+ self._usage["prompt_tokens"] += meta.get("prompt_tokens", 0)
130
+ self._usage["completion_tokens"] += meta.get("completion_tokens", 0)
131
+ self._usage["total_tokens"] += meta.get("total_tokens", 0)
132
+ self._usage["cost"] += meta.get("cost", 0.0)
133
+ self._usage["turns"] += 1
134
+
135
+ async def ask(
136
+ self,
137
+ content: str,
138
+ options: dict[str, Any] | None = None,
139
+ ) -> str:
140
+ """Send a message and get a raw text response (async).
141
+
142
+ If tools are registered and the driver supports tool use,
143
+ dispatches to the async tool execution loop.
144
+ """
145
+ if self._tools and getattr(self._driver, "supports_tool_use", False):
146
+ return await self._ask_with_tools(content, options)
147
+
148
+ merged = {**self._options, **(options or {})}
149
+ messages = self._build_messages(content)
150
+ resp = await self._driver.generate_messages_with_hooks(messages, merged)
151
+
152
+ text = resp.get("text", "")
153
+ meta = resp.get("meta", {})
154
+
155
+ self._messages.append({"role": "user", "content": content})
156
+ self._messages.append({"role": "assistant", "content": text})
157
+ self._accumulate_usage(meta)
158
+
159
+ return text
160
+
161
+ async def _ask_with_tools(
162
+ self,
163
+ content: str,
164
+ options: dict[str, Any] | None = None,
165
+ ) -> str:
166
+ """Async tool-use loop: send -> check tool_calls -> execute -> re-send."""
167
+ merged = {**self._options, **(options or {})}
168
+ tool_defs = self._tools.to_openai_format()
169
+
170
+ self._messages.append({"role": "user", "content": content})
171
+ msgs = self._build_messages_raw()
172
+
173
+ for _round in range(self._max_tool_rounds):
174
+ resp = await self._driver.generate_messages_with_tools(msgs, tool_defs, merged)
175
+
176
+ meta = resp.get("meta", {})
177
+ self._accumulate_usage(meta)
178
+
179
+ tool_calls = resp.get("tool_calls", [])
180
+ text = resp.get("text", "")
181
+
182
+ if not tool_calls:
183
+ self._messages.append({"role": "assistant", "content": text})
184
+ return text
185
+
186
+ assistant_msg: dict[str, Any] = {"role": "assistant", "content": text}
187
+ assistant_msg["tool_calls"] = [
188
+ {
189
+ "id": tc["id"],
190
+ "type": "function",
191
+ "function": {"name": tc["name"], "arguments": json.dumps(tc["arguments"])},
192
+ }
193
+ for tc in tool_calls
194
+ ]
195
+ self._messages.append(assistant_msg)
196
+ msgs.append(assistant_msg)
197
+
198
+ for tc in tool_calls:
199
+ try:
200
+ result = self._tools.execute(tc["name"], tc["arguments"])
201
+ result_str = json.dumps(result) if not isinstance(result, str) else result
202
+ except Exception as exc:
203
+ result_str = f"Error: {exc}"
204
+
205
+ tool_result_msg: dict[str, Any] = {
206
+ "role": "tool",
207
+ "tool_call_id": tc["id"],
208
+ "content": result_str,
209
+ }
210
+ self._messages.append(tool_result_msg)
211
+ msgs.append(tool_result_msg)
212
+
213
+ raise RuntimeError(f"Tool execution loop exceeded {self._max_tool_rounds} rounds")
214
+
215
+ def _build_messages_raw(self) -> list[dict[str, Any]]:
216
+ """Build messages array from system prompt + full history (including tool messages)."""
217
+ msgs: list[dict[str, Any]] = []
218
+ if self._system_prompt:
219
+ msgs.append({"role": "system", "content": self._system_prompt})
220
+ msgs.extend(self._messages)
221
+ return msgs
222
+
223
+ # ------------------------------------------------------------------
224
+ # Streaming
225
+ # ------------------------------------------------------------------
226
+
227
+ async def ask_stream(
228
+ self,
229
+ content: str,
230
+ options: dict[str, Any] | None = None,
231
+ ) -> AsyncIterator[str]:
232
+ """Send a message and yield text chunks as they arrive (async).
233
+
234
+ Falls back to non-streaming :meth:`ask` if the driver doesn't
235
+ support streaming.
236
+ """
237
+ if not getattr(self._driver, "supports_streaming", False):
238
+ yield await self.ask(content, options)
239
+ return
240
+
241
+ merged = {**self._options, **(options or {})}
242
+ messages = self._build_messages(content)
243
+
244
+ self._messages.append({"role": "user", "content": content})
245
+
246
+ full_text = ""
247
+ async for chunk in self._driver.generate_messages_stream(messages, merged):
248
+ if chunk["type"] == "delta":
249
+ full_text += chunk["text"]
250
+ self._driver._fire_callback(
251
+ "on_stream_delta",
252
+ {"text": chunk["text"], "driver": getattr(self._driver, "model", self._driver.__class__.__name__)},
253
+ )
254
+ yield chunk["text"]
255
+ elif chunk["type"] == "done":
256
+ meta = chunk.get("meta", {})
257
+ self._accumulate_usage(meta)
258
+
259
+ self._messages.append({"role": "assistant", "content": full_text})
260
+
261
+ async def ask_for_json(
262
+ self,
263
+ content: str,
264
+ json_schema: dict[str, Any],
265
+ *,
266
+ ai_cleanup: bool = True,
267
+ options: dict[str, Any] | None = None,
268
+ output_format: Literal["json", "toon"] = "json",
269
+ json_mode: Literal["auto", "on", "off"] = "auto",
270
+ ) -> dict[str, Any]:
271
+ """Send a message with schema enforcement and get structured JSON back (async)."""
272
+ merged = {**self._options, **(options or {})}
273
+
274
+ schema_string = json.dumps(json_schema, indent=2)
275
+
276
+ use_json_mode = False
277
+ if json_mode == "on":
278
+ use_json_mode = True
279
+ elif json_mode == "auto":
280
+ use_json_mode = getattr(self._driver, "supports_json_mode", False)
281
+
282
+ if use_json_mode:
283
+ merged = {**merged, "json_mode": True}
284
+ if getattr(self._driver, "supports_json_schema", False):
285
+ merged["json_schema"] = json_schema
286
+
287
+ if use_json_mode and getattr(self._driver, "supports_json_schema", False):
288
+ instruct = "Extract data matching the requested schema.\nIf a value is unknown use null."
289
+ elif use_json_mode:
290
+ instruct = (
291
+ "Return a JSON object that validates against this schema:\n"
292
+ f"{schema_string}\n\n"
293
+ "If a value is unknown use null."
294
+ )
295
+ else:
296
+ instruct = (
297
+ "Return only a single JSON object (no markdown, no extra text) that validates against this JSON schema:\n"
298
+ f"{schema_string}\n\n"
299
+ "If a value is unknown use null. Use double quotes for keys and strings."
300
+ )
301
+
302
+ full_user_content = f"{content}\n\n{instruct}"
303
+
304
+ messages = self._build_messages(full_user_content)
305
+ resp = await self._driver.generate_messages_with_hooks(messages, merged)
306
+
307
+ text = resp.get("text", "")
308
+ meta = resp.get("meta", {})
309
+
310
+ self._messages.append({"role": "user", "content": content})
311
+
312
+ cleaned = clean_json_text(text)
313
+ try:
314
+ json_obj = json.loads(cleaned)
315
+ except json.JSONDecodeError:
316
+ if ai_cleanup:
317
+ from .async_core import clean_json_text_with_ai
318
+
319
+ cleaned = await clean_json_text_with_ai(self._driver, cleaned, self._model_name, merged)
320
+ json_obj = json.loads(cleaned)
321
+ else:
322
+ raise
323
+
324
+ self._messages.append({"role": "assistant", "content": cleaned})
325
+ self._accumulate_usage(meta)
326
+
327
+ model_name = self._model_name
328
+ if "/" in model_name:
329
+ model_name = model_name.split("/", 1)[1]
330
+
331
+ usage = {
332
+ **meta,
333
+ "raw_response": resp,
334
+ "model_name": model_name or getattr(self._driver, "model", ""),
335
+ }
336
+
337
+ result: dict[str, Any] = {
338
+ "json_string": cleaned,
339
+ "json_object": json_obj,
340
+ "usage": usage,
341
+ "output_format": output_format,
342
+ }
343
+
344
+ if output_format == "toon":
345
+ try:
346
+ import toon
347
+
348
+ result["toon_string"] = toon.encode(json_obj)
349
+ except ImportError:
350
+ raise RuntimeError("TOON requested but 'python-toon' is not installed.") from None
351
+
352
+ return result
353
+
354
+ async def extract_with_model(
355
+ self,
356
+ model_cls: type[BaseModel],
357
+ text: str,
358
+ *,
359
+ instruction_template: str = "Extract information from the following text:",
360
+ ai_cleanup: bool = True,
361
+ output_format: Literal["json", "toon"] = "json",
362
+ options: dict[str, Any] | None = None,
363
+ json_mode: Literal["auto", "on", "off"] = "auto",
364
+ ) -> dict[str, Any]:
365
+ """Extract structured information into a Pydantic model with conversation context (async)."""
366
+ from .core import normalize_field_value
367
+
368
+ schema = model_cls.model_json_schema()
369
+ content_prompt = f"{instruction_template} {text}"
370
+
371
+ result = await self.ask_for_json(
372
+ content=content_prompt,
373
+ json_schema=schema,
374
+ ai_cleanup=ai_cleanup,
375
+ options=options,
376
+ output_format=output_format,
377
+ json_mode=json_mode,
378
+ )
379
+
380
+ json_object = result["json_object"]
381
+ schema_properties = schema.get("properties", {})
382
+
383
+ for field_name, field_info in model_cls.model_fields.items():
384
+ if field_name in json_object and field_name in schema_properties:
385
+ field_def = {
386
+ "nullable": not schema_properties[field_name].get("type")
387
+ or "null"
388
+ in (
389
+ schema_properties[field_name].get("anyOf", [])
390
+ if isinstance(schema_properties[field_name].get("anyOf"), list)
391
+ else []
392
+ ),
393
+ "default": field_info.default
394
+ if hasattr(field_info, "default") and field_info.default is not ...
395
+ else None,
396
+ }
397
+ json_object[field_name] = normalize_field_value(
398
+ json_object[field_name], field_info.annotation, field_def
399
+ )
400
+
401
+ model_instance = model_cls(**json_object)
402
+
403
+ result_dict = {
404
+ "json_string": result["json_string"],
405
+ "json_object": result["json_object"],
406
+ "usage": result["usage"],
407
+ }
408
+ result_dict["model"] = model_instance
409
+
410
+ return type(
411
+ "ExtractResult",
412
+ (dict,),
413
+ {
414
+ "__getattr__": lambda self, key: self.get(key),
415
+ "__call__": lambda self: self["model"],
416
+ },
417
+ )(result_dict)
418
+
419
+ # ------------------------------------------------------------------
420
+ # Internal: stepwise with shared context
421
+ # ------------------------------------------------------------------
422
+
423
+ async def _stepwise_extract(
424
+ self,
425
+ model_cls: type[BaseModel],
426
+ text: str,
427
+ instruction_template: str,
428
+ ai_cleanup: bool,
429
+ fields: list[str] | None,
430
+ field_definitions: dict[str, Any] | None,
431
+ json_mode: Literal["auto", "on", "off"],
432
+ ) -> dict[str, Union[str, dict[str, Any]]]:
433
+ """Stepwise extraction using async conversation context between fields."""
434
+ if field_definitions is None:
435
+ field_definitions = get_registry_snapshot()
436
+
437
+ data: dict[str, Any] = {}
438
+ validation_errors: list[str] = []
439
+ field_results: dict[str, Any] = {}
440
+
441
+ accumulated_usage = {
442
+ "prompt_tokens": 0,
443
+ "completion_tokens": 0,
444
+ "total_tokens": 0,
445
+ "cost": 0.0,
446
+ "model_name": self._model_name,
447
+ "field_usages": {},
448
+ }
449
+
450
+ valid_fields = set(model_cls.model_fields.keys())
451
+ if fields is not None:
452
+ invalid_fields = set(fields) - valid_fields
453
+ if invalid_fields:
454
+ raise KeyError(f"Fields not found in model: {', '.join(invalid_fields)}")
455
+ field_items = [(name, model_cls.model_fields[name]) for name in fields]
456
+ else:
457
+ field_items = list(model_cls.model_fields.items())
458
+
459
+ # Seed conversation with the source text
460
+ self.add_context("user", f"I need to extract information from this text:\n\n{text}")
461
+ self.add_context(
462
+ "assistant", "I'll help you extract the information from that text. What would you like to extract?"
463
+ )
464
+
465
+ for field_name, field_info in field_items:
466
+ logger.debug("[stepwise-conv] Extracting field: %s", field_name)
467
+
468
+ field_schema = {
469
+ "value": {
470
+ "type": "integer" if field_info.annotation is int else "string",
471
+ "description": field_info.description or f"Value for {field_name}",
472
+ }
473
+ }
474
+
475
+ try:
476
+ prompt = instruction_template.format(field_name=field_name)
477
+ result = await self.ask_for_json(
478
+ content=f"{prompt} {text}",
479
+ json_schema=field_schema,
480
+ ai_cleanup=ai_cleanup,
481
+ json_mode=json_mode,
482
+ )
483
+
484
+ field_usage = result.get("usage", {})
485
+ accumulated_usage["prompt_tokens"] += field_usage.get("prompt_tokens", 0)
486
+ accumulated_usage["completion_tokens"] += field_usage.get("completion_tokens", 0)
487
+ accumulated_usage["total_tokens"] += field_usage.get("total_tokens", 0)
488
+ accumulated_usage["cost"] += field_usage.get("cost", 0.0)
489
+ accumulated_usage["field_usages"][field_name] = field_usage
490
+
491
+ extracted_value = result["json_object"]["value"]
492
+ if isinstance(extracted_value, dict) and "value" in extracted_value:
493
+ raw_value = extracted_value["value"]
494
+ else:
495
+ raw_value = extracted_value
496
+
497
+ from .core import normalize_field_value
498
+
499
+ field_def = {}
500
+ if field_definitions and field_name in field_definitions:
501
+ field_def = field_definitions[field_name] if isinstance(field_definitions[field_name], dict) else {}
502
+
503
+ nullable = field_def.get("nullable", True)
504
+ default_value = field_def.get("default")
505
+ if (
506
+ default_value is None
507
+ and hasattr(field_info, "default")
508
+ and field_info.default is not ...
509
+ and str(field_info.default) != "PydanticUndefined"
510
+ ):
511
+ default_value = field_info.default
512
+
513
+ normalize_def = {"nullable": nullable, "default": default_value}
514
+ raw_value = normalize_field_value(raw_value, field_info.annotation, normalize_def)
515
+
516
+ try:
517
+ converted_value = convert_value(raw_value, field_info.annotation, allow_shorthand=True)
518
+ data[field_name] = converted_value
519
+ field_results[field_name] = {"status": "success", "used_default": False}
520
+ except ValueError as e:
521
+ error_msg = f"Type conversion failed for {field_name}: {e!s}"
522
+ has_default = _has_default(field_name, field_info, field_definitions)
523
+ if not has_default:
524
+ validation_errors.append(error_msg)
525
+ default_value = get_field_default(field_name, field_info, field_definitions)
526
+ data[field_name] = default_value
527
+ field_results[field_name] = {
528
+ "status": "conversion_failed",
529
+ "error": error_msg,
530
+ "used_default": True,
531
+ }
532
+
533
+ except Exception as e:
534
+ error_msg = f"Extraction failed for {field_name}: {e!s}"
535
+ has_default = _has_default(field_name, field_info, field_definitions)
536
+ if not has_default:
537
+ validation_errors.append(error_msg)
538
+ default_value = get_field_default(field_name, field_info, field_definitions)
539
+ data[field_name] = default_value
540
+ field_results[field_name] = {"status": "extraction_failed", "error": error_msg, "used_default": True}
541
+ accumulated_usage["field_usages"][field_name] = {
542
+ "error": str(e),
543
+ "status": "failed",
544
+ "used_default": True,
545
+ "default_value": default_value,
546
+ }
547
+
548
+ if validation_errors:
549
+ accumulated_usage["validation_errors"] = validation_errors
550
+
551
+ try:
552
+ model_instance = model_cls(**data)
553
+ model_dict = model_instance.model_dump()
554
+
555
+ class ExtendedJSONEncoder(json.JSONEncoder):
556
+ def default(self, obj):
557
+ if isinstance(obj, (datetime, date)):
558
+ return obj.isoformat()
559
+ if isinstance(obj, Decimal):
560
+ return str(obj)
561
+ return super().default(obj)
562
+
563
+ json_string = json.dumps(model_dict, cls=ExtendedJSONEncoder)
564
+
565
+ result = {
566
+ "json_string": json_string,
567
+ "json_object": json.loads(json_string),
568
+ "usage": accumulated_usage,
569
+ "field_results": field_results,
570
+ }
571
+ result["model"] = model_instance
572
+ return type(
573
+ "ExtractResult",
574
+ (dict,),
575
+ {"__getattr__": lambda self, key: self.get(key), "__call__": lambda self: self["model"]},
576
+ )(result)
577
+ except Exception as e:
578
+ error_msg = f"Model validation error: {e!s}"
579
+ if "validation_errors" not in accumulated_usage:
580
+ accumulated_usage["validation_errors"] = []
581
+ accumulated_usage["validation_errors"].append(error_msg)
582
+
583
+ error_result = {
584
+ "json_string": "{}",
585
+ "json_object": {},
586
+ "usage": accumulated_usage,
587
+ "field_results": field_results,
588
+ "error": error_msg,
589
+ }
590
+ return type(
591
+ "ExtractResult",
592
+ (dict,),
593
+ {"__getattr__": lambda self, key: self.get(key), "__call__": lambda self: None},
594
+ )(error_result)
595
+
596
+
597
+ def _has_default(field_name: str, field_info: Any, field_definitions: dict[str, Any] | None) -> bool:
598
+ """Check whether a Pydantic field has a usable default value."""
599
+ if field_definitions and field_name in field_definitions:
600
+ fd = field_definitions[field_name]
601
+ if isinstance(fd, dict) and "default" in fd:
602
+ return True
603
+ if hasattr(field_info, "default"):
604
+ val = field_info.default
605
+ if val is not ... and str(val) != "PydanticUndefined":
606
+ return True
607
+ return False